Course 121, 1990–91, Supplemental Examination (JF)

- (a) What is meant by saying that a subset D of the set R of real numbers is bounded above? What is meant by saying that a real number s is the least upper bound (or supremum) sup D of the set D?
 - (b) State the *Least Upper Bound Axiom* satisfied by the real number system.
 - (c) For each of the following sets, determine whether or not the set is bounded above and, if so, determine the least upper bound of the set [giving appropriate justification for your answers]:
 - (i) the set \mathbb{Z} of all integers,
 - (ii) the set { n-2/n : n ∈ N } consisting of all real numbers that are of the form (n-2)/n for some natural number n,
 (iii) the set of all rational numbers q satisfying q² < 9.
- 2. (a) Define precisely what is meant by saying that an infinite sequence t_1, t_2, t_3, \ldots of real numbers *converges* to some real number l.
 - (b) Let (s_n) and (t_n) be convergent sequences of real numbers. Prove that the sequence $(s_n + t_n)$ is convergent, and

$$\lim_{n \to +\infty} (s_n + t_n) = \lim_{n \to +\infty} s_n + \lim_{n \to +\infty} t_n.$$

(c) Let $(s_n : n \in \mathbb{N})$ and $(t_n : n \in \mathbb{N})$ be the infinite sequences of real numbers defined by

$$s_n = \frac{9n^2 - 7}{3n^2 + 2n}, \qquad t_n = \frac{7}{n^3} \cos n.$$

Prove that the infinite sequences (s_n) and (t_n) are convergent, and find the limits of these sequences.

- 3. (a) Define precisely what is meant by saying that a function $f: D \to \mathbb{R}$ is *continuous* at s, where $s \in D$.
 - (b) Let $f: \mathbb{R} \to \mathbb{R}$ be the function defined by

$$f(t) = \begin{cases} \sqrt{t}\sin(1/t) & \text{if } t > 0; \\ 0 & \text{if } t \le 0. \end{cases}$$

Using the formal definition of continuity, prove that the function f is continuous at 0.

- (c) Let f, g and h be real-valued functions defined on some subset D of the set \mathbb{R} of real numbers. Suppose that $f(t) \leq g(t) \leq h(t)$ for all $t \in D$, and that f(s) = g(s) = h(s) for some $s \in D$. Suppose also that the functions f and h are continuous at s. Using the formal definition of continuity, prove that the function g is continuous at s.
- 4. State and prove the Intermediate Value Theorem.
- 5. (a) State and prove *Rolle's Theorem*.
 - (b) Let $f: \mathbb{R} \to \mathbb{R}$ be a 5-times differentiable function. Let a, b and c be real numbers satisfying a < b < c. Suppose that

$$f(a) = f'(a) = f(b) = f'(b) = f(c) = f'(c) = 0.$$

Prove that there exists some s satisfying a < s < c for which $f^{(5)}(s) = 0$.

- (c) State the *Mean Value Theorem*, and prove it, using Rolle's Theorem.
- 6. (a) Let f be a bounded real-valued function on the interval [a, b], where a < b. Define the upper sum U(P, f) and the lower sum L(P, f) of f for a partition P of [a, b]. Define the upper and lower Riemann integrals of f on [a, b]. What is meant by saying that the function f is Riemann-integrable on [a, b]? What is the Riemann integral of a Riemann-integrable function f on [a, b]?
 - (b) Suppose that the function f is constant, with value c. What are the values of the upper sum U(P, f) and the lower sum L(P, f) of f for any partition P of the interval [a, b]? What are the values of the upper and lower Riemann integrals of f on [a, b]?
 - (c) Let $f: \mathbb{R} \to \mathbb{R}$ be defined by

$$f(t) = \begin{cases} 1 & if \ t \ is \ rational; \\ 0 & if \ t \ is \ irrational. \end{cases}$$

Explain why the function f is not Riemann-integrable on the interval [0, 1].

7. Test the following infinite series for convergence:

(i)
$$\sum_{n=1}^{+\infty} \frac{3\sin n - 2}{n\sqrt{n}}$$
, (ii) $\sum_{n=1}^{+\infty} \frac{5 + 3\cos n}{n}$,
(iii) $\sum_{n=1}^{+\infty} \frac{1}{(3n)!}$, (iv) $\sum_{n=1}^{+\infty} \frac{n!}{n^{n+2}}$.

- 8. Let f_1, f_2, f_3, \ldots be a sequence of complex-valued functions defined over some subset D of the complex plane \mathbb{C} .
 - (a) What is meant by saying that the sequence f_1, f_2, f_3, \ldots of functions converges *uniformly* on D to some function $f: D \to \mathbb{C}$?
 - (b) Suppose that each function f_n is continuous and that the sequence f_1, f_2, f_3, \ldots converges uniformly on D to the function f. Prove that the limit function f is continuous.
- 9. (a) Let X and Y be subsets of \mathbb{R}^n and \mathbb{R}^m respectively. What is meant by saying that a function $\varphi: X \to Y$ is *continuous* at some point **p** of X?
 - (b) What is meant by saying that a subset U of X is open in X?
 - (c) Prove that the function $\varphi: X \to Y$ is continuous if and only if, given any open set V in Y, the preimage $\varphi^{-1}(V)$ of V is open in X.
- 10. Consider the following subsets of \mathbb{R}^3 . Determine which are open and which are closed in \mathbb{R}^3 . [Fully justify your answers.]
 - (i) $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \ge 5\},\$
 - (ii) $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 < 2 \text{ and } z > 1\},\$
 - (iii) $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \ge 2 \text{ or } z \le 1\},\$
 - (iv) $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \ge 5 \text{ or } z < 1\}.$

©TRINITY COLLEGE DUBLIN, THE UNIVERSITY OF DUBLIN 1991