
Tutorial, 15 Nov 2013

This is the second edition of tutorial. It differs by presence of question 4.c and absence of section 8 (which
was not compulsory). Other changes are only to give extra hints and to clarify questions.

You are free to ask any questions about this tutorial or about any HomeWork assignments now, or after
the classes. You can also contact me with your questions any other time by vel145@gmail.com.

It is possible to schedule meeting during off-lecture hours to discuss any subject that you don’t understand
(including homework). E-mail me or ask me in person for that. However, I expect that you do basic
preparatory work before such meeting.

1. Method of Lagrange multiplier.

Example explained: Find the maximum of the function F (x, y) = x y if x and y satisfy constraint
x2 + y2 − 1 = 0 (i.e. they describe a point on a circle of unit radius).

A possible straightforward solution is to explicitly solve the constraint by y = ±
√

1− x2, and make
F depending only on the one variable x: F (x, y(x)) = ±x

√
1− x2 . Then we can find extrema of F

by equating its derivative to zero:

0 =
d

dx

(
±x

√
1− x2

)
= ±

(√
1− x2 − x2

√
1− x2

)
= ±

(
1− 2x2

√
1− x2

)
(1)

Hence we get 4 extremal points given by {x = ±1/
√

2, y = ±1/
√

2}. Then it is obvious to find the
maximal value: F = 1/2.

Solution of the same problem using the Lagrange multiplier goes as follows. One considers equa-
tions1

0 =
∂

∂x
(F + λ× constraint) =

∂

∂x
(xy + λ(x2 + y2 − 1)) = y + 2λx ,

0 =
∂

∂y
(F + λ× constraint) =

∂

∂y
(xy + λ(x2 + y2 − 1)) = x+ 2λ y . (2)

The introduced above unknown constant λ is called Lagrange multiplier. It multiplies the constraint
we want to satisfy.

We solve equations (2) together with the constraint x2 + y2 − 1 = 0, i.e. we solve 3 equations on
3 variables (x, y, λ). For instance, from (2) we see that λ = − y

2x = − x
2y , therefore x = ±y, and

we immediately conclude from the constraint that x2 = y2 = 1/2, i.e. the same answer as using the
straightforward method.

In many situations the method of Lagrange multiplier is easier to apply than the straightforward
method because it does not require explicit solution of imposed constraints.

Generic situation. The method of Lagrange multiplier allows one to find an extremum of a function
F (x1, x2, . . . , xn) under condition that n variables xi are not independent, i.e. that they satisfy relations
Cα(x1, x2, . . . , xn) = 0 for α ∈ 1, k; k is the number of constraints imposed. In the above-discussed
example C = x2 + y2 − 1.

To solve such problem, one introduces k new parameters λα (Lagrange multipliers) and solve the
following system of equations:

∂

∂xi

(
F +

∑
α

λαCα

)
= 0 , i ∈ 1, n , (3)

Cα = 0 . (4)

1partial derivative in x means that y is fixed and vice versa.
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These are n+ k equations to fix n+ k quantities (x’s and λ’s). In equations (3) constraint Cα = 0 is
imposed after differentiation, therefore, generically, ∂Cα

∂xi
6= 0.

Exercises2:

(a) Find positions on the curve 2x2 + xy + 2y2 = 1 which are the closest and the furthest from the
origin (hint: it is easier to work with the square of the distance than with the distance itself).

(b) We discussed on the last lecture that the statistical weight of the configuration in which nα
subsystems are in α-s eigenstate is given by

W =
M !∏
α nα!

. (5)

Two constraints should be satisfied:∑
α

nα = M (number M of subsystems is fixed) , (6a)∑
α

nαEα = E (total energy E is fixed) . (6b)

Eα above is the energy of the α-s eigenstate.

Using the method of Lagrange multiplier and approximating log x! ' x log x − x, derive the
canonical ensemble distribution:

nα = const× e−β Eα , (7)

where ”const” and β are numbers that are the same for all α’s.
You are not required to find ”const” and β explicitly.

Hint: it is technically easier to maximize logW than W .

(c) Repeat the same consideration as above, but for the case when the number of particles in a given
subsystem can change. For this consider labeling α that labels both number of particles in the
subsystem, Nα, and an eigenstate with energy Eα. Total number of particles should be conserved,
this produces you an extra constraint.

Derive the grand canonical ensemble distribution:

nα = const× e−βEa+β µNα (8)

µ is called chemical potential.

2. When the number of particles is not constant, change of energy can be also due to the change of number
of particles:

dE = TdS − PdV + µdN . (9)

Consider two systems that are separated by a movable barrier which allows both heat and particle
transfer between two systems. Show that if these systems are in equilibrium with each other, they
have the same value of P, T, µ.

Use that, because the two systems are fully isolated from outside world, the total entropy S = S1(E1, V1, N1)+
S2(E2, V2, N2) is maximal and total E = E1 + E2, V = V1 + V2, N = N1 +N2 are constant.

3. Basics about averages

Suppose that for quantity X you know all its n-th moments3: 〈Xn〉. Denote by X̄ ≡ 〈X〉.

(a) Compute mean square deviation4 of X (〈 (δX)2 〉 ≡ 〈(X − X̄)2〉) in terms of moments.

(b) For Y being mean over M measurements of X (Y = 1
M (X1 + X2 + . . . XM )), compare 〈 (δX)2 〉

〈X〉2

and 〈 (δY )2 〉
〈Y 〉2 .

2If you want to practice more, type ”Lagrange multiplier” in any research engine and you will immediately get hundreds of
exercises.

3Here moments are understood in the sense of statistics (type ”moment (mathematics)” for definition in wikipedia. Do not
confuse with particle momentum.

4Also known as variance
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4. Microcanonical ensemble

(a) Skip this question if you did it in the problem set N5. Find the surface area σD of (D − 1)-
dimensional sphere (sphere surrounding D-dimensional ball) of unit radius. Check your result
against known low-dimensional answers: σ1 = 2, σ2 = 2π, σ3 = 4π.

Hint: compute the product of integrals
D∏
i=1

∫ +∞
−∞ e−x

2
i dxi directly and by passing to spherical co-

ordinates: dDx = rD−1dx dΩ, where Ω is spherical angle. You do not need to write dΩ explicitly
(like dΩ = sin θ dθ dφ in D = 3), it is enough to know that

∫
dΩ = σD.

If in doubt, try explicit cases with D = 1, 2, 3 first.

(b) During lecture we discussed that the entropy is directly computable in the microcanonical ensem-
ble:

eS(E) =

∫
δ(E −H(Γ)) dΓ , (10)

where the integral is over whole phase space.

Consider the classical ideal gas of N particles that occupies volume V in D dimensions (real-world

case is D = 3). The Hamiltonian of the ideal gas is given by H =
∑N
i=1

p2i
2m and the measure of

integration is given by dΓ =
N∏
i=1

dDpid
Dqi

(2π~)D . When necessary use that N � 1, in particular use

Stirling formula.

Task: Compute the entropy of the ideal gas using (10). You should get:

S = N log

[
V

(
2mE

(2π~)2

)D/2
]

+ log σN×D = N log

[
V

(
E

N

)D/2

×
( me

πh2D

)D/2
]
. (11)

Hint: it is convenient to consider all momenta as one N × D-dimensional vector and integrate
over this N ×D-dimensional space by introducing spherical coordinates.

Hint: if in doubt, first consider some small explicit values of N and D, e.g. N = 1,D = 1.

(c) The answer above is obviously wrong because it is not extensive quantity.

We therefore should correct (10). Can you guess how? (Hint: particles are indistinguishable).

(d) On the previous step you should obtain S(E, V ) as a function of energy and volume. Compute
the temperature of the system using the definition of the temperature:

1

T
≡ ∂S

∂E |V
(12)

Use the obtained answer to express energy in terms of temperature.

(e) From the knowledge of S(E, V ), express energy as E(S, V ). Compute pressure of the ideal gas
using this expression and P = − ∂E∂V |S . Obtain equation of state for the ideal gas.

(f) Compute CP and CV for the ideal gas.

5. (Problem 5.2 from K. Huang) A room of volume 3×3×3m3 contains air at T = 300K and P = 105Pa.
Estimate the probability that you will find a 1cm3 volume somewhere in the room totally devoid of
air, due to statistical fluctuations. Do the same for a 10−30m3 volume. Will this probability change if
we heat the gas keeping its volume fixed?

6. Saddle point approximation. In the integral of type
∫ +∞
−∞ f(x)Ndx, if N � 1, the value of the

integral is approximated by its value at maximum of f . More precisely, consider:∫
dxf(x)N =

∫
dxeN log f(x) ' eN log f(xmax) ×

∫
dx e

(x−xmax)2

2 N∂2
x log f , (13)

where xmax is the value of x at which f has its maximum. For this reason second derivative should be
negative, and we get the gaussian integral which can be taken. So our approximation is:∫ +∞

−∞
f(x)Ndx ' eN log f(xmax)

√
2π

−N∂2
x log f

(
1 +O(1/

√
N)
)
. (14)
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Task: Compute, using the saddle point approximation:

I(N) =

∫ +∞

−∞

(
1

1 + x2

)πN
dx . (15)

To check your result, compare it with numerical data for various N :

N 1 4 9 16 25 36
I 1.14308 0.515566 0.337837 0.251885 0.200961 0.167222

Note: saddle point approximation is typical for statistical physics. We have the natural large parameter
N – the number of particles.

7. Canonical ensemble Let ρ(Γ)dΓ = e−βH(Γ)dΓ is non-normalized probability density distribution.
The normalized version would be then χ(Γ)dΓ = 1

Z ρ(Γ)dΓ, where

Z =

∫
ρ(Γ) dΓ . (16)

Z is called partition function. It will be one of the tasks below to show that F ≡ −T logZ is nothing
but the thermodynamic’s Free energy. For the moment consider F as it is defined above. Clearly, it is
a function with natural variables T and V

(a) Express Ē ≡ 〈E〉 ≡
∫
H(Γ)χ(Γ) dΓ in terms of derivatives of F or Z with respect to T .

Hint: consider ∂βZ to get an idea.

(b) Express 〈 (δE)2 〉 in terms of derivatives of F or Z with respect to T . Assuming that F is extensive
quantity discuss how

√
〈 (δE)2 〉/〈E〉 depends on the number of particles.

(c) Find F , 〈E〉, 〈 (δE)2 〉 for the ideal gas. Definitions for H and dΓ are the same as above.

(d) Show that Z can be computed as follows:

Z =

∫ E

0

dE e−
E
T +S(E) , (17)

where S(E) is defined by (10). Hence e−E/T+S(E) is the probability distribution for possible
values of energies.

(e) Using explicit expressions for the ideal gas, plot e−E/T+S(E) against E. Observe how the structure
of the plot changes if we change N ×D from N ×D = 1 to N ×D � 1.

(f) The definition of entropy as S = logW is valid for the case when all microstates of the system
are equally probable. In general, if the probability function PΓ (or density distribution χ(Γ)dΓ in
continuous case) is non-constant, one should use more generic definition:

S = −
∑

Γ

PΓ logPΓ for discrete case ,

S = −
∫
χ(Γ) logχ(Γ)dΓ for continuous case . (18)

Show that S defined in such a way is still an additive quantity (provided that χ(Γ) is normalized:∫
χdΓ = 1. Check that for PΓ = const we recover definition S = logW .

(g) Using S defined by (18) for canonical ensemble, show that F = 〈E〉 − T S. Find S in terms of
derivatives of F with respect to T (make this derivation based on definition (18)).

(h) Verify for ideal gas that S for canonical ensemble coincides with S defined by (10).

(i) Recall that e−E/T+S(E) is extremely picked around E = 〈E〉. Use this fact to explain why S and
S are actually the same quantities (recall saddle point approximation).
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