
Tutorial 3

!! Please, first do all non-starred problems in ALL sections and then starred problems.
You are free to use computer (e.g. Mathematica or other software) and google the internet.
Outside class hours, you may ask the lecturer questions in person or by email vel145@gmail.com

about this Tutorial or about anything related to the course.

Vector fields and phase portraits

Draw the phase portraits for the systems given below. Try to make them reasonably realistic. For instance, if there
are straight lines, be sure that their slopes are correct, if there are ellipses, make their shape at least qualitatively
correct.

Note: you can come and use my computer to check your results against the plots generated by Mathematica.

n=1 (a) ẋ = +2x

(b) ẋ = −2x

(c) ẋ = (x+ 1)(x− 2)(x− 3)2

n=2, linear: System is given by equation

(
ẋ
ẏ

)
= A

(
x
y

)
, where A is a 2× 2 matrix. Explicitly:

ẋ = A11 x+A12 y , ẏ = A21 x+A22 y .

Consider the following cases:

(a) A =

(
1 0
0 2

)
, (b) A =

(
1 0
0 −1

)
, (c) A =

(
0 2
1 0

)
, (d) A =

(
0 2
−1 0

)
.

(e) A =

(
+ cos 2φ − sin 2φ
− sin 2φ − cos 2φ

)
(understand how picture changes when φ changes)

n=2, generic: (a) Hamiltonian system of free particle: H = p2

2m

(b) Hamiltonian system of the harmonic oscillator: H = p2

2m + mω2

2 x2

(c) Hamiltonian system H = p2

2m + V (x) with the potential V (x) shown in the figure below:

x

V(x)

It is known that the second derivative of V is non-zero at its extrema.
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n=3:* This is a famous example of Lorenz attractor. Using any computer software (don’t do this by hand), find
numerically solutions of the following equations and make a 3D-plot of them:

ẋ = σ (y − x) ,

ẏ = x(ρ− z)− y ,
ż = x y − β z . (1)

Here x, y, z are functions of time, and σ, β, ρ are constants. Strange attractor is known to appear for σ = 10,
β = 8/3, ρ = 28. You may use these values, or investigate dependence of the answer on different values of
σ, β, ρ.

In the following, assume, if otherwise is not stated, that metric is flat (gij = δij) and that symplectic form is of

the canonical type: ω =

(
0 −1n
1n 0

)
, the latter is for the basis {q1, q2, . . . , qn, p1, p2, . . . , pn}. Note that gradient

and symplectic vector fields are respectively defined as

vi = gij∂jV , vi = ωij∂jH , (2)

where gij ≡ (g−1)ij and ωij ≡ (ω−1)ij . V is called the potential of a gradient flow, H is called the Hamiltonian of a
symplectic flow.

1. Which of the following vector fields have a potential and which have a Hamiltonian? Find the potential and
Hamiltonian. Note: recall the condition of exactness of a differential form and apply it.

(a) v = {x, 1} , (b) v = {−y, x} , (c) v = {2, 0, 1, 4} (will the answer depend on the year?) (d) v = {x, y, z, t}.
In these examples the coordinates are either {x, y} (for 2d-space) or {x, y, z, t} (for 4d-space).

2. For a 3-dimensional system, i.e. for a 6-dimensional phase space, compute the 3 symplectic vector flows
generated by the angular momentum components Mx,My,Mz. Note: you may find it useful to use the Poisson
bracket properties to achieve the goal quicker. If your computation is correct, you will see that you can draw
it in a collection of 2d-pictures. Do the drawing.

3. Classify the structure of all possible critical points for a symplectic flow in 2 dimensions (assuming that matrix
A in the linearised vector flow equations is diagonalizable and non-degenerate).

4. For 2-dimensional case, when the vector field is at the same of gradient and symplectic type? Start by givining
a simple example to convince yourself that it is possible. Then try to write a necessary and sufficient condition.

5. Write down a gradient vector flow equations explicitly in polar, spherical, and complex coordinates.
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