
Course 121, 1990–91, Test I (JFMichaelmas Term)

Attempt THREE questions

1. (a) Let D be a set of real numbers. Define what is meant by saying that
the set D is bounded above, and define precisely what is meant by say-
ing that some real number c is the least upper bound (or supremum)
of the set D. State the Least Upper Bound Axiom.

(b) Consider the set D of all real numbers of the form (n2 − 1)/(n+ 1)2

for some natural number n. Is this set bounded above? If so, what
is its least upper bound?

(c) Define what is meant by saying that a real number s belonging to
some set D is an isolated point of that set. Let D be the set of all
real numbers of the form 1/n for some natural number n. Prove that
every element of D is an isolated point of D.

2. (a) Let t1, t2, t3, . . . be an infinite sequence of real numbers, and let l be
a real number. Define precisely what is meant by saying that the
sequence t1, t2, t3, . . . converges to l.

(b) Let (sn : n ∈ N) and (tn : n ∈ N) be convergent sequences of real
numbers. Prove that the sequence (sn − tn : n ∈ N) is convergent
and that

lim
n→+∞

(sn − tn) = lim
n→+∞

sn − lim
n→+∞

tn

(c) Let s1, s2, s3, . . . be the sequence of real numbers given by

sn =
(n+ 3)(2n2 − 7)

(3n− 1)(5− 2n2)
.

Prove that lim
n→+∞

sn = − 1
3 . (N.B., do not attempt to apply l’Hôpital’s

Rule)

3. (a) Prove that every convergent sequence of real numbers is bounded.

(b) Let t1, t2, t3, . . . be a non-decreasing sequence of real numbers (so that
tj ≤ tk whenever j < k). Suppose that this sequence is bounded
above. Using the Least Upper Bound Axiom, prove that this se-
quence converges to some real number l.

(c) Give an example of a bounded sequence of real numbers which is not
convergent.

4. (a) Let s1, s2, s3, . . . be the sequence of real numbers defined by

sn =

√
7n− 3 cos(n3)

4n+ 5

Prove that the sequence (sn : n ∈ N) is convergent, and find lim
n→+∞

sn.

(b) Let t1, t2, t3, . . . be a sequence of real numbers. Suppose that tn+1/tn →
0 as n → +∞. Let ρ be a real number satisfying 0 < ρ < 1. Prove
that there exists a positive constant C such that |tn| ≤ Cρn for all
natural numbers n. Hence prove that tn → 0 as n→ +∞. [You may
make use of any result proved in lectures, provided that the result is
clearly stated.]
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Course 121, 1990–91, Test II (JFMichaelmas Term)

Attempt THREE questions

1. (a) Let f :D → R be a real-valued function defined over some subset D
of R, and let s be a limit point of D. Let l be a real number. Define
precisely what is meant by saying that l is the limit of f(t) as t tends
to s in D.

(b) Using the definition of the limit of a real-valued function, prove for-
mally that

lim
t→0

(
t2 sin

(
1

t2

))
= 0.

2. (a) Define precisely what it means to say that a real-valued function f :D →
R defined over some subset D of R is continuous at some real num-
ber s belonging to D.

(b) Let f :D → R and g:D → R be real-valued functions defined over
some subset D of R. Suppose that the functions f and g are con-
tinuous at some real number s belonging to D. Prove that the sum
f + g of the functions f and g is also continuous at s.

(c) Let f :D → R and g:D → R be real-valued functions defined over
some subset D of R. Suppose that the functions f and g are con-
tinuous at some real number s belonging to D. Prove that the
product f.g of the functions f and g is also continuous at s (where
(f.g)(t) = f(t)g(t) for all t ∈ D).

3. Let f :D → R, g:D → R and h:D → R be real-valued functions defined
over some subset D of R. Let s be some real number belonging to D.
Suppose that f(t) ≤ g(t) ≤ h(t) for all t ∈ D and that f(s) = g(s) = h(s).
Suppose also that the functions f and h are continuous at s. Prove that
the function g is continuous at s.

4. State and prove the Intermediate Value Theorem.
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Course 121, 1990–91, Test III (JF Michaelmas
Term)

Attempt THREE questions

1. (a) State and prove Rolle’s Theorem.

(b) Let f :R → R be a 5 times differentiable function on R. Let a, b, c
and d be real numbers satisfying a < b < c < d. Suppose that

f(a) = f(b) = f ′(b) = f(c) = f ′(c) = f(d) = 0.

Prove that there exists some real number s satisfying a < s < d for
which f (5)(s) = 0.

2. (a) State the Mean Value Theorem, and show how it may be derived
from Rolle’s Theorem.

(b) Let f :R→ R be a twice differentiable function. Suppose that f(0) =
a, f ′(0) = b and f ′′(t) ≥ −c for all t > 0, where c > 0. Prove that
f(t) > a+ bt− ct2 for all t > 0.

(c) Let g:R→ R be a differentiable function. Suppose that g′(t) ≥ 0 for
all t ∈ [a, b], where a and b are real numbers satisfying a < b. Suppose
also that the derivative g′ of g is continuous and that g′(t) > 0 for at
least one value of t in the interval (a, b). Prove that g(b) > g(a).

3. Let f : [a, b]→ R be a bounded function defined on the interval [a, b].

(a) Define the concept of a partition of the interval [a, b]. Give the defi-
nition of the lower sum L(P, f) and the upper sum U(P, f) of f for
the partition P .

(b) Define the lower Riemann integral L
∫ b

a
f(t) dt and the upper Rie-

mann integral U
∫ b

a
f(t) dt of f on the interval [a, b]. Define precisely

what is meant by saying that the function f is Riemann-integrable
on [a, b], and define the Riemann integral of a Riemann-integrable
function on [a, b].

(c) Let f :R→ R be defined by f(t) = ekt, where k > 0, and let a and b
be real numbers satisfying a < b. Calculate L(Pn, f) and U(Pn, f),
where Pn denotes the partition of [a, b] into n subintervals of equal
length (so that P = {t0, t1, . . . , tn}, where ti = a(n− i)/n+ bi/n for
i = 0, 1, . . . , n). Show that

lim
n→+∞

L(Pn, f) = lim
n→+∞

L(Pn, f) =
1

k
(ekb − eka),

and hence show that

L
∫ b

a

f(t) dt = U
∫ b

a

f(t) dt =
1

k
(ekb − eka).

[You may use, without proof, the following identities:

1 + x+ x2 + · · ·+ xn−1 =
xn − 1

x− 1
(x 6= 1),

lim
n→+∞

n(ec/n − 1) = c.]
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4. (a) Let f : [a, b] → R be a continuous function on the interval [a, b], and
let

F (x) =

∫ x

a

f(t) dt, (a ≤ x ≤ b).

Prove that F ′(x) = f(x) for all x satisfying a < x < b.

(b) Find the derivative of the function g:R→ R defined by

g(x) = sin

(∫ 1+x2

0

et
2

dt

)
.
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Course 121, 1990–91, Test IV (JF Trinity Term)

Friday 5th April 1991
Attempt question 1 and 2 other questions

1. Test the following infinite series for convergence:—

(a)

+∞∑
n=1

sinn3 − 4

n3 + n
, (b)

+∞∑
n=2

(−1)n√
n log n

, (c)

+∞∑
n=2

1√
n log n

,

(d)

+∞∑
n=1

n!zn

(2n)!
, (z ∈ C), (e)

+∞∑
n=1

n!2n

(3n)n
.

2. (a) Give the definition of a Cauchy sequence of complex numbers.

(b) Prove that every Cauchy sequence of complex numbers is convergent
(Cauchy’s Criterion for convergence). [You may use, without proof,
the Bolzano-Weierstrass Theorem.]

(c) Describe the Comparison Test, used for testing infinite series of com-
plex numbers for convergence, and explain how it can be derived
using Cauchy’s Criterion for Convergence.

3. (a) Define what is meant by saying that a sequence z1, z2, z3, z4, . . . of
complex numbers is convergent.

(b) Let f :D → C be a complex-valued function defined over a subset D
of C. What is meant by saying that the function f is continuous at
an element w of D?

(c) Let f :D → C be a complex-valued function defined over a subset D
of C, and let z1, z2, z3, . . . be a sequence of elements of D which
converges to some element w of D. Suppose that the function f
is continuous at w. Prove that the sequence f(z1), f(z2), f(z3), . . .
converges to f(w).

(d) Let f :D → C be a complex-valued function defined over a subset D
of C, and let w be a limit point of D. Let l be a complex number.
What is meant by saying that l is the limit lim

z→w
f(z) of f(z) as z → w

in D?

(e) Let f :D → C be a complex-valued function defined over a subset D
of C, and let z1, z2, z3, . . . be a sequence of elements of D which
converges to some limit point w of D. Let l be a complex number.
Suppose that lim

z→w
f(z) = l for some complex number l and that

zn = w for at most finitely many values of n. Prove that the sequence
f(z1), f(z2), f(z3), . . . converges to l.

(f) Give an example of a function f :C→ C and a sequence z1, z2, z3, . . .
of complex numbers converging to 0 such that lim

z→w
f(z) = 0, yet the

sequence f(z1), f(z2), f(z3), . . . does not converge to 0.

4. (a) Let f1, f2, f3, . . . be a sequence of complex-valued functions on a sub-
set D of C. What is meant by saying that the sequence f1, f2, f3, . . .

5



converges uniformly on D to a function f . Explain why the condi-
tion that lim

n→+∞
fn(z) = f(z) for all z ∈ D is not in itself sufficient to

ensure the uniform convergence of the sequence f1, f2, f3, . . . to the
function f .

(b) Describe the Weierstrass M -test for uniform convergence.

(c) Let R0 be the radius of convergence of the power series
+∞∑
n=0

anz
n.

(Thus R0 is the supremeum, or least upper bound, of the set of all

values of |z| corresponding to complex numbers z for which
+∞∑
n=0

anz
n

converges, provided that this set is bounded; otherwise R0 = +∞.)

Let R satisfy 0 < R < R0. Prove that the power series
+∞∑
n=0

anz
n

converges uniformly on the open disk {z ∈ C : |z| < R} of radius R
about zero.
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Course 121, 1990–91, Test V (JF Trinity Term)

Friday 3rd May 1991.
Attempt question 1 and 2 other questions.

Question 1 carries 30 marks (50%); the remaining
questions carry 15 marks (25%) each.

1. Consider the following subsets of R2. Determine which are open and which
are closed in R2. [Fully justify your answers.]

(a) {(x, y) ∈ R2 : x2 + y2 ≥ 25},
(b) {(x, y) ∈ R2 : x2 + y2 < 25 or y > 3},
(c) {(x, y) ∈ R2 : x2 + y2 ≥ 25 and y > 3},
(d) {(x, y) ∈ R2 : 1 < x < 2 and 3 < y < 4},
(e) {(x, y) ∈ R2 : y > 0 and y4 = 1 + x4}.

2. (a) Define what is meant by saying that a function f :Rn → Rm from
Rn to Rm is continuous. Define also what is meant by saying that a
subset V of Rn is open.

(b) Prove that a function f :Rn → Rm is continuous if and only if f−1(V )
is open in Rn for every open set V in Rm. (Here f−1(V ) denotes the
preimage of the set V , defined by

f−1(V ) = {x ∈ Rn : f(x) ∈ V }.)

(c) Let f :R3 → R be a continuous function from R3 to R. Explain why

{(x, y, z) ∈ R3 : f(x, y, z) < z}

is an open set in R3.

3. (a) Let X and Y be subsets of Rn and Rm respectively. Explain what is
meant by saying that the sets X and Y are homeomorphic.

(b) Let C be the subset of R2 defined by

C = {(x, y) ∈ R2 : x ≥ 1 and x2 − y2 = 1}.

Prove that C is homeomorphic to the real line R.

(c) Let S be the subset of R3 defined by

S = {(x, y, z) ∈ R3 : x ≥ 1 and x2 − y2 − z2 = 1}.

Prove that S is homeomorphic to the Euclidean plane R2.

4. Let X be a subset of Rn, let x be a point of X, and let p be a point of
Rn that does not belong to X. Let S be the set of all non-negative real
numbers t with the property that

(1− θ)x + θp ∈ X for all θ ∈ [0, t]

(i.e., S is the set of all non-negative real numbers t with the property that
the line segment joining the point x to the point (1− t)x+ tp is contained
within the set X). Let s = supS, and let y = (1− s)x + sp.
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(a) Explain why 0 ≤ s ≤ 1.

(b) Show that if the set X is closed in Rn then the point y belongs to
X.

(c) Show that if the set X is open in Rn then the point y belongs to
Rn \X.

(d) Using (a) and (b), show that the only subsets of Rn that are both
open and closed in Rn are the empty set ∅ and Rn itself.

c©David R. Wilkins 1990–91
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