Course 121, 1992–93, Test IV (JF Hilary Term)

Answer Question 1 and TWO other questions

- 1. (a) What is meant by saying that a infinite sequence z_1, z_2, z_3, \ldots of complex numbers is *convergent*?
 - (b) Let $f: D \to \mathbb{C}$ and $g: D \to \mathbb{C}$ be functions defined over some subset D of \mathbb{C} , and let w be a limit point of D. Suppose that $\lim_{z \to w} f(z) = l$ and $\lim_{z \to w} g(z) = m$ for some complex numbers l and m. Prove that $\lim_{z \to w} (f(z) + g(z)) = l + m$.
 - (c) Test the following infinite series for convergence:—

$$\sum_{n=1}^{+\infty} \frac{(-2)^n + 1}{4^n + 3}, \qquad \sum_{n=1}^{+\infty} \frac{n^2}{2n^3 - 1}$$
$$\sum_{n=1}^{+\infty} \frac{n^2}{n!}, \qquad \sum_{n=1}^{+\infty} \frac{n!}{(2n)^n}.$$

2. Let f_1, f_2, f_3, \ldots be an infinite sequence of functions from D to \mathbb{C} , where $D \subset \mathbb{C}$.

What is meant by saying that the sequence f_1, f_2, f_3, \ldots converges *uniformly* on D to some function $f: D \to \mathbb{C}$.

- (b) Suppose that each function f_n is continuous on D and the sequence f_1, f_2, f_3, \ldots converges uniformly on D to some function f. Prove that the limit function f is continuous on D.
- (c) What is meant by saying that an infinite series $\sum_{n=1}^{+\infty} f_n(z)$ of functions is *uniformly convergent* on a subset D of \mathbb{C} .
- (d) Describe the Weierstrass *M*-test for uniform convergence, and prove the validity of this test. [You may assume the validity of the *Comparison Test* for convergence.]
- 3. Prove that the series $\sum_{n=1}^{+\infty} \frac{1}{n}$ is divergent.
- 4. Let a_1, a_2, a_3, \ldots be complex numbers. Suppose that $\lim_{n \to +\infty} |a_n|^{1/n} < 1$.

Prove that the infinite series $\sum_{n=1}^{+\infty} a_n$ is convergent.

Course 121, 1992–93, Test V (JF Trinity Term)

Answer Question 1 and TWO other questions

- (a) What is meant by saying that a subset V of Rⁿ is an open set in Rⁿ? What is meant by saying that a subset F of Rⁿ is a closed set in Rⁿ?
 - (b) Let **p** be a point of \mathbb{R}^n . Prove that the open ball

$$\{\mathbf{x} \in \mathbb{R}^n : |\mathbf{x} - \mathbf{p}| < r\}$$

of radius r about the point **p** is an open set in \mathbb{R}^n .

- (c) Let c be a real number. Prove that the set $\{(x, y, z) \in \mathbb{R}^3 : z < c\}$ is an open set in \mathbb{R}^3 .
- (d) Consider the following subsets of \mathbb{R}^3 . Determine whether or not they are open, and also whether or not they are closed in \mathbb{R}^3 . [Fully justify your answers.]
 - (i) $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \ge 4 \text{ or } z \ge 0\},\$
 - (ii) $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \ge 4 \text{ or } z < 0\},\$
- - (b) Let x₁, x₂, x₃,... be a sequence of points of ℝⁿ, and let x_{ji} denote the *i*th component of x_j for each natural number j. Prove that the sequence x₁, x₂, x₃,... converges to some point **p** if and only if lim_{j→+∞} x_{ji} = p_i for i = 1, 2, ..., n, where p_i is the *i*th component of **p**.
- 3. Let X and Y be subsets of \mathbb{R}^m and \mathbb{R}^n , and let $f: X \to Y$ be a function from X to Y.
 - (a) What is meant by saying that the function f is *continuous* at some point **p** of X?
 - (b) Prove that $f: X \to Y$ is continuous if and only if $f^{-1}(V)$ is open in X for all subsets V of Y that are open in Y.
- 4. Let $f: \mathbb{R}^n \to \mathbb{R}$ be a continuous function. Suppose that $f(\mathbf{x}) > 0$ for all $\mathbf{x} \in \mathbb{R}^n$ satisfying $\mathbf{x} \neq \mathbf{0}$, and that there exists some $\alpha > 0$ such that $f(\lambda \mathbf{x}) = \lambda^{\alpha} f(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^n$ and $\lambda > 0$. Prove that there exists some constant c satisfying c > 0 such that $f(\mathbf{x}) \geq c |\mathbf{x}|^{\alpha}$ for all $\mathbf{x} \in \mathbb{R}^n$. [You may use, without proof, any result proved in the lecture notes, provided that the result is clearly stated.]

©David R. Wilkins 1993