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Comment: During the real exam, you do not need to write that many explanations. Write
down only key thoughts which demonstrate your understanding

1. Hamiltonian Mechanics

1.a.

The Lagrangian of a free particle in three dimensional space is

L =
m

2
(ẋ2 + ẏ2 + ż2)

Spherical coordinates are given by

x = r cosϕ sin θ, y = r sinϕ sin θ z = r cos θ

and therefore,

ẋ = ṙ cosϕ sin θ − rϕ̇ sinϕ sin θ + rθ̇ cosϕ cos θ

ẏ = ṙ sinϕ sin θ + rϕ̇ cosϕ sin θ + rθ̇ sinϕ cos θ

ż = ṙ cos θ − rθ̇ sin θ.

Squaring them, and replacing them into the Lagrangian, we get that

L =
m

2

(
ṙ2 + r2θ̇2 + r2 sin2 θϕ̇2

)
.
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If r(t) = R and ṙ = 0, we get instead

L =
mR2

2

(
θ̇2 + sin2 θϕ̇2

)
.

One can notice that since R is a constant, there is indeed only 2 degrees of freedom, θ
and ϕ.

1.b.

The conjugated momenta are found as

pθ =
dL
dθ̇

= mR2θ̇

and

pϕ =
dL
dϕ̇

= mR2ϕ̇ sin2 θ.

Note that this allows us to write

θ̇ =
pθ
mR2

, ϕ̇ =
pϕ

mR2 sin2 θ
.

The Hamiltonian can be found by the standard procedure. Alternative: to note that
technically the Lagrangian looks exactly as the one of two free massive particles: L =
m1

2
θ̇2 + m2

2
ϕ̇2, with m1 = mR2 and m2 = mR2 sin2 θ. For such Lagrangian the Legendre

transform is well-known: H =
p2θ
2m1

+
p2ϕ
2m2

, therefore the answer:

H =
1

2mR2

(
p2θ +

p2ϕ
sin2 θ

)
.

The equations of motion are therefore

θ̇ =
pθ
mR2

, ϕ̇ =
pϕ

mR2 sin2 θ

ṗϕ = 0 ṗθ = −∂H
∂θ

=
1

mR2
p2ϕ

cos θ

sin3 θ

1.c.

Recall from 1.a), but restricting ourselves to a sphere, that

x = R cosϕ sin θ

y = R sinϕ sin θ

z = R cos θ
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and that the derivatives are, replacing time derivatives with conjugated momenta,

ẋ = − pϕ
mR

sinϕ

sin θ
+

pθ
mR

cosϕ cos θ

ẏ = +
pϕ
mR

sinϕ

sin θ
+

pθ
mR

sinϕ cos θ

ż = − pθ
mR

sin θ.

Therefore, since Mi = mεijkrj ṙk, we get that

Mx = −pθ sinϕ− pϕ cot θ cosϕ

My = −pϕ cot θ sinϕ+ pθ cosϕ

Mz = pϕ

1.d.

Let us first compute {Mz,H}. Notice that the only derivative of Mz that doesn’t vanish
is with respect to pϕ, therefore {Mz,H} = −∂Mz

∂pϕ
∂H
∂ϕ

. But the Hamiltonian doesn’t de-
pend explicitly on ϕ, therefore this Poisson bracket is 0. Now, the system has spherical
symmetry, and the particle is free, therefore no angular momentum direction is prefered,
and all the Poisson brackets {Mi,H} = 0.

For {Mi,Mj}, first notice that {Mx,Mz} = ∂Mx

∂ϕ
∂Mz

∂pϕ
, since the only derivative of Mz that

doesn’t vanish is with respect to pϕ. Therefore,

{Mx,Mz} = −pθ cosϕ+ pϕ cot θ sinϕ = −My.

Again, by symmetry of the system, we can deduce

{My,Mz} = Mx ,

{Mx,My} = Mz.

Comment: You may encounter Poisson brackets which cannot be computed by the sym-
metry argument, therefore it is important that you are capable to perform computations
of e.g. {Mx,My} explicitly.

2. Hamilton-Jacobi equation

This section was solved by Adam Keilthy, all credit goes to him.

2.a.

Consider a system with Hamiltonian H(q, p, t). Let S1(q,Q, t) be a function which gen-
erates a canonical transformation that has the property H′(Q,P, t) = 0.
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Comment: An example of such canonical transformation is to take q(t), p(t) and evolve
them back, following the reverse of the Hamiltonian flow, to the initial conditions. Then
Q = q(0) and P = p(0).

Considering the canonical transformation generated by Hamiltonian flow, we can find,
given a Hamiltonian H(q, p, t), a transformed Hamiltonian H′(Q,P, t) = 0 for all time,
therefore such that for all time Q̇ = 0 and Ṗ = 0.
Generically, dS1 = p dq − P dQ− (H−H′) dt, but since H′ = 0, one has

dS1 = p dq − P dQ−H dt

By the definition of the exact differential:

∂S1

∂t
= −H

and
∂S1

∂q
|Q = p

Now, we explicitly know H(q, p, t). We should substitute p = ∂S1

∂q
|Q to get the equation:

∂S1

∂t
+H(q,

∂S1

∂q
, t) = 0 .

It is the time-dependent Hamilton-Jacobi equation. It is considered as an equation on
S1(q). Q’s play the role of the boundary conditions. In this context, S1 is often called
the Hamilton principal function.
If H does not depend on time explicitly, we can perform a separation of variables proce-
dure: Consider an ansatz S1(q,Q, t) = W (q,Q)− E t and substitute it to the Hamilton-
Jacobi equation. One gets:

H(q,
∂W

∂q
) = E

This is called time-independent Hamilton-Jacobi equation. W is called the Hamilton
characteristic function.
In generic separation of variables approach, E is assumed to be function of time. In this
particular case, we see that the left-hand side of the last equation is time-independent,
hence E is time independent, i.e. it is just a constant.

2.b.

We have that

W = x

√
2E − 1

x2
+ arctan

 1

x
√

2E − 1
x2

 .
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By the Hamilton-Jacobi equation, we have that

E = H(x,
∂W

∂x
)

Attempt the Hamiltonian of the standard form, T + V :

H(x,
∂W

∂x
) = T + V (x) =

p2

2m
+ V (x).

Let us now consider the fact that p = ∂W
∂x

. Computing it, we get

∂

∂x
x
√

2E − x−2 =
√

2E − x−2 +
1

x2
√

2E − x−2

=
2Ex2

x2
√

2E − x−2

and

∂

∂x
arctan

 1

x
√

2E − 1
x2

 =
−1

x2
√

2E − x−2

Therefore,
∂W

∂x
=
√

2E − x−2.

This yields

E =
2E − x−2

2m
+ V (x)

and therefore,

V (x) =
E(m− 1)

m
+

1

2mx2
.

If you look on the time-independent HJ equation, it is clear that the Hamiltonian cannot
depend explicitly on E. Also, this is correct based on common sense. The value of the
Hamiltonian is energy, it is not a function of it.
Independence of E is only possible if m = 1. Therefore V = 1

2x2
and

H(q, p) =
1

2

(
p2 +

1

x2

)
.

2.c.

We can benefit from knowing
∂W

∂E
= t . (2.1)

It is enough to know this fact, but here is explanation: S1(q,Q, t) is a function on a
three-dimensional space parameterised by q,Q, t. To each point of this space we can
assign not only p, P , but also E (value of energy at a given point). Obviously then,
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dS1 = pdq − PdQ − Edt, because Hamiltonian evaluates to energy at each point. Then
dW = d(S1 +Et) = pdq−PdQ+ tdE, i.e. W is a Legendre transform (with proper signs)
of S1 with respect to time. Another way to get the same result is to note that S1(q,Q, t)
is not an explicit function of E, therefore ∂S1

∂E
|q,Q,t = 0, from where and S1 = W −E t we

get (2.1).
Hence we compute

t =
∂W

∂E
=

x

2E

√
2E − 1

x2

from where we can find x as a function of time:

x = ± 1√
2E

√
1 + 4E2t2 .

Dependence on p as a function of time is found from E = 1
2
(p2 + x−2):

p = ±(2E)3/2
t√

1 + 4E2t2

Dependence on initial conditions can be introduce by replacing t → (t − t0). Signs in
expression for x and p are correlated. It is clear from physical intuition. Just draw the
shape of potential and convince yourself that If x > 0, then particle would move to the
right when t� 1.

It is good idea to spend one minute now and check this result. For instance we can verify
that equations of motion are satisfied. Then, at t = 0 one has p = 0 and x = ± 1√

2E
.

When t→∞, x = 0 and p = ±
√

2E. It is easy to compute energy in both cases, and to
check that it is equal to E.

Below is the Adam’s solution. The overall logic is correct, but I did not check computation
itself for details. Such solution can be highly and probably maximally scored, however it
does not take advantage of knowing W . Let us first compute x(t, E). We have that

ẋ =
∂H

∂p
,

hence,

ẋ =
p

m
=

1

m

√
2E − x−2.

Therefore, we need to solve ∫
dt

m
=

∫
x dx√

2Ex2 − 1∫
2E dt

m
=

∫
u dx√
u2 − 1

with u = x
√

2E.
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Let u = cosh θ, du = sinh θ dθ and this becomes, setting t0 = 0,

2Et

m
=

∫
cosh θ dθ

= sinh θ − sinh θ0

=
√
u2 − 1−

√
u20 − 1

=
√

2Ex2 − 1−
√

2Ex20 − 1

which implies

x(t, E) =
1√
2E

√
1 +

(
2Ex20 − 1 +

2Et

m

)2

and, since we have that p =
√

2E − x−2, we can substitute x(t, E) in to get p(t, E)

2.d.

The closest that we can get is when the potential is maximised, hence when p2 = 0. This
implies

1

2mx2
= E

which means that the closest we can get is at

|x| = 1√
2E

.

3. Special Relativity

3.a.

Lorentz transformation is any linear transformation of space-time coordinates that pre-
serves the value of the interval. Because the interval can have any sign or equal to zero,
it is natural to decompose Minkowsky diagram to several zones:

T

T

L

+

-

R

In the zones T+ (absolute future), T− (absolute past) the interval is positive (called time-
like). In the zones R and L the interval is negative (called space-like). On the diagonals
the interval is null (called light-like).
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In 1+3 dimensions, R and L are not disconnected regions, but R and L rather refer to
the orientation we use to describe the space: right-handed or left-handed.
Lorentz transformations can be separated into four connected components:

1. Preserve the direction of time and the orientation of space. I.e. they preserve the
domains of the diagram:

T+ → T+ , T− → T− , R→ R , L→ L .

The collection of these transformations is denoted by SO(1,3) (called Special Lorentz
group).

2. Preserve the direction of time, change the orientation of space:

T+ → T+ , T− → T− , R→ L , L→ R .

The basic example of this transform is the so called P-transformation:

P =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (3.1)

3. Change the direction of time, preserve the orientation of space:

T+ → T− , T− → T+ , R→ R , L→ L .

The basic example of this transform is the time reversal:

T =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (3.2)

4. Change the direction of time, change the orientation of space:

T+ → T− , T− → T+ , R→ L , L→ R .

This is done, for instance, by a subsequent application of T and P , denoted by PT .

Consider now any transformation of type 2. Denote it by A. It is clear that L = P × A
belongs to SO(1,3). Indeed, A changes the orientation of space, but P changes it back,
so L preserves orientation of space. Since P 2 = 1, we can write A = P × L. So any
transformation of type 2 can be represented as P times a transformation from SO(1,3),
this fact we denote by P × SO(1, 3).
For the same reason, any transformation of type 3 can be represented as T × SO(1, 3),
and any transformation of type 4 can be represented as PT × SO(1, 3).
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Hence the full Lorentz group has the structure

{1, P, T, PT} × SO(1, 3) .

Comment: If you wrote down the last relation and basic notion of what it is P and T , it
would be enough.
Now we should specify what kind of transformations belong to SO(1,3).
First, there are spatial rotations, which do not affect time. They have the structure

1 0 0 0
0
0 O
0

 ,

where O is a 3 × 3 matrix that satisfies OOT = 1. The equality OOT = 1 follows for
instance from condition

Lµ
µ′Lν

ν′ηµ′ν′ = ηµν

applicable for any Lorentz transformation.
Second, there are Lorentz boosts. The Lorentz boost along x-axis is given by

γ −β γ 0 0
−β γ γ 0 0

0 0 1 0
0 0 0 1

 .

There also Lorentz boosts along y- and z-axes.
Any special Lorentz transformation can be given by a product of the following 6: 3
Lorentz boosts (along 3 axes), and 3 rotations (around 3 axes).

3.b.

Let p10 = m1c cosh θ1, p11 = m1c sinh θ1, p20 = m2c cosh θ2 and p21 = m2c sinh θ2. Let
us apply the Lorentz transform

Λ =

(
cosh θ − sinh θ
− sinh θ cosh θ

)
to each of them. This yields

(p1)′ = Λp1 =

(
m1c(cosh θ cosh θ1 − sinh θ sinh θ1)
m1c(− sinh θ cosh θ1 + cosh θ sinh θ1)

)
and similarly

(p2)′ = Λp2 =

(
m2c(cosh θ cosh θ2 − sinh θ sinh θ2)
m2c(− sinh θ cosh θ2 + cosh θ sinh θ2)

)
.
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Using the relation cosh(ϕ+ ψ) = coshϕ coshψ + sinhϕ sinhψ, this allows us to write

(p10)′ = m1c cosh(θ1 − θ)
(p20)′ = m2c cosh(θ2 − θ)
(p11)′ = m1c sinh(θ1 − θ)
(p21)′ = m2c sinh(θ2 − θ) .

Take now θ = θ1. Then one gets:

(p10)′ = m1c

(p20)′ = m2c cosh(θ2 − θ1)
(p11)′ = 0

(p21)′ = m2c sinh(θ2 − θ1) .

Since Φ is a scalar, its value does not change from one frame to another. But in the
reference frame obtained by boost with θ = θ1, the answer depends only on difference
of rapidities. Note that the difference of rapidities is itself is a scalar under the Lorentz
transformation. Hence Φ will depend only on (θ2 − θ1) in any reference frame.

3.c.

We discussed quite a lot this question, it is hence skipped here.

4. Particle in an electro-magnetic field

4.a.

Replacing Fµν = ∂µAν − ∂νAµ, we get that

∂µFνλ + ∂νFλµ + ∂λFµν = ∂µ∂νAλ − ∂µ∂λAν + ∂ν∂λAµ − ∂ν∂µAλ + ∂λ∂µAν − ∂λ∂νAµ

Since partial derivatives commute, this is equal to 0.

4.b.

For this section, I will use the notation

dxµ

dθ
= xµ,θ,

dxµ
dθ

= xµ,θ

The equations of motion for a particle are found by setting δSfree + δSint = 0. Let us
rewrite the interaction action as∫

Aµ dxµ =

∫
Aµx

µ,θ dθ

10



and, since the action is the integral of the Lagrangian, the particle Lagrangian is

L = −mc
√
ηµνxµ,θxν,θ −

e

c
Aµx

µ,θ

Let us then compute
∂L

∂xµ
= −e

c
∂µAνx

ν,θ;

∂L

∂xµ,θ
= −mc ηµνx

ν,θ√
ηµνxµ,θxν,θ

− e

c
Aµ.

Differentiating the last equation with respect to θ and lowering the index, the Euler-
Lagrange equation yields the equations of motion as

mc
d

dθ

ηµνx
ν,θ√

ηµνxµ,θxν,θ
+
e

c
∂νAµx

ν,θ − e

c
∂µAνx

ν,θ = 0

Recalling the definition of Fµν this allows us to write them in the form

mc
d

dθ

ηµνx
ν,θ√

ηµνxµ,θxν,θ
=
e

c
Fµνx

ν,θ.

For the Maxwell equation, we need to write Sint in a continuous fashion. To this end,
introduce the current

jµ = e
dxµ

dt
δ(3)(x− x(t)),

where δ(3) is a three-dimensional Dirac Delta function. One can note, through direct
integration, that

−e
c

∫
Aµ(x) dxµ = − 1

c2

∫
d4xAµ(x)jµ(x).

The Lagrangian corresponding to the Maxwell equation is

L = − 1

c2
Aµ(x)jµ(x)− 1

16πc
FµνF

µν .

Differentiating with respect to the field A yields

∂L
∂Aν

= − 1

c2
jν .

As for the second term, we will take care of constants later, let us start with

∂FαβF
αβ

∂(∂µAν)
= Fαβ

∂Fαβ

∂(∂µAν)
+ Fαβ ∂Fαβ

∂(∂µAν)

= 2Fαβ ∂(∂αAβ − ∂βAα)

∂(∂µAν)
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where we were able to get the second line by lowering indices inside the derivative, which
caused indices outside to be raised. Continuing, this yields

∂FαβF
αβ

∂(∂µAν)
= 2Fαβ(δµαδ

ν
β − δ

µ
βδ

ν
α)

= 2F µν − 2F νµ

= 4F µν

where the last line is because F µν is antisymmetric by definition. Therefore, the Euler-
Lagrange equation are

∂µF
µν

4πc
− 1

c2
jν = 0,

which can be written in the form

∂µF
µν =

4π

c
jν ;

that is one of the pairs of Maxwell’s equation. The other pair is the one from 4.a)

4.c.

It is clear that the determinant is an invariant since

det(Λµ
µ′Λ

ν
ν′Fµν) = det(Λµ

µ′) det(Λν
ν′) det(Fµν) = det(Fµν).

Computing the determinant, one gets that it is equal to

detF = (ExBx + EyBy + EzBz)2 = (E ·B)2,

therefore E ·B is an invariant.
It is also clear that FµνF µν is an invariant as they transform with inverse Lorentz trans-
formations, that will cancel each other. We can compute that

FµνF
µν = 2(E2 −B2),

therefore E2 −B2 is an invariant as well.
The other two are not invariant, E2 + B2 because Lorentz transforms do not preserve
three dimensional length, and the norm of the cross product for the same reason.

4.d.

Let us start with the equation of motion

mc
d

dθ

xµ,θ√
ηαβxα,θxβ,θ

=
e

c
Fµν x

ν,θ .

In the following, put θ = c t. Then x0,ct = 1, xi,ct = vi

c
= βi, and 1√

ηαβxα,θxβ,θ
= γ.
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So the equation of motion becomes:

m
d

dt
γẋµ =

e

c
Fµν ẋ

ν .

Use that ẋ0 = ẋ0 = c and ẋi = −ẋi = vi.
In the case µ = 0 the equation becomes

d

dt
γmc2 = eE · ẋ

In the case where µ = i one gets

d

dt
γmẋ = e(E− 1

c
ẋ×B).

For the Maxwell equations, the one from question 4.a) becomes

∇ ·B = 0
1

c

∂B

∂t
+∇× E = 0

and the one from question 4.b) becomes

∇ · E = 4πρ − 1

c

∂E

∂t
+∇×B =

4π

c
J

This is taken directly from tutorial 7, the derivation in each cases consists in considering
cases where µ = 0 separately, and to take the derivatives with respect to ct explicitly,
and using the fact that, by definition,

jµ = (cρ,J), ∂µ = (∂0,∇), ∂µ = (∂0,−∇)
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