
Course 121, 1988–89, Test I (JFMichaelmas Term)

1. Let S be a set of real numbers.

(a) Define what is meant by saying that the set S is bounded above, and
define precisely what is meant by saying that some real number c is
the least upper bound (or supremum) of the set S. State the Least
Upper Bound Axiom.

Let S be a set of real numbers, and let c be some real number (which may
or may not belong to S).

The real number c is said to be a cluster point of the set S if,
for every δ > 0, there exists some real number s belonging to S
which satisfies |s− c| < δ.

The real number c is said to be a limit point of the set S if,
for every δ > 0, there exists some real number s belonging to S
which satisfies both |s− c| < δ and s 6= c.

The real number c is said to be an isolated point of the set S
if c belongs to S and moreover there exists some positive real
number δ0 with the property that if s ∈ S satisfies |s− c| < δ0
then s = c.

Note that every limit point of the set S is a cluster point of S, as is every
isolated point of S. Every real number belonging to S is a cluster point of
S but it need not necessarily be a limit point of S. Indeed a real number
belonging to the set S cannot be both a limit point of S and an isolated
point of S.

(b) Explain why every cluster point c of the set S is either a limit point
of S or else is an isolated point of S.

(c) Prove that if the set S of real numbers is bounded above then the
least upper bound supS of the set S is a cluster point of the set S.

(d) Let c be a limit point of some set S of real numbers. Let δ be a
positive real number. Prove that the number of elements s of the
set S which satisfy |s− c| < δ is infinite.

2. Let (sj : j ∈ N), (tj : j ∈ N) and (uj : j ∈ N) be sequences of real numbers
satisfying sj ≤ tj ≤ uj for all natural numbers j. Let l be a real number.
Suppose that sj → l and uj → l as j → +∞. Let ε be any real number
satisfying ε > 0. Show that there exist natural numbers N1 and N2 such
that tj < l+ ε for all j satisfying j ≥ N1 and tj > l− ε for all j satisfying
j ≥ N2. Hence or otherwise prove that tj → l as j → +∞.

3. (a) Let (tj : j ∈ N) be a non-decreasing sequence of real numbers which
is bounded above. Prove that there exists some real number l such
that tj → l as j → +∞.
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(b) Let I1, I2, I3, I4, I5, . . . be an infinite sequence of intervals in R, where
each interval Ij is given by

Ij = [aj , bj ] ≡ {t ∈ R : aj ≤ t ≤ bj}

for some real numbers aj and bj satisying aj < bj . Suppose that
Ij+1 ⊂ Ij for each natural number j and that bj−aj → 0 as j → +∞.
Prove that there exists exactly one real number c with the property
that c belongs to Ij for each natural number j.

Course 121, 1988–89, Test II (JFMichaelmas Term)

1. (a) Define precisely what it means to say that a sequence (tj : j ∈ N) is
a Cauchy Sequence.

(b) State the Cauchy Criterion for Convergence (also known as the Gen-
eral Principle of Convergence).

(c) Let u be a real number satisfying u 6= 1. Show that

uj + uj+1 + · · ·+ uk−1 =
uj − uk

1− u
,

for all natural numbers j and k satisfying j < k.

(d) Let (tj : j ∈ N) be a sequence of real numbers. Let u be a real
number satisfying 0 < u < 1. Suppose that |tj − tj+1| < uj for all
natural numbers j. Use (c) in order to show that

|tj − tk| ≤
uj

1− u

for all natural numbers j and k satisfying j < k. Explain why the
sequence (tj : j ∈ N) is a Cauchy sequence. Is the sequence conver-
gent? [You may use without proof the fact that if 0 < u < 1 then
uj → 0 as j → +∞.]

2. (a) Define precisely what it means to say that a real-valued function f :D →
R defined over some subset D of R is continuous at some real num-
ber s belonging to D.

(b) Let f :D → R and g:D → R be real-valued functions defined over
some subset D of R. Suppose that the functions f and g are con-
tinuous at some real number s belonging to D. Prove that the sum
f + g of the functions f and g is also continuous at s.

(c) Let f :D → R, g:D → R and h:D → R be real-valued functions
defined over some subset D of R. Let s be some real number be-
longing to D. Suppose that f(t) ≤ g(t) ≤ h(t) for all t ∈ D and
that f(s) = g(s) = h(s). Suppose also that the functions f and h
are continuous at s. Show that, given any ε > 0, there exist strictly
positive real numbers δ1 and δ2 such that g(t) < g(s) + ε whenever
t ∈ D satisfies |t − s| < δ1 and g(t) > g(s) − ε whenever t ∈ D
satisfies |t− s| < δ2. Hence or otherwise, show that the function g is
continuous at s.
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3. (a) State the Bolzano-Weierstrass Theorem.

(b) Let f : [a, b] → R be a continuous function defined on the inter-
val [a, b], where a and b are real numbers satisfying a < b, and where

[a, b] ≡ {t ∈ R : a ≤ t ≤ b}.

By making use of the Bolzano-Weierstrass Theorem, or by making
use of the Least Upper Bound Axiom, or otherwise, prove that there
exists some positive real number K such that |f(t)| ≤ K for all
t ∈ [a, b].

Course 121, 1988–89, Test III (JF Hilary Term)

1. For each of the following statements, decide whether the statement is
true or false. You should merely answer TRUE, FALSE, or DON’T
KNOW. You are not required to justify your answer. (Note: you may
be penalized for an incorrect TRUE or FALSE answer; an answer of
DON’T KNOW, or no answer at all, will neither gain nor lose you
marks.)

(i) if a1, a2, a3, a4, . . . is a sequence of real numbers and if an → 0 as
n→ +∞ then the infinite series a1 +a2 +a3 +a4 + · · · is convergent,

(ii) if a1, a2, a3, a4, . . . is a sequence of real numbers and if the infinite
series a1 + a2 + a3 + a4 + · · · is convergent then an → 0 as n→ +∞,

(iii) the infinite series 1 + 1
2 + 1

3 + 1
4 + · · · is convergent,

(iv) the infinite series 1+x+x2 +x3 +x4 + · · · is convergent for all values
of the real number x,

(v) the infinite series

+∞∑
n=0

xn

n!
is convergent for all values of the real num-

ber x,

(vi) if a1, a2, a3, a4, . . . is a sequence of real numbers and if r = lim
n→+∞

an+1

an

exists and satisfies |r| < 1 then the infinite series

+∞∑
n=1

an is convergent,

(vii) if a1, a2, a3, a4, . . . and b1, b2, b3, b4, . . . are sequences of real numbers,

if 0 ≤ an ≤ bn for all natural numbers n, and if

+∞∑
n=1

an is divergent

then

+∞∑
n=1

bn is also divergent,

(viii) if a1, a2, a3, a4, . . . and b1, b2, b3, b4, . . . are sequences of real numbers,

if an ≤ bn for all natural numbers n, and if

+∞∑
n=1

bn is convergent then

+∞∑
n=1

an is also convergent,
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(ix) every convergent sequence of real numbers is absolutely convergent,

(x) every absolutely convergent sequence of real numbers is convergent.

2. Test the following infinite series for convergence:—

(i)

+∞∑
n=1

3 cosn− 2

2n
√
n− n

, (ii)

+∞∑
n=1

2 sinn+ 5

n
,

(iii)

+∞∑
n=1

√
nx2

n!
, (x ∈ R), (iv)

+∞∑
n=1

n!

(2n)n
.

3. Let f :R \ {0} → R and g:R \ {0} → R be real-valued functions defined on
the set R \ {0} of all non-zero real numbers.

(a) State precisely what is meant by saying that lim
t→0

f(t) = l, where l is

some (finite) real number.

We write lim
t→0

g(t) = +∞ if, for all real numbers K (no matter how large)

there exists some δ > 0 such that g(t) > K for all real numbers t satisfying
0 < |t| < δ.

(b) Prove directly from the relevant definitions that if lim
t→0

g(t) = +∞
then lim

t→0
1/g(t) = 0.

(c) Prove that if f(t) > 0 for all t ∈ R\{0}, if lim
t→0

f(t) = l for some non-

negative real number l, and if lim
t→0

g(t) = +∞ then lim
t→0

g(t)/f(t) =

+∞.

Course 121, 1988–89, Test IV (JF Trinity Term)

1. (a) State and prove Rolle’s Theorem. [You may assume without proof
any standard property of continuous functions that you require, pro-
vided that any such result is clearly stated.]

(b) Let f :R → R be a function from R to R which is 2k + 1 times
differentiable, for some non-negative integer k. Let a and b be real
numbers satisfying a < b. Suppose that f (j)(a) = 0 and f (j)(b) = 0
for j = 0, 1, . . . , k. Prove that there exists some ξ ∈ R satisfying
a < ξ < b for which f (2k+1)(ξ) = 0.

(c) State the Mean Value Theorem, and show how it may be deduced as
a corollary of Rolle’s Theorem.

2. Throughout this question we denote by B(z, r) the open disk of radius r
about z, where z is any complex number, r is any positive real number,
and B(z, r) is the subset of the complex plane defined by

B(z, r) = {w ∈ C : |w − z| < r}.

(a) One of the following statements is a correct definition of the concept
of an open set, and the others are incorrect. State which of the
following is the correct definition:—
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I. a subset D of the complex plane is open if and only if there exists
some element z of D such that B(z, δ) ⊂ D for all δ > 0,

II. a subset D of the complex plane is open if and only if there exists
some element z of D and some δ > 0 such that B(z, δ) ⊂ D,

III. a subset D of the complex plane is open if and only if, given any
element z of D, there exists some δ > 0 such that B(z, δ) ⊂ D,

IV. a subset D of the complex plane is open if and only if there
exists some δ > 0 such that B(z, δ) ⊂ D for all elements z of D.

(b) Let D1, D2, D3, . . . , Dk be open sets in the complex plane. Prove
that their intersection D1 ∩D2 ∩ · · · ∩Dk is also open.

(c) Let z0 be any complex number, and let r be any positive real number.
Prove that the open disk B(z0, r) is an open set in the complex
plane. [Hint: use the Triangle Inequality, which states that |z3−z1| ≤
|z3 − z2|+ |z2 − z1| for all complex numbers z1, z2 and z3.]

(d) Is the set {z ∈ C : |z + 1| < 2 and |z − 1| < 2} an open set? [Justify
your answer.]

Recall that if D is a subset of the complex plane then a complex number
z belonging to D is said to be an interior point of D if and only if there
exists some δ > 0 such that B(z, δ) ⊂ D, and a complex number z (which
may or may not belong to D) is said to be a cluster point of D if and only
if B(z, δ) ∩D is non-empty for all δ > 0. Let intD denote the set of all
interior points of D (known as the interior of D), and let D denote the
set of all cluster points of D (known as the closure of D).

(e) Let D be a subset of the complex plane. Show that

C \D = int(C \D),

where C \D is the complement of the closure D of D and int(C \D)
is the interior of the complement C \D of D.
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