
Tutorial 1

!! Please, first do all non-starred problems in ALL sections and
then starred problems.

You are free to use computer (e.g. Mathematica or other mathe-
matical software) and google the internet.

Outside class hours, you may ask the lecturer questions by email
vel145@gmail.com about this Tutorial or about anything related to
the course.

Dual vector space

1. v1, v2 ∈ V , f1, f2 ∈ V ∗. Suppose that in a certain basis of V v1 =

(
1
0

)
,

v2 =

(
0
1

)
and in the dual basis of V ∗ (which is uniquely defined by the

choice of basis of V ) f1 =
(
1 0

)
, f2 =

(
0 1

)
.

In some new basis v1 =

(
1
1

)
, v2 =

(
1
−1

)
. What is the form of f1, f2 in

the corresponding dual basis?

2. In a certain basis v1 =

(
1
0

)
and f1 =

(
0 1

)
. In another basis v1 =

(
0
1

)
.

What are the options for f1?

3. Consider a 2-dimensional metric space. For certain two basis vectors α1

and α2 the metric Aij ≡ 〈αi, αj〉 is given by A =

(
2 −1
−1 2

)
. Here 〈·, ·〉

means scalar product. Express the vectors δ1 and δ2 of the canonically
dual (to {α1, α2}) basis as linear combinations of α1, α2.

Recall that presence of metrics allows us to identify V and V ∗, so the
question is meaningful.

4.*The question is the same as above, but for n-dimensional space. Now A is
an n× n dimensional matrix:

Aij =



2 −1 0 0 . . . 0
−1 2 −1 0 . . . 0
0 −1 2 −1 . . . 0
. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .
0 . . . 0 −1 2 −1
0 . . . 0 0 −1 2


. (1)

It is suggested to understand the answer for the case n = 3, 4 first.
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Last two questions have practical application. α’s are the so called simple
roots of sl(n + 1) Lie algebra. A is Cartan matrix. You will encounter
them in your study later.

Vector fields and coordinate transformations

Polar coordinates r, φ are defined by x = r cosφ, y = r sinφ.
Complex coordinates are defined by z = x+ i y, z̄ = x− i y. In the questions

below do not worry that i is not real. You can formally think that z, z̄ param-
eterise 2-dimensional real space (they indeed do, even though you cannot draw
coordinate axes for them) and treat i =

√
−1 as just a number that you know

how to operate with.

1. Rewrite x dy − y dx in polar coordinates and complex coordinates.

2. For ω = y dx+dy, find such coordinate system {u, v} in which ω = h(u)dv,
where h is some function.

3.*Explain, by counting the number of equations and variables, why for any
1-form ω in 2 dimensions one can always find a coordinate system such
that ω = h(u)dv. Show that a similar statement does not hold in higher
dimensions.

Take a slightly different point of view on the topic of the last lecture. To each
point x of certain domain D, which can be Rn or its part, we are assigning some
object.

A very simple object is a real constant. Such assignment is nothing but
definition of a function f(x).

More complicated object is a k-dimensional vector. Assigning a vector to
each point defines for us a vector field. In practice, we are introducing k func-
tions {ω1(x) , . . . , ωk(x)} to describe it, however a nontrivial point is that these
functions may depend on the choice of the coordinate system in D. For the case
k = n and ωi being the components of the differential form, we discussed this
dependence on the lecture. Remind that differential form is parameterised as
follows:

ω(x) = ωi(x) dxi . (2)

Note aside: Take a look one more time on the function f(x) that was dis-
cussed above. To precise that the value of the function f at point x does not
depend on the choice of a coordinate system, we say that f is a scalar field.

Another example of non-trivial vector structure is tangent vector field.
In this case also k = n, and the tangent vector field is parameterised as

v(x) = vi(x)∂i . (3)

Above, dxi and ∂i can be thought simply as suitable mnemonic notations for
basis forms, reps. tangent vectors, at each point x.
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v at point x is the same as the displacement vector ∆−→x used during lecture.
∂i can be thought as unit displacements ∆xi in the basis directions.

Both differential form and tangent vector field are vector fields, but of differ-
ent nature. At each point x, ω(x) and v(x) are elements of vector spaces which
are dual to one another.

4. Knowing that dxi and ∂i are canonically dual bases, i.e. that dxi(∂j) = δij ,

find transformation rule for vi(x) under the change of basis.

5. Show that [ιvw](x) ≡ vi(x)ωi(x) is a scalar field.

6. Consider a set of trajectories of a particle given by xi(t, θ1, θ2, . . . , θn−1),
where t is time and c’s are ”initial conditions”, so that this set covers D.

Example: x1 = t cos θ1, x
2 = t sin θ1, D is R2 without origin.

a) Show that the velocity vector of the particle {dx
1

dt , . . . ,
dxn

dt } defines for
us tangent vector field, i.e. that it properly transforms under the change
of coordinates (hence the name ”tangent vector field” because velocities
are vectors tangent to trajectory).

b) Compute the velocity field for the above-mentioned example in the
coordinate system {x1, x2} and in the polar coordinates. Draw a plot of
this vector field.

7. Rewrite x∂y − y∂x in polar coordinates and complex coordinates.

8.*Rewrite x∂y−y∂x, x∂z−z∂x, y∂z−z∂y in spherical coordinates. Spherical
coordinates are defined by x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ.

9.*Metric is a tensor field of rank 2, gij(x), which defines a scalar product of
vectors (at each point x): 〈v, w〉 ≡ viwjgij . This is another example of
vector field, now with k = 2n.

Find how metric changes with the change of coordinates

10.*If in the Descartes coordinates gij = δij , find g explicitly in polar and com-
plex coordinates for the case of 2-dim space and in spherical coordinates
for the case of 3-dim space.

Integration

1. Is it correct, in general, to write
∫
γ
y dx = y x?

2. Compute integral
∮
γ
p dq, where γ is a circle of radius R: p2 + q2 = R2.

Integration is counterclockwise.

3. Compute integral
∫
γ
d(x/y) for the following 3 contours. Each contour

consists of straight lines connecting the following points:

a) {0, 0}, {1, 1},
b) {0, 0}, {1, 0}, {1, 1},
c) {0, 0}, {0, 1}, {1, 1}.
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Legendre transform

Legendre transform of function f(x) on the interval I is a function g(p) defined
as

g(p) = sup
x∈I

(x p− f(x)) . (4)

1. It is well-defined operation if ∂2f(x)
∂x2 ≥ 0. Why?

2. Find the Legendre transform of
√

1 + x2. What is the range of x and p
for which the Legendre transform is defined?

On exact differentials

1. Find all f such that df = 2x y dx+ (x2 − y2)dy.

2. Prove that if ω is exact then
∮
γ
ω = 0 for any closed contour.

3.*Since for exact differential ω one has ωi = ∂f
∂xi , the necessary condition of

exactness is

∂ωi
∂xj

=
∂ωj
∂xi

. (5)

Prove that if (5) holds than
∮
γ
ω = 0 for any closed contour γ (note that

(5) was not proven to be sufficient condition). Consider for this first γ
being a square. Then use the argument that any closed contour is a limit
of many squares (at this second step you are not required to be rigorous).

4.*Consider ω = xdy−ydx
x2+y2 . Is condition (5) satisfied? Compute

∫
γ
ω for con-

tour being a circle of unit radius x2 + y2 = 1. Do you get zero? Are you
happy with the statements that you proved above?
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