Course 121, 1987–88, Supplemental Examination (JF)

[Questions for Michaelmas and Hilary Terms were contributed by another lecturer. Only Trinity Term questions appear here.]

- TT1. Let $f: \mathbb{R}^n \to \mathbb{R}$ and Let $g: \mathbb{R}^n \to \mathbb{R}$ be real-valued functions on \mathbb{R}^n , let **u** be a point of \mathbb{R}^n , and let *l* be a real number.
 - (a) Define precisely what is meant by saying that $\lim_{\mathbf{x}\to\mathbf{u}} f(\mathbf{x}) = l$. Also define what is meant by saying that $\lim_{\mathbf{x}\to\mathbf{u}} g(\mathbf{x}) = +\infty$.
 - (b) Suppose that $f(\mathbf{x}) > 0$ for all $\mathbf{x} \in \mathbb{R}^n$. Prove that

$$\lim_{\mathbf{x}\to\mathbf{u}} f(\mathbf{x}) = 0 \text{ if and only if } \lim_{\mathbf{x}\to\mathbf{u}} \frac{1}{f(\mathbf{x})} = +\infty.$$

- (c) Suppose that $f(\mathbf{x}) > 0$ and $f(\mathbf{x})g(\mathbf{x}) \ge 2$ for all $\mathbf{x} \in \mathbb{R}^n$, and that $\lim_{\mathbf{x}\to\mathbf{u}} f(\mathbf{x}) = 0$. Prove that $\lim_{\mathbf{x}\to\mathbf{u}} g(\mathbf{x}) = +\infty$.
- TT2. (a) State the Triangle Inequality (for points in \mathbb{R}^n).
 - (b) Define the concept of an *open set* in *n*-dimensional Euclidean space \mathbb{R}^n .
 - (c) Let \mathbf{u} and \mathbf{v} be points of \mathbb{R}^n , and let $B(\mathbf{u}, r)$ and $B(\mathbf{v}, s)$ denote the open balls of radius r and s about the points \mathbf{u} and \mathbf{v} respectively, where

$$B(\mathbf{u}, r) \equiv \{ \mathbf{x} \in \mathbb{R}^n : |\mathbf{x} - \mathbf{u}| < r \}, \qquad B(\mathbf{v}, s) \equiv \{ \mathbf{x} \in \mathbb{R}^n : |\mathbf{x} - \mathbf{v}| < s \}.$$

Show that if $0 < |\mathbf{u} - \mathbf{v}| < r$ and $0 < s \leq r - |\mathbf{u} - \mathbf{v}|$ then $B(\mathbf{v}, s) \subset B(\mathbf{u}, r)$. Hence prove that $B(\mathbf{u}, r)$ is an open set in \mathbb{R}^n .

(d) Prove that the subset U of \mathbb{R}^3 defined by

$$U = \{ (x, y, z) \in \mathbb{R}^3 : y > 0 \}$$

is an open set in \mathbb{R}^3 .

- TT3. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a real-valued function on \mathbb{R}^2 . Suppose that
 - (i) $f(x,y) \leq 0$ for all $(x,y) \in \mathbb{R}^2$,
 - (*ii*) f(x, y) = 0 if and only if (x, y) = (0, 0),

- (*iii*) $f(\lambda x, \lambda y) = \lambda^4 f(x, y)$ for all $(x, y) \in \mathbb{R}^2$ and $\lambda \in \mathbb{R}$,
- (iv) the function f is continuous on \mathbb{R}^2 .

By considering the least upper bound of the values of the function f on the ellipse

$$\{(x, y) \in \mathbb{R}^2 : 3x^2 + 4y^2 = 1\},\$$

or otherwise, show that there exists a constant C such that C < 0 and $f(x, y) \leq C(3x^2 + 4y^2)^2$ for all $(x, y) \in \mathbb{R}^2$. [Standard theorems may be used without proof, provided that they are clearly stated.]

$\textcircled{O}{C}TRINITY$ COLLEGE DUBLIN, THE UNIVERSITY OF DUBLIN 1988