Course 121, 1993–94, Test I (JF Michaelmas Term)

Answer Question 1 and TWO other questions

- (a) Let D be a set of real numbers. Define what is meant by saying that the set D is bounded above, and what is meant by saying that some real number s is the least upper bound (or supremum) of the set D. State the Least Upper Bound Axiom.
 - (b) Let a_1, a_2, a_3, \ldots be an infinite sequence of real numbers, and let l be a real number. Define precisely what is meant by saying that the sequence a_1, a_2, a_3, \ldots converges to l.
 - (c) Determine whether or not each of the following limits exists, and, if so, what is the value of the limit:—

$$\lim_{n \to +\infty} \frac{2n^2 + n}{6n^4 + 5}, \qquad \lim_{n \to +\infty} \frac{6n^3 - 7n}{2n^3 + 2n}, \qquad \lim_{n \to +\infty} \frac{n + 3}{\sqrt{n}}.$$

- (d) Let (u_n) and (v_n) be infinite sequences of real numbers. Suppose that $u_n \to 0$ and $v_n \to 0$ as $n \to +\infty$. Prove that $u_n v_n \to 0$ as $n \to +\infty$.
- 2. State and prove the Bolzano-Weierstrass Theorem
- 3. Let a_1, a_2, a_3, \ldots and b_1, b_2, b_3, \ldots be infinite sequences of real numbers. Suppose that $\lim_{n \to +\infty} b_n = 0$ and that there exists some positive real number K such that $|a_n| \leq K$ for all natural numbers n. Use the definition of convergence to prove that $\lim_{n \to +\infty} (a_n b_n) = 0$.
- 4. Let (a_n) , (b_n) and (c_n) be infinite sequences of real numbers. Suppose that $a_n \leq b_n \leq c_n$ for all natural numbers n and $\lim_{n \to +\infty} (c_n - b_n) = 0$. Prove that the sequence (b_n) is convergent if and only if the sequence (a_n) is convergent, in which case $\lim_{n \to +\infty} a_n = \lim_{n \to +\infty} b_n$.

Course 121, 1993–94, Test II (JF Michaelmas Term)

Answer Question 1 and TWO other questions

- 1. (a) Let $f: D \to \mathbb{R}$ be a real-valued function defined over some subset D of \mathbb{R} , and let s be a limit point of D. Let l be a real number. Define precisely what is meant by saying that l is the *limit* of f(x) as x tends to s in D.
 - (b) Define precisely what it means to say that a real-valued function $f: D \to \mathbb{R}$ defined over some subset D of \mathbb{R} is *continuous* at some real number s belonging to D.
 - (c) Let $f: D \to \mathbb{R}$ and $g: D \to \mathbb{R}$ be functions defined over some subset D of \mathbb{R} , and let s be a limit point of D. Suppose that $\lim_{x \to s} f(x)$ and $\lim_{x \to s} g(x)$ exist. Prove that $\lim_{x \to s} (f(x) + g(x))$ exists, and

$$\lim_{x \to s} (f(x) + g(x)) = \lim_{x \to s} f(x) + \lim_{x \to s} g(x).$$

- (d) Let $f: D \to \mathbb{R}$ be a continuous function defined over some subset D of \mathbb{R} , and let x_1, x_2, x_3, \ldots be a sequence of real numbers belonging to D which converges to some element l of D. Prove that the sequence $f(x_1), f(x_2), f(x_3), \ldots$ converges to f(l).
- (e) Let $f: \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} x^3 \cos\left(\frac{1}{x^2}\right) & \text{if } x \neq 0; \\ 0 & \text{if } x = 0. \end{cases}$$

Is the function f continuous at 0? [Fully justify your answer.]

- 2. State and prove the Intermediate Value Theorem.
- 3. (a) Let a and b be continuous real numbers satisfying a < b and let $f:[a,b] \to \mathbb{R}$ be a continuous function defined on the interval [a,b], where $[a,b] = \{x \in \mathbb{R} : a \le x \le b\}$. Prove that there exists some positive real number M such that $|f(x)| \le M$ for all $x \in [a,b]$.
 - (b) Let $f:[a,b] \to \mathbb{R}$ be a continuous function. Suppose that f(x) > 0 for all $x \in [a,b]$. Prove that there exists some strictly positive real number c such that $f(x) \ge c > 0$ for all $x \in [a,b]$.
- 4. Let $f: D \to \mathbb{R}$ be a function defined over some subset D of \mathbb{R} , and let s be a limit point of D. Suppose that $f(x) \ge 0$ for all $x \in D$ and that $f(x) \to l$ as $x \to s$ in D. Prove that $l \ge 0$.

Course 121, 1993–94, Test III (JF Hilary Term)

Answer Question 1 and TWO other questions

- 1. (a) Let a be a real number, and let f be a real-valued function defined around a. What is meant by saying that the function f is differentiable at a.
 - (b) State and prove Rolle's Theorem.
 - (c) Let D be a subset of \mathbb{R} . What is meant by saying that a sequence f_1, f_2, f_3, \ldots of real valued functions from D to \mathbb{R} converges uniformly on D to a limit function $f: D \to \mathbb{R}$.
 - (d) Let a and b be real numbers satisfying a < b, and let f_1, f_2, f_3, \ldots be a sequence of continuous functions which converges uniformly on the interval [a, b] to some function $f: [a, b] \to \mathbb{R}$. Prove that the function f is continuous on [a, b].
- 2. Let p, q and r be real numbers. Prove that the cubic polynomial $x^3 + px^2 + qx + r$ has exactly one real root if its coefficients satisfy the inequality $p^2 < 3q$.
- 3. State and prove Taylor's Theorem.
- 4. (a) State and prove the Fundamental Theorem of Calculus.
 - (b) Let a and b be real numbers satisfying a < b, and let f_1, f_2, f_3, \ldots be a sequence of continuous functions from [a, b] to \mathbb{R} that converge uniformly on the interval [a, b] to a continuous function $f: [a, b] \to \mathbb{R}$. Prove that $\int_a^b f(x) dt = \lim_{n \to +\infty} \int_a^b f_n(x) dx$.
- 5. (a) What is meant by saying that a bounded subset S of the Euclidean plane is *Jordan-measurable*.
 - (b) Prove that one can assign to each Jordan-measurable set S in the Euclidean plane a unique real number $\operatorname{area}(S)$ characterized by the following properties: if P is a polygonal region and $P \subset S$ then $\operatorname{area}(P) \leq \operatorname{area}(S)$, and if Q is a polygonal region and $S \subset Q$ then $\operatorname{area}(S) \leq \operatorname{area}(Q)$. [You may use, without proof, the fact that $\operatorname{area}(P) \leq \operatorname{area}(Q)$ whenever P and Q are polygonal regions in the plane satisfying $P \subset Q$.]

Course 121, 1993–94, Test IV (JF Hilary Term)

Answer Question 1 and TWO other questions

- 1. (a) What is meant by saying that a infinite sequence z_1, z_2, z_3, \ldots of complex numbers is *convergent*?
 - (b) Let $l = \lambda + i\mu$, where λ and μ are real numbers and $i = \sqrt{-1}$, and let $z_n = x_n + iy_n$ for all natural numbers n, where (x_n) and (y_n) are infinite sequences of real numbers. Prove that that the infinite sequence (z_n) converges to l if and only if the infinite sequences (x_n) and (y_n) converge to λ and μ respectively.
 - (c) Test the following infinite series for convergence:—

$$\sum_{n=1}^{+\infty} \frac{\sqrt{n}+1}{2n\sqrt{n}-1}, \qquad \sum_{n=1}^{+\infty} \frac{3\cos n-2}{n^3}, \qquad \sum_{n=1}^{+\infty} \frac{1}{(2n)!}.$$

- 2. (a) What is meant by saying that a infinite sequence z_1, z_2, z_3, \ldots of complex numbers is a *Cauchy sequence*?
 - (b) Prove that any Cauchy sequence of complex numbers is bounded.
 - (c) Prove that an infinite sequence of complex numbers is convergent if and only if it is a Cauchy sequence. (This is *Cauchy's Criterion for convergence*, also known as the *General Principle of Convergence*).

3. Prove that the infinite series
$$\sum_{n=1}^{+\infty} \frac{1}{n^2}$$
 is convergent.

- 4. (a) What is meant by saying that an infinite series $\sum_{n=1}^{+\infty} a_n$ of complex numbers is *absolutely convergent*?
 - (b) Let D be a subset of \mathbb{C} and let f_1, f_2, f_3, \ldots be functions from D to \mathbb{C} . What is meant by saying that the infinite series $\sum_{n=1}^{+\infty} f_n(z)$ of functions is *uniformly convergent* on D?
 - (c) Let $\sum_{n=1}^{+\infty} a_n$ and $\sum_{n=1}^{+\infty} b_n$ be absolutely convergent series of complex numbers. Prove that if

$$f(x) = \sum_{n=1}^{+\infty} (a_n \cos(nx) + b_n \sin(nx))$$

then the infinite series defining f(x) converges for all real numbers x. Prove also that the function $f: \mathbb{R} \to \mathbb{C}$ is continuous on \mathbb{R} . [You may assume, without proof, any general results concerning uniformly convergent infinite series that you require.]

Course 121, 1993–94, Test V (JF Trinity Term)

Answer Question 1 and TWO other questions

- (a) What is meant by saying that a subset V of Rⁿ is an open set in Rⁿ? What is meant by saying that a subset F of Rⁿ is a closed set in Rⁿ?
 - (b) Let **p** be a point of \mathbb{R}^n . Prove that the open ball $\{\mathbf{x} \in \mathbb{R}^n : |\mathbf{x} \mathbf{p}| < r\}$ of radius r about the point **p** is an open set in \mathbb{R}^n .
 - (c) Let c be a real number. Prove that the set $\{(x, y) \in \mathbb{R}^2 : y > c\}$ is an open set in \mathbb{R}^2 .
 - (d) Consider the following subsets of \mathbb{R}^2 . Determine whether or not they are open, and also whether or not they are closed in \mathbb{R}^2 . [Fully justify your answers.]
 - (i) $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 9 \text{ or } y \le 1\},\$
 - (ii) $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \ge 9 \text{ or } y \le 1\},\$
- 2. (a) Let X and Y be a subsets of \mathbb{R}^m and \mathbb{R}^n respectively. What is meant by saying that a function $f: X \to Y$ from X to Y is *continuous*?
 - (b) Prove that the function $s: \mathbb{R}^2 \to \mathbb{R}$ defined by s(x,y) = x + y is continuous.
 - (c) Let X and Y be a subsets of \mathbb{R}^m and \mathbb{R}^n respectively. Prove that a function $f: X \to Y$ is continuous if and only if its components are continuous.
 - (d) Using (b) and (c), or otherwise, show that if $f: X \to \mathbb{R}$ and $g: X \to \mathbb{R}$ are continuous functions on a subset X of \mathbb{R}^m then so is f + g, where $(f + g)(\mathbf{x}) = f(\mathbf{x}) + g(\mathbf{x})$ for all $\mathbf{x} \in X$.
- 3. Prove that the collection of open sets in \mathbb{R}^n has the following properties:—
 - (i) the empty set \emptyset and \mathbb{R}^n itself are open sets;
 - (ii) any union of open sets is itself an open set;
 - (iii) any finite intersection of open sets is an open set.
- 4. Let $f: \mathbb{R}^m \to \mathbb{R}^n$ be a continuous function, let K be a closed bounded set in \mathbb{R}^m , and let \mathbf{q} be a point of \mathbb{R}^n . Suppose that $V \cap f(K)$ is non-empty for all open sets V that contain the point \mathbf{q} . Prove that there exists $\mathbf{p} \in K$ for which $f(\mathbf{p}) = \mathbf{q}$. [You may use, without proof, any result proved in the lecture notes, provided that the result is clearly stated.]

©David R. Wilkins 1993–94