Course 121, 1988–89, Annual Examination (JF)

- (a) Define the concept of the *least upper bound* sup S for an appropriate set S of real numbers. State the *Least Upper Bound Axiom* satisfied by the real number system.
 - (b) Let S and T be subsets of the set of real numbers. Suppose that both S and T are bounded above and that the following property holds: given any element s of S, and given any real number δ satisfying $\delta > 0$, there exists some element t of T for which $|t-s| < \delta$. Prove that $\sup S \leq \sup T$.
- 2. (a) Let $(t_j : j \in \mathbb{N})$ be an infinite sequence of real numbers. Let l be a real number. Define precisely what is meant by saying that l is the *limit* of the sequence $(t_j : j \in \mathbb{N})$ as $j \to +\infty$.
 - (b) Let $(t_j : j \in \mathbb{N})$ and $(u_j : j \in \mathbb{N})$ be sequences of real numbers, and let l and m be real numbers. Suppose that $\lim_{j \to +\infty} t_j = l$ and that $\lim_{j \to +\infty} u_j = m$. Prove that

$$\lim_{j \to +\infty} (t_j + u_j) = l + m.$$

- (c) State the *Bolzano-Weierstrass Theorem*. [No proof is required.]
- (d) Consider the infinite sequence $(t_j : j \in \mathbb{N})$ given by

$$t_j = \begin{cases} \frac{j+1}{j} & \text{if } j \text{ is odd;} \\ 2j & \text{if } j \text{ is even.} \end{cases}$$

Does this sequence have a convergent subsequence? [Justify your answer.]

- 3. (a) Let $f: D \to \mathbb{R}$ be a real-valued function defined over some subset D of \mathbb{R} . Let s be an element of D. Define precisely what is meant by saying that the function f is *continuous* at s.
 - (b) Let D and E be subsets of \mathbb{R} , and let $f: D \to \mathbb{R}$ and $g: E \to \mathbb{R}$ be real-valued functions defined over D and E respectively, where $f(D) \subset E$. Let s be an element of D. Suppose that the function fis continuous at s and that the function g is continuous at f(s). Prove that the composition function $g \circ f$ is continuous at s (where $(g \circ f)(t) = g(f(t))$ for all $t \in D$).

(c) Let $f: \mathbb{R} \to \mathbb{R}$ be the function defined by

$$f(t) = \begin{cases} 9t \cos^2\left(\frac{1}{t^3}\right) & \text{if } t \neq 0; \\ 0 & \text{if } t = 0. \end{cases}$$

Is the function f continuous at 0? [Justify your answer.]

4. Test the following infinite series for convergence:—

$$\sum_{n=1}^{+\infty} \frac{2\cos n - 1}{2n^2 + \sin n}, \qquad \sum_{n=1}^{+\infty} \frac{n+7}{n!},$$
$$\sum_{n=1}^{+\infty} \frac{n+1}{n\sqrt{n}}, \qquad \sum_{n=1}^{+\infty} \frac{(n!)^2}{(2n^2)^n}$$

5. Let $f: \mathbb{R} \to \mathbb{R}$ be a real-valued function, and let α be a real number. We recall that $\lim_{t \to +\infty} f(t) = \alpha$ if and only if, for any $\varepsilon > 0$, there exists some real number L such that $|f(t) - \alpha| < \varepsilon$ whenever t > L. We recall also that $\lim_{t \to +\infty} f(t) = +\infty$ if and only if, for any real number K, there exists some real number L such that f(t) > K whenever t > L. Using these definitions, prove that if f(t) > 0 for all $t \in \mathbb{R}$ and if $\lim_{t \to +\infty} f(t) = +\infty$ then

$$\lim_{t \to +\infty} \frac{f(t)}{f(t)+1} = 1.$$

- 6. (a) Let f: D → R be a real-valued function defined over a subset D of R, and let a be an interior point of the set D. Define what is meant by saying that the function f is differentiable at a, and express the derivative f'(a) of f at a (if it exists) in terms of an appropriate limit.
 - (b) State the *Product Rule* for differentiating the product of two differentiable functions, and show how this rule can be derived as a consequence of standard properties of limits of real-valued functions.
 - (c) State the *Quotient Rule* for differentiating the quotient of two differentiable functions (where the denominator of this quotient is everywhere non-zero), and show how this rule can be derived as a consequence of standard properties of limits of real-valued functions.

- 7. (a) Define what is meant by saying that a subset of the complex plane is an *open set*. Define also what is meant by saying that a subset of the complex plane is a *closed set*.
 - (b) Consider the subsets A_1 , A_2 , A_3 and A_4 of the complex plane \mathbb{C} specified as follows:—
 - $\begin{array}{rcl} A_1 &=& \{z \in \mathbb{C} : |z-1| > 2\}, \\ A_2 &=& \{z \in \mathbb{C} : \operatorname{Re} z > 0 \text{ and } \operatorname{Im} z \leq 1\}, \\ A_3 &=& \{z \in \mathbb{C} : |z| \geq 3\}, \\ A_4 &=& \{z \in \mathbb{C} : \operatorname{Re} z > 0 \text{ and } |z| < 2\}. \end{array}$

Which of these sets are open sets in \mathbb{C} ? Which of these sets are closed sets in \mathbb{C} ? [Briefly justify your answers.]

- 8. (a) Define the concept of the radius of convergence R_0 of a power series $\sum_{n=0}^{+\infty} a_n z^n$, and show that this power series converges if $|z| < R_0$ but diverges if $|z| > R_0$.
 - (b) Let D be a subset of \mathbb{C} , and let $f_0, f_1, f_2, f_3, \ldots$ be a sequence of functions mapping D into \mathbb{C} . Explain what is meant by saying that the infinite series $\sum_{n=0}^{+\infty} f_n(z)$ converges uniformly on D. State the Weierstrass M-test for uniform convergence of an infinite series of functions.
 - (c) Show that if R is a positive real number satisfying $R < R_0$, where R_0 is the radius of convergence of the power series $\sum_{n=0}^{+\infty} a_n z^n$, then the power series converges uniformly on the open disk $\{z \in \mathbb{C} : |z| < R\}$.
 - (d) Explain briefly why the power series $\sum_{n=0}^{+\infty} a_n z^n$ converges to a continuous function on the disk $\{z \in \mathbb{C} : |z| < R_0\}$, where R_0 is the radius of convergence of this power series. [You may assume without proof any general results concerning uniform convergence that you need, provided that such results are clearly stated.]

©TRINITY COLLEGE DUBLIN, THE UNIVERSITY OF DUBLIN 1989