Course 121, 1989-90, Test III (JF Hilary Term)

Friday 2nd February 1990, 3.00—4.30pm
Answer any THREE questions

1. Let f:R — R and ¢:R — R be differentiable functions on R. State
the Product Rule and the Quotient Rule for differentiating f.g and f/g
respectively, and prove these rules, using standard properties of limits.

2. (a) State Rolle’s Theorem.

(b) Let f:R — R be a 5-times differentiable function. Let a, b and ¢ be
real numbers satisfying a < b < ¢. Suppose that

Prove that there exists some s satisfying a < s < ¢ for which f(®)(s) =
0.

(c) State the Mean Value Theorem, and show how it may be derived
from Rolle’s Theorem.
3. (a) State Cauchy’s Mean Value Theorem, and show how [’"Hépital’s Rule
may be derived from it.

(b) Evaluate the following limits, using ’'Hépital’s Rule:
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(a) State and prove Taylor’s Theorem.



Course 121, 1989-90, Test IV (JF Hilary Term)

Friday 2nd March 1990, 3.00—4.30pm
Attempt question 1 and 2 other questions

1. Let f:]a,b] — R be a bounded function defined on the interval [a, b].

(a) Define the concept of a partition of the interval [a,b]. Give the defi-
nition of the lower sum L(P, f) and the upper sum U(P, f) of f for
the partition P.

(b) Define the lower Riemann integral Efab f(t)dt and the upper Rie-

mann integral U fab f(t)dt of f on the interval [a,b]. Define precisely
what is meant by saying that the function f is Riemann-integrable
on [a,b], and define the Riemann integral of a Riemann-integrable
function on [a, b].

(c) Let f:[0,1] — R be defined by f(t) = 1 — t?. Calculate L(P,, f)
and U(P,, f), where P, denotes the partition of [0, 1] into n subin-
tervals of length 1/n (i.e., P = {to,t1,...,tn}, where t; = i/n for
i=0,1,...,n). Hence show that

/J/Olf(t)dt:u/olf(t)dt:g.

[You may use, without proof, the following identities:

n

Zz’: in(n+1), Zza:%n(n—f—l)@n—i-l).]
i=1

i=1

2. (a) Let f:[a,b] — R be a continuous function on the interval [a, b], and
let

F(x):/xf(t)dt, (a <z <b).

Prove that F'(z) = f(z) for all z satisfying a < z < b.
(b) Find the derivative of the function g: R — R defined by

4

g(x) z/ t2et” dt.
0

3. (a) Let f be a function that is k times differentiable and whose kth
derivative is continuous on some open interval containing the real
numbers a and a + h. Using the rule for integration by parts, show
that

k=1,
Flath) = Fa) + 3 o F0 @) + rfa ),
n=1

where
hk

1
ri(a,h) = M/O (1 —t)F1f®) (a + th) dt.



(b) Show that

k
—1)(n=1)pn
log(1+h) = lim DT
k—4o00 1 n
for all h satisfying —1 < h < 1.
4. Let fy1, fo, f3,... be a sequence of continuous real-valued functions on an

interval [a, ], and let f be a real-valued function on [a, b].
(a) Define what is meant by saying that the functions f, converge uni-
formly to f on the interval [a,b] as n — +o0.

(b) Suppose that the functions f,, converge uniformly to f on [a,b] as
n — 4o00. Prove that

lim /ab Falt)dt = /abf(t) dt.

n—-+oo

(c) Give an example of a sequence f1, fa, f3, ... of continuous real-valued
functions on an interval [a,b] and a continuous real-valued function
f on [a,b] such that

i [ e / “fwar

n—-+oo

even though lim f,(t) = f(t) for all ¢ € [a, b].
n—-+o00



Course 121, 1989-90, Test V (JF Trinity Term)

Friday 20th April 1990, 3.00-4.30pm
Attempt question 1 and 2 other questions

1. Test the following infinite series for convergence:—

(a)

2. (a)
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Define what is meant by saying that a sequence z1, 22, 23, 24, . . . of

complex numbers is a Cauchy sequence.

Prove that every convergent sequence of complex numbers is a Cauchy
sequence.

Prove the every Cauchy sequence of complex numbers is bounded.

Prove that every Cauchy sequence of complex numbers is conver-
gent. [You may use, without proof, the Bolzano-Weierstrass Theo-
rem, which states that every bounded sequence of complex numbers
has a convergent subsequence.]

+o0o
Prove that the infinite series Z — is divergent
n
n=1
By using the same method as in (a), or otherwise, prove that the
+oo
infinite series Z
n=2

is divergent
nlogn

State the Alternating Series Test, and prove that any infinite series
satisfying the conditions of this test is convergent.

Does the infinite series

Ji:'o 2 cosnm + sin %mr

2
n
n=1

satisfy the conditions of the Alternating Series Test? Is this infinite
series convergent?



Course 121, 1989-90, Test VI (JF Trinity Term)

Friday 11th May 1990, 3.00-4.30pm
Attempt question 1 and 2 other questions

1. Determine which of the following subsets of the complex plane are open

and

(a)
(b)
()
(d)
()

2. (a)

4. Let

which are closed:—

{zeC:|z+2| < T},
{zeC:|z+2|> T},
{z€C:|z+2|>7and Rez <0},
{z€C:|z24+2|>7and Rez <0},
{2 €C:|expz+ 23| < T}

[Briefly justify your answers.|

Prove that a sequence z1, 29, 23, . . . of complex numbers converges to
some complex number [ if and only if, given any open set U which
contains [, there exists some natural number N such that the point
zj belongs to U for all j satisfying j > V.

Using (a), or otherwise, show that if F' is a closed set in the complex
plane, and if z1, 29, 23, 24, . . . i an infinite sequence of complex num-
bers belonging to F' which converges to some complex number [ then
leF.

Let K be a closed bounded subset of the complex plane and let
f: K — C be a continuous function on K. Prove that there exists
some non-negative real number C' such that |f(z)| < C for all z € K.

Let K be a closed bounded subset of the complex plane and let
f: K — C be a continuous function on K. Let w be a complex
number with the property that f(z) # w for all z € K. Prove that
there exists some real number ¢ > 0 such that |f(z) —w| > ¢ for all
z e K.

—+oo
E anz" be a power series whose coeflicients ag, a1, as, . . . are complex

n=0

numbers.

(a)
(b)

Define the radius of convergence of this power series.
—+oo
Prove that the power series Z an 2" converges if z < Ry, but diverges

n=0
if z > Ry, where Ry is the radius of convergence of the power series.
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