
Tutorial 2

Outside class hours, you may ask me questions by email vel145@gmail.com about this Tutorial or
about anything related to the course.

Hamiltonian and Hamiltonian equations of motion

Summary of the procedure to perform:
a) Consider pi = ∂L

∂q̇i as a system of equations for q̇i. Solve them getting q̇i = q̇i(q, p).

b) Compute H =

(∑
i

piq̇
i

)
− L(q, q̇) by replacing each q̇i with its solution from the previous step. Your final

result should be a function of p’s and q’s only.
c) Write down equations of motion

q̇i =
∂H
∂pi

and ṗi = −∂H
∂qi

. (1)

I will do all the indices upper or lower in a correct way. However, this is the case of explicit computation, you know
what you are doing, so keeping them upper/lower is not a must.

In the equations below v ≡ q̇.
Notation a ≡ b means ”equal by definition”, another equivalent notation is a := b. a ≡ b is not an equation to

solve. It is just a statement that the same object can be denoted in two different ways. In LaTeX, ≡ is coded by
\equiv (short of ”equivalent”).

1. Find Hamiltonian, and Hamiltonian equations of motion for L = mv2

2 − V (q).
Solution/Hint/Comment:

(a) The first step is to find p: p = ∂L
∂v = mv, then we have to express v in terms of p: v = p/m.

(b) We compute H = p v − L and each time when we see v, we replace it by p/m:

H = p v − mv2

2
+ V (q) = p

p

m
− p2

2m
+ V (q) =

p2

2m
+ V (q) . (2)

Some of you derived the relation H = mv2

2 + V (q). This relation is indeed correct, and is used as the first
integral of motion of Lagrangian equations. However, this is not what is required here. v is time-derivative
of q, our goal is to get rid of all time derivatives in the Hamiltonian, so as later be able to write down
first-order differential equations on p and q.

(c) Compute equations of motion

q̇ =
∂H
∂p

=
p

m
,

ṗ = −∂H
∂q

= −∂V (q)

∂q
. (3)
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2. Consider a free particle in 2 dimensions: L = m
2

(
ẋ2 + ẏ2

)
. Rewrite the Lagrangian in polar coordinates

x = r cosφ, y = r sinφ, then derive Hamiltonian, and Hamiltonian equations of motion in terms of r, φ and the
corresponding generalised momenta pr, pφ.
Solution/Hint/Comment:

(a) One first computes ẋ = −r sinφ φ̇+ ṙ cosφ, ẏ = r cosφ φ̇+ ṙ sinφ, then it is straightforward to compute

L =
m

2

(
ṙ2 + r2φ̇2

)
. (4)

(b) The first step is to express ṙ and φ̇ in terms of pr and pφ:

pr =
∂L
∂ṙ

= mṙ , so ṙ = pr/m ,

pφ ==
∂L
∂φ̇

= mr2φ̇ , so φ̇ = pφ/mr
2 . (5)

(c) Now we compute Hamiltonian:

H =
p2r
2m

+
p2φ

2mr2
. (6)

Note: there is no need to do computation (b), (c) from scratch. If you look on (4), you notice that ṙ2

term is precisely of the form mv2/2, so you know the answer. The term φ̇2 is also of this form but with
m→ mr2, so you know the answer as well.

Note: In this particular case, pφ is the angular momentum1 and pr is an ordinary momentum (its projection
to radial direction). However, in general situation generalised momenta do not necessary have clear
physical significance. At first place, they are just suitable parameters that naturally appear in the course
of Legendre transformation.

3. Find Hamiltnoian, and Hamiltonian equations of motion for L = 1
2

∑
i,jMij(q)q̇

iq̇j − V (q1, q2, . . . , qn).

Solution/Hint/Comment: Since
∑
i,jMijv

ivj =
∑
i,jMjiv

ivj =
∑
i,j

Mij+Mji

2 , one can consider that

Mij = Mji. Otherwise, one should replace M → (M +MT )/2 in the formulae below.

(a) A typical mistake that was made is ∂
∂q̇i

∑
Mij q̇

iq̇j =
∑
Mij q̇

iq̇j . Under summation, i is mute summation

index, we can give it any other name. It has nothing to do with i in ∂
∂q̇i . Correct way to procede is to use

the following relation:

∂xa

∂xb
= δab (7)

and not to use the same letter for the summation index and index in ∂
∂q̇i .

pk =
∂L
∂q̇k

=
1

2

∑
ij

Mij
∂

∂q̇k
(
q̇iq̇j

)
=

1

2

∑
ij

Mij

(
δk
iq̇j + δjkq̇

i
)

=
1

2

∑
j

Mkj q̇
j +

1

2

∑
i

Mikq̇
i =

∑
j

Mkj q̇
j

1check this fact! The angular momentum is the one in z-direction (perpendicular to the plane where the system lives): Mz = x py−y px
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In index free notation2

p = M̂ · q̇,

So
q̇ = M̂−1 · p .

(b) We are continuing with index-free notation now (note, M̂T = M̂):

H = pT · q̇− L = pT · q̇− 1

2
q̇T · M̂ · q̇ + V =

1

2
pT · M̂−1 · p + V .

A basic check to do: when M is diagonal, this corresponds to the L =
∑
i
mi

2 v
2
i −V Lagrangian, you know

already the answer for this special case.

(c)

q̇i =
∂H
∂pi

=
∑
j

(
M−1

)ij
pj , ṗj = − ∂V

∂qj
. (8)

4.*A particle of unit mass on the sphere is given by the Lagrangian

L =
1

2
(ẋ2 + ẏ2 + ż2) ,

however the following constraint should be respected: x2 + y2 + z2 = R2.

(a) Rewrite the Lagrangian in the spherical coordinates. This Lagrangian will have only 2 dynamical degrees
of freedom: θ and φ.

(b) Find conjugated momenta pφ, pθ and write down the Hamiltonian and Hamiltonian equations of motion.

(c) One should expect that the angular momentum M = r × ṙ is conserved. Rewrite the components of
the angular momentum in terms of θ, φ, pθ, pφ, then check, using Hamiltonian equations of motion, that
Mx,My,Mz are indeed conserved quantities.

(d) Compute Poisson brackets {Mi,Mj}, express the answer in terms of Mx,My,Mz again. How to write
answer compactly, using Levi-Civita symbol?

(e) One has Mx,My,Mz,H as conserved quantities. In total four. So they should constrain all the time-
dependent variables, θ, φ, pθ, pφ! Something should be wrong with this observation because it implies that
particle is always frozen in some point of the sphere which is obviously wrong. Where is problem? Hint:
compute M2

x +M2
y +M2

z

Solution/Hint/Comment: Spherical coordinates are x = R sin θ cosφ, y = R sin θ sinφ, z = R cos θ. In
this problem R should be a constant.

(a) L = R2

2

(
θ̇2 + sin2 θ φ̇2

)
,

2M̂ is a matrix, q̇ and ṗ are the vector-columns.
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(b) pθ = R2θ̇ pφ = R2 sin2 θφ̇ , H = 1
2R2

(
p2θ + 1

sin2 θ
p2φ

)
. Equations of motion:

θ̇ =
pθ
R2

, φ̇ =
pφ

R2 sin2 θ
, ṗθ =

p2φ
R2

cos θ

sin3 θ
, ṗφ = 0 . (9)

(c) Mx = y ż − z ẏ = − cosφ cot θ pφ − sinφ pθ
My = z ẋ− x ż = − sinφ cot θ pφ + cosφ pθ
Mz = x ẏ − y ż = pφ. The fact that they are conserved is verified by explicit computation.

(d) {Mi,Mj} = εijkMk.

(e) A straightforward computations gives us

M2
x +M2

y +M2
z = 2R2H . (10)

So, only three of four integral of motion are independent.

A nice way to perform the same computation is to note that for a particle on a sphere r · ṙ = 0. This
property follows from differentiation of r · r = R2. Hence

M2 = (r× ṙ) · (r× ṙ) = r2 ṙ2 − (r · ṙ)2 = R2 ṙ2 = 2R2L = 2R2H . (11)

L = H is a nice property of this system (it comes from the fact that L is quadratic form in the velocity
vectors).

Poisson bracket

For any two functions f, g of generalised coordinates and momenta (q’s and p’s), Poisson bracket {f, g} is defined as

{f, g} =
∑
i

(
∂f

∂qi
∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
. (12)

Comment: I put position of indices correctly, but this is not absolutely necessary in such kind of explicit compu-
tations.

1. Compute {qi, pj}, {qi, qj}, {pi, pj}.
Solution/Hint/Comment: These three quantities are computed from explicit definition of the bracket.
Answer is

{qi, pj} = δij , {qi, qj} = 0 , {pi, pj} = 0 . (13)

2. Prove {f, g} = −{g, f} (antisymmetry), {f, g1 + g2} = {f, g1} + {f, g2} (linearity), {f, g1g2} = g1{f, g2} +
{f, g1}g2 (Leibniz rule)
Solution/Hint/Comment: Derived explicitly from the definition. Leibniz rule discloses for us that Possion
bracket {f, g} can be thought as: a differential operator constructed from f that acts on g:

{f, g} =
∑
i

(
∂f

∂qi
∂

∂pi
− ∂f

∂pi
∂

∂qi

)
g ≡ Df · g , (14)

4



so the Leibniz rule is understood in standard way: Df · (g1g2) = (Df · g1)g2 + g1(Df · g2).

One can add here that the Jacobi identity is a variation of the Leibniz rule. Indeed, it can be written in the
form

{f, {g, h}} =

Df · {g, h} = {Df · f, h}+ {g,Df · h} (15)

= {{f, g}, h}+ {g, {f, h}}

Note, it requires a bit of work to derive Df · {g, h} = {Df · f, h}+ {g,Df · h}.

3. Using these properties of the Poisson bracket, compute:

(a) {qi,H} and {pi,H} for the above-derived Hamiltonians.

(b) {x py − y px, p
2
x

2m} and {x py − y px,
p2x+p

2
y

2m }

Solution/Hint/Comment:

(a) Note that {qi, f} = ∂f
∂pi

and {pi, f} = − ∂f
∂qi . So {qi,H} and {pi,H} produce just the r.h.s. of the

equations of motion. Equations of motion can be also written in the form

q̇i = {qi,H} , ṗi = {pi,H} . (16)

(b)

{x py − y px,
p2x
2m
} =

px
m
{x py − y px, px} =

px
m
×
(
{x py, px} − {y px, px}

)
=
px
m

(py + 0) =
pxpy
m

(17)

Note x py − y px is an angular momentum. Poisson bracket with angular momentum generates rotations.
Here we see that {x py − y px, px} = py. So indeed px is rotated up to py.

Since p2x + p2y is the norm of vector p, it is invariant by rotations. So we expect that

{x py − y px,
p2x + p2y

2m
} = 0 . (18)

This is indeed true, can be confirmed by explicit computation in full analogy with (17).

4. Prove that for any function f(p, q, t)

df

dt
=
∂f

∂t
+ {f,H} . (19)

Solution/Hint/Comment: For simplicity of notation, consider a single degree of freedom (for many degrees,
you have to just add sums):

df(p, q, t)

dt
=
∂f

∂t
+
∂f

∂q
q̇ +

∂f

∂p
ṗ =

∂f

∂t
+

(
∂f

∂q

∂H
∂p
− ∂f

∂p

∂H
∂q

)
=
∂f

∂t
+ {f,H} . (20)
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Levi-Civita symbol

In n-dimensional vector space, Levi-Civita symbol is rank n fully antisymmetric tensor ε. All its components can be
found from the knowledge that ε12...n = 1.

n = 2 (a) write εij explicitly as a 2× 2 matrix.

(b) Show that viw
i = 0 iff vi = Λ εijw

j , where Λ is some constant.

(c) Simplify:
∑
i εijεik and

∑
i,j εijεij .

(d)*Check that for any 2× 2 matrix M with detM = 1 one has: ε ·M · ε = −(M−1)T , where · is understood
as a matrix multiplication.

(e)*Check Plucker identities: viεjk = vjεik + vkεji and εijekl = δikδjl − δilδjk.

n = 3 (a) How many non-zero elements are there in εijk? Write their values explicitly.

(b) Compute
∑
i,j,k εijkεijk

(c) Define M̂ij =
∑
k εijkMk for some vector M = {Mx,My,Mz}. Write down M̂ explicitly as a 2×2 matrix.

(d) Compute
∑
j,k εijkM̂jk.

This and previous questions establish a one-to-one correspondence between vectors M and rank-2 anti-
symmetric tensors M̂ in 3-dimensional space

(e) Show that
∑
i,j,k εijkM̂ijNk = ΛM ·N, find the coefficient of proportionality Λ.

Generic n (a) Compute
∑
εi1...inεi1...in
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