Course 121, 1990–91, Test I (JF Michaelmas Term)

Attempt THREE questions

- (a) Let D be a set of real numbers. Define what is meant by saying that the set D is *bounded above*, and define precisely what is meant by saying that some real number c is the *least upper bound* (or *supremum*) of the set D. State the *Least Upper Bound Axiom*.
 - (b) Consider the set D of all real numbers of the form $(n^2 1)/(n + 1)^2$ for some natural number n. Is this set bounded above? If so, what is its least upper bound?
 - (c) Define what is meant by saying that a real number s belonging to some set D is an *isolated point* of that set. Let D be the set of all real numbers of the form 1/n for some natural number n. Prove that every element of D is an isolated point of D.
- 2. (a) Let t_1, t_2, t_3, \ldots be an infinite sequence of real numbers, and let l be a real number. Define precisely what is meant by saying that the sequence t_1, t_2, t_3, \ldots converges to l.
 - (b) Let $(s_n : n \in \mathbb{N})$ and $(t_n : n \in \mathbb{N})$ be convergent sequences of real numbers. Prove that the sequence $(s_n t_n : n \in \mathbb{N})$ is convergent and that

$$\lim_{n \to +\infty} (s_n - t_n) = \lim_{n \to +\infty} s_n - \lim_{n \to +\infty} t_n$$

(c) Let s_1, s_2, s_3, \ldots be the sequence of real numbers given by

$$s_n = \frac{(n+3)(2n^2 - 7)}{(3n-1)(5-2n^2)}$$

Prove that $\lim_{n \to +\infty} s_n = -\frac{1}{3}$. (N.B., do not attempt to apply l'Hôpital's Rule)

- 3. (a) Prove that every convergent sequence of real numbers is bounded.
 - (b) Let t_1, t_2, t_3, \ldots be a non-decreasing sequence of real numbers (so that $t_j \leq t_k$ whenever j < k). Suppose that this sequence is bounded above. Using the Least Upper Bound Axiom, prove that this sequence converges to some real number l.
 - (c) Give an example of a bounded sequence of real numbers which is not convergent.
- 4. (a) Let s_1, s_2, s_3, \ldots be the sequence of real numbers defined by

$$s_n = \frac{\sqrt{7n-3}\cos(n^3)}{4n+5}$$

Prove that the sequence $(s_n : n \in \mathbb{N})$ is convergent, and find $\lim_{n \to \infty} s_n$.

(b) Let t_1, t_2, t_3, \ldots be a sequence of real numbers. Suppose that $t_{n+1}/t_n \rightarrow 0$ as $n \rightarrow +\infty$. Let ρ be a real number satisfying $0 < \rho < 1$. Prove that there exists a positive constant C such that $|t_n| \leq C\rho^n$ for all natural numbers n. Hence prove that $t_n \rightarrow 0$ as $n \rightarrow +\infty$. [You may make use of any result proved in lectures, provided that the result is clearly stated.]

Course 121, 1990–91, Test II (JF Michaelmas Term)

Attempt THREE questions

- 1. (a) Let $f: D \to \mathbb{R}$ be a real-valued function defined over some subset D of \mathbb{R} , and let s be a limit point of D. Let l be a real number. Define precisely what is meant by saying that l is the *limit* of f(t) as t tends to s in D.
 - (b) Using the definition of the limit of a real-valued function, prove formally that

$$\lim_{t \to 0} \left(t^2 \sin\left(\frac{1}{t^2}\right) \right) = 0.$$

- - (b) Let f: D → R and g: D → R be real-valued functions defined over some subset D of R. Suppose that the functions f and g are continuous at some real number s belonging to D. Prove that the sum f + g of the functions f and g is also continuous at s.
 - (c) Let $f: D \to \mathbb{R}$ and $g: D \to \mathbb{R}$ be real-valued functions defined over some subset D of \mathbb{R} . Suppose that the functions f and g are continuous at some real number s belonging to D. Prove that the product f.g of the functions f and g is also continuous at s (where (f.g)(t) = f(t)g(t) for all $t \in D$).
- 3. Let $f: D \to \mathbb{R}$, $g: D \to \mathbb{R}$ and $h: D \to \mathbb{R}$ be real-valued functions defined over some subset D of \mathbb{R} . Let s be some real number belonging to D. Suppose that $f(t) \leq g(t) \leq h(t)$ for all $t \in D$ and that f(s) = g(s) = h(s). Suppose also that the functions f and h are continuous at s. Prove that the function g is continuous at s.
- 4. State and prove the Intermediate Value Theorem.

Course 121, 1990–91, Test III (JF Michaelmas Term)

Attempt THREE questions

- 1. (a) State and prove Rolle's Theorem.
 - (b) Let $f: \mathbb{R} \to \mathbb{R}$ be a 5 times differentiable function on \mathbb{R} . Let a, b, cand d be real numbers satisfying a < b < c < d. Suppose that

$$f(a) = f(b) = f'(b) = f(c) = f'(c) = f(d) = 0.$$

Prove that there exists some real number s satisfying a < s < d for which $f^{(5)}(s) = 0$.

- 2. (a) State the *Mean Value Theorem*, and show how it may be derived from *Rolle's Theorem*.
 - (b) Let $f: \mathbb{R} \to \mathbb{R}$ be a twice differentiable function. Suppose that f(0) = a, f'(0) = b and $f''(t) \ge -c$ for all t > 0, where c > 0. Prove that $f(t) > a + bt ct^2$ for all t > 0.
 - (c) Let $g: \mathbb{R} \to \mathbb{R}$ be a differentiable function. Suppose that $g'(t) \ge 0$ for all $t \in [a, b]$, where a and b are real numbers satisfying a < b. Suppose also that the derivative g' of g is continuous and that g'(t) > 0 for at least one value of t in the interval (a, b). Prove that g(b) > g(a).
- 3. Let $f:[a,b] \to \mathbb{R}$ be a bounded function defined on the interval [a,b].
 - (a) Define the concept of a *partition* of the interval [a, b]. Give the definition of the *lower sum* L(P, f) and the *upper sum* U(P, f) of f for the partition P.
 - (b) Define the lower Riemann integral $\mathcal{L} \int_a^b f(t) dt$ and the upper Riemann integral $\mathcal{U} \int_a^b f(t) dt$ of f on the interval [a, b]. Define precisely what is meant by saying that the function f is Riemann-integrable on [a, b], and define the Riemann integral of a Riemann-integrable function on [a, b].
 - (c) Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(t) = e^{kt}$, where k > 0, and let a and b be real numbers satisfying a < b. Calculate $L(P_n, f)$ and $U(P_n, f)$, where P_n denotes the partition of [a, b] into n subintervals of equal length (so that $P = \{t_0, t_1, \ldots, t_n\}$, where $t_i = a(n-i)/n + bi/n$ for $i = 0, 1, \ldots, n$). Show that

$$\lim_{n \to +\infty} L(P_n, f) = \lim_{n \to +\infty} L(P_n, f) = \frac{1}{k} (e^{kb} - e^{ka}),$$

and hence show that

$$\mathcal{L} \int_{a}^{b} f(t) dt = \mathcal{U} \int_{a}^{b} f(t) dt = \frac{1}{k} (e^{kb} - e^{ka}).$$

[You may use, without proof, the following identities:

$$1 + x + x^2 + \dots + x^{n-1} = \frac{x^n - 1}{x - 1}$$
 $(x \neq 1),$
 $\lim_{n \to +\infty} n(e^{c/n} - 1) = c.]$

4. (a) Let $f:[a,b] \to \mathbb{R}$ be a continuous function on the interval [a,b], and let

$$F(x) = \int_{a}^{x} f(t) dt, \qquad (a \le x \le b).$$

Prove that F'(x) = f(x) for all x satisfying a < x < b.

(b) Find the derivative of the function $g \colon \mathbb{R} \to \mathbb{R}$ defined by

$$g(x) = \sin\left(\int_0^{1+x^2} e^{t^2} dt\right).$$

Course 121, 1990–91, Test IV (JF Trinity Term)

Friday 5th April 1991 Attempt question 1 and 2 other questions

1. Test the following infinite series for convergence:—

(a)
$$\sum_{n=1}^{+\infty} \frac{\sin n^3 - 4}{n^3 + n}$$
, (b) $\sum_{n=2}^{+\infty} \frac{(-1)^n}{\sqrt{n \log n}}$, (c) $\sum_{n=2}^{+\infty} \frac{1}{\sqrt{n \log n}}$,
(d) $\sum_{n=1}^{+\infty} \frac{n! z^n}{(2n)!}$, $(z \in \mathbb{C})$, (e) $\sum_{n=1}^{+\infty} \frac{n! 2^n}{(3n)^n}$.

- 2. (a) Give the definition of a *Cauchy sequence* of complex numbers.
 - (b) Prove that every Cauchy sequence of complex numbers is convergent (*Cauchy's Criterion for convergence*). [You may use, without proof, the Bolzano-Weierstrass Theorem.]
 - (c) Describe the *Comparison Test*, used for testing infinite series of complex numbers for convergence, and explain how it can be derived using Cauchy's Criterion for Convergence.
- 3. (a) Define what is meant by saying that a sequence $z_1, z_2, z_3, z_4, \ldots$ of complex numbers is *convergent*.
 - (b) Let $f: D \to \mathbb{C}$ be a complex-valued function defined over a subset D of \mathbb{C} . What is meant by saying that the function f is *continuous* at an element w of D?
 - (c) Let $f: D \to \mathbb{C}$ be a complex-valued function defined over a subset D of \mathbb{C} , and let z_1, z_2, z_3, \ldots be a sequence of elements of D which converges to some element w of D. Suppose that the function f is continuous at w. Prove that the sequence $f(z_1), f(z_2), f(z_3), \ldots$ converges to f(w).
 - (d) Let $f: D \to \mathbb{C}$ be a complex-valued function defined over a subset D of \mathbb{C} , and let w be a limit point of D. Let l be a complex number. What is meant by saying that l is the *limit* $\lim_{z \to w} f(z)$ of f(z) as $z \to w$ in D?
 - (e) Let $f: D \to \mathbb{C}$ be a complex-valued function defined over a subset D of \mathbb{C} , and let z_1, z_2, z_3, \ldots be a sequence of elements of D which converges to some limit point w of D. Let l be a complex number. Suppose that $\lim_{z\to w} f(z) = l$ for some complex number l and that $z_n = w$ for at most finitely many values of n. Prove that the sequence $f(z_1), f(z_2), f(z_3), \ldots$ converges to l.
 - (f) Give an example of a function $f: \mathbb{C} \to \mathbb{C}$ and a sequence z_1, z_2, z_3, \ldots of complex numbers converging to 0 such that $\lim_{z \to w} f(z) = 0$, yet the sequence $f(z_1), f(z_2), f(z_3), \ldots$ does not converge to 0.
- 4. (a) Let f_1, f_2, f_3, \ldots be a sequence of complex-valued functions on a subset D of \mathbb{C} . What is meant by saying that the sequence f_1, f_2, f_3, \ldots

converges uniformly on D to a function f. Explain why the condition that $\lim_{n \to +\infty} f_n(z) = f(z)$ for all $z \in D$ is not in itself sufficient to ensure the uniform convergence of the sequence f_1, f_2, f_3, \ldots to the function f.

- (b) Describe the Weierstrass M-test for uniform convergence.
- (c) Let R_0 be the radius of convergence of the power series $\sum_{n=0}^{+\infty} a_n z^n$. (Thus R_0 is the supremeum, or least upper bound, of the set of all values of |z| corresponding to complex numbers z for which $\sum_{n=0}^{+\infty} a_n z^n$ converges, provided that this set is bounded; otherwise $R_0 = +\infty$.) Let R satisfy $0 < R < R_0$. Prove that the power series $\sum_{n=0}^{+\infty} a_n z^n$ converges uniformly on the open disk $\{z \in \mathbb{C} : |z| < R\}$ of radius R about zero.

Course 121, 1990–91, Test V (JF Trinity Term)

Friday 3rd May 1991.

Attempt question 1 and 2 other questions. Question 1 carries 30 marks (50%); the remaining questions carry 15 marks (25%) each.

- 1. Consider the following subsets of \mathbb{R}^2 . Determine which are open and which are closed in \mathbb{R}^2 . [Fully justify your answers.]
 - (a) $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \ge 25\},\$
 - (b) $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 25 \text{ or } y > 3\},\$
 - (c) $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \ge 25 \text{ and } y > 3\},\$
 - (d) $\{(x, y) \in \mathbb{R}^2 : 1 < x < 2 \text{ and } 3 < y < 4\},\$
 - (e) $\{(x, y) \in \mathbb{R}^2 : y > 0 \text{ and } y^4 = 1 + x^4\}.$
- 2. (a) Define what is meant by saying that a function $f: \mathbb{R}^n \to \mathbb{R}^m$ from \mathbb{R}^n to \mathbb{R}^m is *continuous*. Define also what is meant by saying that a subset V of \mathbb{R}^n is *open*.
 - (b) Prove that a function $f: \mathbb{R}^n \to \mathbb{R}^m$ is continuous if and only if $f^{-1}(V)$ is open in \mathbb{R}^n for every open set V in \mathbb{R}^m . (Here $f^{-1}(V)$ denotes the preimage of the set V, defined by

$$f^{-1}(V) = \{ \mathbf{x} \in \mathbb{R}^n : f(\mathbf{x}) \in V \}. \}$$

(c) Let $f: \mathbb{R}^3 \to \mathbb{R}$ be a continuous function from \mathbb{R}^3 to \mathbb{R} . Explain why

$$\{(x, y, z) \in \mathbb{R}^3 : f(x, y, z) < z\}$$

is an open set in \mathbb{R}^3 .

- 3. (a) Let X and Y be subsets of \mathbb{R}^n and \mathbb{R}^m respectively. Explain what is meant by saying that the sets X and Y are *homeomorphic*.
 - (b) Let C be the subset of \mathbb{R}^2 defined by

$$C = \{(x, y) \in \mathbb{R}^2 : x \ge 1 \text{ and } x^2 - y^2 = 1\}.$$

Prove that C is homeomorphic to the real line \mathbb{R} .

(c) Let S be the subset of \mathbb{R}^3 defined by

$$S = \{ (x, y, z) \in \mathbb{R}^3 : x \ge 1 \text{ and } x^2 - y^2 - z^2 = 1 \}.$$

Prove that S is homeomorphic to the Euclidean plane \mathbb{R}^2 .

4. Let X be a subset of \mathbb{R}^n , let **x** be a point of X, and let **p** be a point of \mathbb{R}^n that does not belong to X. Let S be the set of all non-negative real numbers t with the property that

$$(1-\theta)\mathbf{x} + \theta \mathbf{p} \in X$$
 for all $\theta \in [0, t]$

(i.e., S is the set of all non-negative real numbers t with the property that the line segment joining the point **x** to the point $(1-t)\mathbf{x} + t\mathbf{p}$ is contained within the set X). Let $s = \sup S$, and let $\mathbf{y} = (1-s)\mathbf{x} + s\mathbf{p}$.

- (a) Explain why $0 \le s \le 1$.
- (b) Show that if the set X is closed in \mathbb{R}^n then the point **y** belongs to X.
- (c) Show that if the set X is open in \mathbb{R}^n then the point **y** belongs to $\mathbb{R}^n \setminus X$.
- (d) Using (a) and (b), show that the only subsets of \mathbb{R}^n that are both open and closed in \mathbb{R}^n are the empty set \emptyset and \mathbb{R}^n itself.

©David R. Wilkins 1990–91