
Course 121, 1989–90, Test III (JF Hilary Term)

Friday 2nd February 1990, 3.00–4.30pm
Answer any THREE questions

1. Let f :R → R and g:R → R be differentiable functions on R. State
the Product Rule and the Quotient Rule for differentiating f.g and f/g
respectively, and prove these rules, using standard properties of limits.

2. (a) State Rolle’s Theorem.

(b) Let f :R→ R be a 5-times differentiable function. Let a, b and c be
real numbers satisfying a < b < c. Suppose that

f(a) = f ′(a) = f(b) = f ′(b) = f(c) = f ′(c) = 0.

Prove that there exists some s satisfying a < s < c for which f (5)(s) =
0.

(c) State the Mean Value Theorem, and show how it may be derived
from Rolle’s Theorem.

3. (a) State Cauchy’s Mean Value Theorem, and show how l’Hôpital’s Rule
may be derived from it.

(b) Evaluate the following limits, using l’Hôpital’s Rule:

lim
t→0

sin sin sin t

t
, lim

t→5

t3 − 12t2 + 45t− 50

t3 − 9t2 + 15t+ 25
, lim

t→0

cos(t2)− 1

sin t4
.

(a) State and prove Taylor’s Theorem.
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Course 121, 1989–90, Test IV (JF Hilary Term)

Friday 2nd March 1990, 3.00–4.30pm
Attempt question 1 and 2 other questions

1. Let f : [a, b]→ R be a bounded function defined on the interval [a, b].

(a) Define the concept of a partition of the interval [a, b]. Give the defi-
nition of the lower sum L(P, f) and the upper sum U(P, f) of f for
the partition P .

(b) Define the lower Riemann integral L
∫ b

a
f(t) dt and the upper Rie-

mann integral U
∫ b

a
f(t) dt of f on the interval [a, b]. Define precisely

what is meant by saying that the function f is Riemann-integrable
on [a, b], and define the Riemann integral of a Riemann-integrable
function on [a, b].

(c) Let f : [0, 1] → R be defined by f(t) = 1 − t2. Calculate L(Pn, f)
and U(Pn, f), where Pn denotes the partition of [0, 1] into n subin-
tervals of length 1/n (i.e., P = {t0, t1, . . . , tn}, where ti = i/n for
i = 0, 1, . . . , n). Hence show that

L
∫ 1

0

f(t) dt = U
∫ 1

0

f(t) dt =
2

3
.

[You may use, without proof, the following identities:

n∑
i=1

i = 1
2n(n+ 1),

n∑
i=1

i2 = 1
6n(n+ 1)(2n+ 1).]

2. (a) Let f : [a, b] → R be a continuous function on the interval [a, b], and
let

F (x) =

∫ x

a

f(t) dt, (a ≤ x ≤ b).

Prove that F ′(x) = f(x) for all x satisfying a < x < b.

(b) Find the derivative of the function g:R→ R defined by

g(x) =

∫ x4

0

t2et
2

dt.

3. (a) Let f be a function that is k times differentiable and whose kth
derivative is continuous on some open interval containing the real
numbers a and a + h. Using the rule for integration by parts, show
that

f(a+ h) = f(a) +

k−1∑
n=1

hn

n!
f (n)(a) + rk(a, h),

where

rk(a, h) =
hk

(k − 1)!

∫ 1

0

(1− t)k−1f (k)(a+ th) dt.
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(b) Show that

log(1 + h) = lim
k→+∞

k∑
n=1

(−1)(n−1)hn

n

for all h satisfying −1 < h < 1.

4. Let f1, f2, f3, . . . be a sequence of continuous real-valued functions on an
interval [a, b], and let f be a real-valued function on [a, b].

(a) Define what is meant by saying that the functions fn converge uni-
formly to f on the interval [a, b] as n→ +∞.

(b) Suppose that the functions fn converge uniformly to f on [a, b] as
n→ +∞. Prove that

lim
n→+∞

∫ b

a

fn(t) dt =

∫ b

a

f(t) dt.

(c) Give an example of a sequence f1, f2, f3, . . . of continuous real-valued
functions on an interval [a, b] and a continuous real-valued function
f on [a, b] such that

lim
n→+∞

∫ b

a

fn(t) dt 6=
∫ b

a

f(t) dt,

even though lim
n→+∞

fn(t) = f(t) for all t ∈ [a, b].
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Course 121, 1989–90, Test V (JF Trinity Term)

Friday 20th April 1990, 3.00–4.30pm
Attempt question 1 and 2 other questions

1. Test the following infinite series for convergence:—

(a)

+∞∑
n=1

zn

n!
√
n

(z ∈ C), (b)

+∞∑
n=1

3 sinn− 2

n
√
n

, (c)

+∞∑
n=2

(−1)n

log n
,

(d)

+∞∑
n=1

4 + cosn2

n
, (e)

+∞∑
n=1

n!

nn+2
.

2. (a) Define what is meant by saying that a sequence z1, z2, z3, z4, . . . of
complex numbers is a Cauchy sequence.

(b) Prove that every convergent sequence of complex numbers is a Cauchy
sequence.

(c) Prove the every Cauchy sequence of complex numbers is bounded.

(d) Prove that every Cauchy sequence of complex numbers is conver-
gent. [You may use, without proof, the Bolzano-Weierstrass Theo-
rem, which states that every bounded sequence of complex numbers
has a convergent subsequence.]

3. (a) Prove that the infinite series

+∞∑
n=1

1

n
is divergent

(b) By using the same method as in (a), or otherwise, prove that the

infinite series

+∞∑
n=2

1

n log n
is divergent

4. (a) State the Alternating Series Test, and prove that any infinite series
satisfying the conditions of this test is convergent.

(b) Does the infinite series

+∞∑
n=1

2 cosnπ + sin 1
2nπ

n2

satisfy the conditions of the Alternating Series Test? Is this infinite
series convergent?
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Course 121, 1989–90, Test VI (JF Trinity Term)

Friday 11th May 1990, 3.00–4.30pm
Attempt question 1 and 2 other questions

1. Determine which of the following subsets of the complex plane are open
and which are closed:—

(a) {z ∈ C : |z + 2| < 7},
(b) {z ∈ C : |z + 2| > 7},
(c) {z ∈ C : |z + 2| ≥ 7 and Re z ≤ 0},
(d) {z ∈ C : |z + 2| ≥ 7 and Re z < 0},
(e) {z ∈ C : | exp z + z3| < 7}.

[Briefly justify your answers.]

2. (a) Prove that a sequence z1, z2, z3, . . . of complex numbers converges to
some complex number l if and only if, given any open set U which
contains l, there exists some natural number N such that the point
zj belongs to U for all j satisfying j ≥ N .

(b) Using (a), or otherwise, show that if F is a closed set in the complex
plane, and if z1, z2, z3, z4, . . . is an infinite sequence of complex num-
bers belonging to F which converges to some complex number l then
l ∈ F .

3. (a) Let K be a closed bounded subset of the complex plane and let
f :K → C be a continuous function on K. Prove that there exists
some non-negative real number C such that |f(z)| ≤ C for all z ∈ K.

(b) Let K be a closed bounded subset of the complex plane and let
f :K → C be a continuous function on K. Let w be a complex
number with the property that f(z) 6= w for all z ∈ K. Prove that
there exists some real number δ > 0 such that |f(z)− w| ≥ δ for all
z ∈ K.

4. Let

+∞∑
n=0

anz
n be a power series whose coefficients a0, a1, a2, . . . are complex

numbers.

(a) Define the radius of convergence of this power series.

(b) Prove that the power series

+∞∑
n=0

anz
n converges if z < R0, but diverges

if z > R0, where R0 is the radius of convergence of the power series.
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