Tutorial 2

!! Please, first do all non-starred problems in ALL sections and then starred problems.
You are free to use computer (e.g. Mathematica or other mathematical software) and google the internet.

Outside class hours, you may ask the lecturer questions by email vel145@gmail.com about this Tutorial or about anything related to the course.

Hamiltonian and Hamiltonian equations of motion

Summary of the procedure to perform:
a) Consider $p=\frac{\partial \mathcal{L}}{\partial \dot{q}}$ as an equation for \dot{q}. Solve it getting $\dot{q}=\dot{q}(q, p)$,
b) Compute $\mathcal{H}=p \dot{q}-\mathcal{L}(q, \dot{q})$ by replacing \dot{q} with its solution from the previous step,
c) Write down equations of motion

$$
\begin{equation*}
\dot{q}=\partial_{p} \mathcal{H}, \quad \text { and } \quad \dot{p}=-\partial_{q} \mathcal{H} \tag{1}
\end{equation*}
$$

In the equations below $v \equiv \dot{q}$.

1. Find Hamiltonian, and Hamiltonian equations of motion for $\mathcal{L}=\frac{m v^{2}}{2}-V(q)$.
2. Consider a free particle in 2 dimensions: $\mathcal{L}=\frac{m}{2}\left(\dot{x}^{2}+\dot{y}^{2}\right)$. Rewrite the Lagrangian in polar coordinates $x=r \cos \phi, y=r \cos \phi$, then derive Hamiltonian, and Hamiltonian equations of motion in terms of r, ϕ and the corresponding generalised momenta p_{r}, p_{ϕ}.
3. Find Hamiltnoian, and Hamiltonian equations of motion for $\mathcal{L}=\frac{1}{2} \sum_{i, j} M_{i j}(q) \dot{q}^{i} \dot{q}^{j}-V\left(q^{1}, q^{2}, \ldots, q^{n}\right)$.

4* A particle of unit mass on the sphere is given by the Lagrangian

$$
\mathcal{L}=\frac{1}{2}\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right),
$$

however the following constraint should be respected: $x^{2}+y^{2}+z^{2}=R^{2}$.
(a) Rewrite the Lagrangian in the spherical coordinates. This Lagrangian will have only 2 dynamical degrees of freedom: θ and ϕ.
(b) Find conjugated momenta p_{ϕ}, p_{θ} and write down the Hamiltonian and Hamiltonian equations of motion.
(c) One should expect that the angular momentum $\mathbf{M}=\mathbf{r} \times \dot{\mathbf{r}}$ is conserved. Rewrite the components of the angular momentum in terms of $\theta, \phi, p_{\theta}, p_{\phi}$, then check, using Hamiltonian equations of motion, that M_{x}, M_{y}, M_{z} are indeed conserved quantities.
(d) Compute Poisson brackets $\left\{M_{i}, M_{j}\right\}$, express the answer in terms of M_{x}, M_{y}, M_{z} again. How to write answer compactly, using Levi-Civita symbol?
(e) One has $M_{x}, M_{y}, M_{z}, \mathcal{H}$ as conserved quantities. In total four. So they should constrain all the timedependent variables, $\theta, \phi, p_{\theta}, p_{\phi}$! Something should be wrong with this observation because it implies that particle is always frozen in some point of the sphere which is obviously wrong. Where is problem? Hint: compute $M_{x}^{2}+M_{y}^{2}+M_{z}^{2}$

Poisson bracket

For any two functions f, g of generalised coordinates and momenta (q 's and p 's), Poisson bracket $\{f, g\}$ is defined as

$$
\begin{equation*}
\{f, g\}=\sum_{i}\left(\frac{\partial f}{\partial q^{i}} \frac{\partial g}{\partial p^{i}}-\frac{\partial f}{\partial p^{i}} \frac{\partial g}{\partial q^{i}}\right) \tag{2}
\end{equation*}
$$

1. Compute $\left\{q^{i}, p^{j}\right\},\left\{q^{i}, q^{j}\right\},\left\{p^{i}, p^{j}\right\}$.
2. Prove $\{f, g\}=-\{g, f\}$ (antisymmetry), $\left\{f, g_{1}+g_{2}\right\}=\left\{f, g_{1}\right\}+\left\{f, g_{2}\right\}$ (linearity), $\left\{f, g_{1} g_{2}\right\}=g_{1}\left\{f, g_{2}\right\}+$ $\left\{f, g_{1}\right\} g_{2}$ (Leibniz rule)
3. Using these properties of the Poisson bracket, compute:
(a) $\left\{q_{i}, \mathcal{H}\right\}$ and $\left\{p_{i}, \mathcal{H}\right\}$ for the above-derived Hamiltonians.
(b) $\left\{x p_{y}-y p_{x}, \frac{p_{x}^{2}}{2 m}\right\}$ and $\left\{x p_{y}-y p_{x}, \frac{p_{x}^{2}+p_{y}^{2}}{2 m}\right\}$
4. Prove that for any function $f(p, q, t)$

$$
\begin{equation*}
\frac{d f}{d t}=\frac{\partial f}{\partial t}+\{f, \mathcal{H}\} \tag{3}
\end{equation*}
$$

Levi-Civita symbol

In n-dimensional vector space, Levi-Civita symbol is rank n fully antisymmetric tensor ϵ. All its components can be found from the knowledge that $\epsilon_{12 \ldots n}=1$.
$n=2 \quad$ (a) write $\epsilon_{i j}$ explicitly as a 2×2 matrix.
(b) Show that $v_{i} w^{i}=0$ iff $v_{i}=\Lambda \epsilon_{i j} w^{j}$, where Λ is some constant.
(c) Simplify: $\sum_{i} \epsilon_{i j} \epsilon_{i k}$ and $\sum_{i, j} \epsilon_{i j} \epsilon_{i j}$.
(d) ${ }^{*}$ Check that for any 2×2 matrix M with $\operatorname{det} M=1$ one has: $\epsilon \cdot M \cdot \epsilon=-\left(M^{-1}\right)^{T}$, where \cdot is understood as a matrix multiplication.
$(\mathrm{e})^{*}$ Check Plucker identities: $v_{i} \epsilon_{j k}=v_{j} \epsilon_{i k}+v_{k} \epsilon_{j i}$ and $\epsilon_{i j} e_{k l}=\delta_{i k} \delta_{j l}-\delta_{i l} \delta_{j k}$.
$n=3$ (a) How many non-zero elements are there in $\epsilon_{i j k}$? Write their values explicitly.
(b) Compute $\sum_{i, j, k} \epsilon_{i j k} \epsilon_{i j k}$
(c) Define $\hat{M}_{i j}=\sum_{k} \epsilon_{i j k} M_{k}$ for some vector $\mathbf{M}=\left\{M_{x}, M_{y}, M_{z}\right\}$. Write down \hat{M} explicitly as a 2×2 matrix.
(d) Compute $\sum_{j, k} \epsilon_{i j k} \hat{M}_{j k}$.

This and previous questions establish a one-to-one correspondence between vectors \mathbf{M} and rank- 2 antisymmetric tensors \hat{M} in 3 -dimensional space
(e) Show that $\sum_{i, j, k} \epsilon_{i j k} \hat{M}_{i j} N_{k}=\Lambda \mathbf{M} \cdot \mathbf{N}$, find the coefficient of proportionality Λ.

Generic n (a) Compute $\sum \epsilon_{i_{1} \ldots i_{n}} \epsilon_{i_{1} \ldots i_{n}}$

