1. Give a definition of the vector space.
2. Consider the vector space $V \simeq \mathbb{R}^{n}$.

Dual vector space V^{*} to V is defined as the space of all linear functions $f: V \rightarrow \mathbb{R}$.

- Prove that V^{*} is a vector space,
- Find dimension of V^{*}.

3. Give a definition of

- differential 1-form
- differential of a scalar field

4. Consider the following differential forms:

$$
\begin{equation*}
d x+d y, \quad x d y+d x, \quad \frac{x}{y^{2}} d y-\frac{d x}{y} \tag{1}
\end{equation*}
$$

- Which of these forms are differentials of a scalar field?
- Find the corresponding scalar field (if it exists)
- Integrate all three forms along a) a straight line from $\{x, y\}=\{0,0\}$ to $\{x, y\}=\{1,1\}$ b) a path consisting of two straight lines that connect points $\{x, y\}=\{0,0\},\{x, y\}=\{1,0\},\{x, y\}=\{1,1\}$.

