Tutorial 2

!! Please, first do all non-starred problems in ALL sections and then starred problems.

You are free to use computer (e.g. *Mathematica* or other mathematical software) and google the internet.

Outside class hours, you may ask the lecturer questions by email vel145@gmail.com about this Tutorial or about anything related to the course.

Hamiltonian and Hamiltonian equations of motion

Summary of the procedure to perform:

- a) Consider $p = \frac{\partial \mathcal{L}}{\partial \dot{q}}$ as an equation for \dot{q} . Solve it getting $\dot{q} = \dot{q}(q, p)$,
- b) Compute $\mathcal{H} = p\dot{q} \mathcal{L}(q, \dot{q})$ by replacing \dot{q} with its solution from the previous step,
- c) Write down equations of motion

$$\dot{q} = \partial_p \mathcal{H}, \quad \text{and} \quad \dot{p} = -\partial_q \mathcal{H}.$$
 (1)

In the equations below $v \equiv \dot{q}$.

- 1. Find Hamiltonian, and Hamiltonian equations of motion for $\mathcal{L} = \frac{mv^2}{2} V(q)$.
- 2. Consider a free particle in 2 dimensions: $\mathcal{L} = \frac{m}{2} (\dot{x}^2 + \dot{y}^2)$. Rewrite the Lagrangian in polar coordinates $x = r \cos \phi$, $y = r \cos \phi$, then derive Hamiltonian, and Hamiltonian equations of motion in terms of r, ϕ and the corresponding generalised momenta p_r, p_{ϕ} .
- 3. Find Hamiltonian, and Hamiltonian equations of motion for $\mathcal{L} = \frac{1}{2} \sum_{i,j} M_{ij}(q) \dot{q}^i \dot{q}^j V(q^1, q^2, \dots, q^n).$

4^{*}A particle of unit mass on the sphere is given by the Lagrangian

$$\mathcal{L} = \frac{1}{2}(\dot{x}^2 + \dot{y}^2 + \dot{z}^2)\,,$$

however the following constraint should be respected: $x^2 + y^2 + z^2 = R^2$.

- (a) Rewrite the Lagrangian in the spherical coordinates. This Lagrangian will have only 2 dynamical degrees of freedom: θ and ϕ .
- (b) Find conjugated momenta p_{ϕ}, p_{θ} and write down the Hamiltonian and Hamiltonian equations of motion.
- (c) One should expect that the angular momentum $\mathbf{M} = \mathbf{r} \times \dot{\mathbf{r}}$ is conserved. Rewrite the components of the angular momentum in terms of $\theta, \phi, p_{\theta}, p_{\phi}$, then check, using Hamiltonian equations of motion, that M_x, M_y, M_z are indeed conserved quantities.
- (d) Compute Poisson brackets $\{M_i, M_j\}$, express the answer in terms of M_x, M_y, M_z again. How to write answer compactly, using Levi-Civita symbol?
- (e) One has $M_x, M_y, M_z, \mathcal{H}$ as conserved quantities. In total four. So they should constrain all the timedependent variables, $\theta, \phi, p_{\theta}, p_{\phi}$! Something should be wrong with this observation because it implies that particle is always frozen in some point of the sphere which is obviously wrong. Where is problem? *Hint:* compute $M_x^2 + M_y^2 + M_z^2$

For any two functions f, g of generalised coordinates and momenta (q's and p's), Poisson bracket $\{f, g\}$ is defined as

$$\{f,g\} = \sum_{i} \left(\frac{\partial f}{\partial q^{i}} \frac{\partial g}{\partial p^{i}} - \frac{\partial f}{\partial p^{i}} \frac{\partial g}{\partial q^{i}} \right) .$$
⁽²⁾

- 1. Compute $\{q^i, p^j\}, \{q^i, q^j\}, \{p^i, p^j\}.$
- 2. Prove $\{f,g\} = -\{g,f\}$ (antisymmetry), $\{f,g_1 + g_2\} = \{f,g_1\} + \{f,g_2\}$ (linearity), $\{f,g_1g_2\} = g_1\{f,g_2\} + \{f,g_1\}g_2$ (Leibniz rule)
- 3. Using these properties of the Poisson bracket, compute:
 - (a) $\{q_i, \mathcal{H}\}$ and $\{p_i, \mathcal{H}\}$ for the above-derived Hamiltonians.
 - (b) $\{x p_y y p_x, \frac{p_x^2}{2m}\}$ and $\{x p_y y p_x, \frac{p_x^2 + p_y^2}{2m}\}$
- 4. Prove that for any function f(p,q,t)

$$\frac{df}{dt} = \frac{\partial f}{\partial t} + \{f, \mathcal{H}\}.$$
(3)

Levi-Civita symbol

In *n*-dimensional vector space, Levi-Civita symbol is rank *n* fully antisymmetric tensor ϵ . All its components can be found from the knowledge that $\epsilon_{12...n} = 1$.

- n = 2 (a) write ϵ_{ij} explicitly as a 2 × 2 matrix.
 - (b) Show that $v_i w^i = 0$ iff $v_i = \Lambda \epsilon_{ij} w^j$, where Λ is some constant.
 - (c) Simplify: $\sum_{i} \epsilon_{ij} \epsilon_{ik}$ and $\sum_{i,j} \epsilon_{ij} \epsilon_{ij}$.
 - (d)*Check that for any 2×2 matrix M with det M = 1 one has: $\epsilon \cdot M \cdot \epsilon = -(M^{-1})^T$, where \cdot is understood as a matrix multiplication.
 - (e)*Check Plucker identities: $v_i \epsilon_{jk} = v_j \epsilon_{ik} + v_k \epsilon_{ji}$ and $\epsilon_{ij} e_{kl} = \delta_{ik} \delta_{jl} \delta_{il} \delta_{jk}$.
- n = 3 (a) How many non-zero elements are there in ϵ_{ijk} ? Write their values explicitly.
 - (b) Compute $\sum_{i,j,k} \epsilon_{ijk} \epsilon_{ijk}$
 - (c) Define $\hat{M}_{ij} = \sum_k \epsilon_{ijk} M_k$ for some vector $\mathbf{M} = \{M_x, M_y, M_z\}$. Write down \hat{M} explicitly as a 2×2 matrix.
 - (d) Compute $\sum_{j,k} \epsilon_{ijk} \hat{M}_{jk}$. This and previous questions establish a one-to-one correspondence between vectors **M** and rank-2 antisymmetric tensors \hat{M} in 3-dimensional space
 - (e) Show that $\sum_{i,j,k} \epsilon_{ijk} \hat{M}_{ij} N_k = \Lambda \mathbf{M} \cdot \mathbf{N}$, find the coefficient of proportionality Λ .
- Generic *n* (a) Compute $\sum \epsilon_{i_1...i_n} \epsilon_{i_1...i_n}$