Tutorial 4

!! Please, first do all non-starred problems in ALL sections and then starred problems. You are free to use computer (e.g. Mathematica or other software) and google the internet.
Outside class hours, you may ask the lecturer questions in person or by email vel145@gmail.com about this Tutorial or about anything related to the course.

Canonical transformations

1. Show that $P=p, Q=q$ is canonical. Find $S_{1}(q, Q), S_{2}(q, P), S_{3}(p, Q), S_{4}(p, P)$ that generate it.
2. For what α the transformation $P=\alpha q, Q=-\alpha p$ is canonical? Find $S_{4}(p, P)$ for it.
3. For what θ the transformation $P=\cos (\theta) p+\sin (\theta) q, Q=-\sin (\theta) p+\cos (\theta) q$ is canonical? Find $S_{1}(q, Q)$ for it.
4. Find canonical transformation generated by $S_{2}(q, P)=q^{i} P_{i}-\epsilon_{i j k} a^{i} q^{j} P_{k}$. (the system has 3 q's and 3 p's, summation over the repeated indices is assumed). Consider that a is small, so when expressing P in terms of p, keep only linear in a terms. What is its physical meaning of this transformation? You may want to discuss with me to how find the phsyical meaing.
5. The transformations below are not canonical. Find a simple way to modify them so that they become canonical

$$
\begin{gathered}
P=p+q, \quad Q=3 q\left(e^{(q+p)^{5}}+1\right)+p\left(3 e^{(q+p)^{5}}+1\right) \\
P=q p, \quad Q=\log \left(p^{2014} q^{2013}\right)
\end{gathered}
$$

6. Consider a free particle of mass m in dimension $\mathrm{D}=1$. Compute its action $S\left(q_{f}, q_{i} t_{f}-t_{i}\right)=\int_{q_{i}, t_{i}}^{q_{f}, t_{f}}\left(p \dot{q}-\frac{p^{2}}{2 m}\right) d t$. To do this, you have to solve the Hamiltonian equations of motion and express solution in terms of the data q_{f}, q_{i}, t. Then substitute this solution to the integral $\int_{q_{i}, t_{i}}^{q_{f}, t_{f}}\left(p \dot{q}-\frac{p^{2}}{2 m}\right) d t$.
Consider then the function S as the generating function $S(q, Q, t)$ for the canonical transformation (i.e. replace $q_{f} \rightarrow q, q_{i} \rightarrow Q, t_{f}-t_{i} \rightarrow t$. Find the coordinates Q, P as functions of q, p, t and q, p as functions of Q, P, t. Find the Hamiltonian $\mathcal{H}^{\prime}(Q, P, t)$. Recall that when S depends on the time, one should write

$$
\begin{equation*}
p d q-P d Q-\left(\mathcal{H}-\mathcal{H}^{\prime}\right) d t=d S \tag{1}
\end{equation*}
$$

Werify that S solves the Hamilton-Jacobi equation

$$
\begin{equation*}
\frac{\partial S}{\partial t}+\mathcal{H}\left(q, \frac{\partial S}{\partial q}\right)=0 \tag{2}
\end{equation*}
$$

7. Do the same computations as in the previous question but for the case of Harmonic oscillator: $\mathcal{H}=\frac{1}{2}\left(p^{2}+\omega^{2} q^{2}\right)$.
8. Prove that $\{Q, P\}_{q, p}=1$ is equivalent to

$$
\begin{equation*}
-\frac{\partial P}{\partial q}_{\mid Q}={\frac{\partial p}{\partial Q_{\mid q}}} \tag{3}
\end{equation*}
$$

9. How does look a similar equality which is equivalent to $\left\{Q^{i}, Q^{j}\right\}_{q, p}=0$?
