Dual vector space

1. $v_1, v_2 \in V, f_1, f_2 \in V^*$. Suppose that in a certain basis of $V v_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $v_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ and in the dual basis of V^* (which is uniquely defined by the choice of basis of V) $f_1 = \begin{pmatrix} 1 & 0 \end{pmatrix}, f_2 = \begin{pmatrix} 0 & 1 \end{pmatrix}$.

In some new basis $v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $v_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$. What is the form of f_1, f_2 in the corresponding dual basis?

Solution/Hint/Comment: If $v \to M \cdot v$ then $f \to f \cdot M^{-1}$. Need to find M. Another option is to solve $f_i(v_j) = \delta_{ij}$ which is a basis independent relation. Answer: $f_1 = (1/2 \quad 1/2), f_2 = (1/2 \quad -1/2)$.

2. In a certain basis $v_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $f_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. In another basis $v_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. What are the options for f_1 ?

Solution/Hint/Comment: $f_1(v_1) = 0$. This property does not depend on basis. Hence, generically $f_1 = (\lambda \ 0)$.

3. Consider a 2-dimensional metric space. For certain two basis vectors α_1 and α_2 the metric $A_{ij} \equiv \langle \alpha_i, \alpha_j \rangle$ is given by $A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$. Here $\langle \cdot, \cdot \rangle$ means scalar product. Express the vectors δ^1 and δ^2 of the canonically dual (to $\{\alpha_1, \alpha_2\}$) basis as linear combinations of α_1, α_2 .

Recall that presence of metrics allows us to identify V and V^* , so the question is meaningful.

Solution/Hint/Comment: Operation $\langle v, \cdot \rangle$ makes vector v a linear functional on V, hence the member of V^* . This point was discussed on the lecture.

The fastest way: Consider the ansatz $\delta^i = c^{ij} \alpha_j$ and make a trial and error search for c's so as to satisfy $\langle \delta^i, \alpha_j \rangle = \delta_{ij}$ (which is a property defining the dual basis). Systematic way: $c = A^{-1}$ (easy to prove), so we have to inverse A. The answer is $A^{-1} = \frac{1}{3} \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$.

4. The question is the same as above, but for *n*-dimensional space. Now A is an $n \times n$ dimensional matrix:

It is suggested to understand the answer for the case n = 3, 4 first.

Last two questions have practical application. α 's are the so called simple roots of $\mathfrak{sl}(n+1)$ Lie algebra. A is Cartan matrix. You will encounter them in your study later.

Solution/Hint/Comment: $(A^{-1})^{ij} = \frac{j(n+1-i)}{n+1}$ for $i \leq j$ and $(A^{-1})^{ij} = (A^{-1})^{ji}$ for i > j. By making trial and error game for n = 3, 4 one can guess this answer.

Vector fields and coordinate transformations

Polar coordinates r, ϕ are defined by $x = r \cos \phi, y = r \sin \phi$.

Complex coordinates are defined by z = x + iy, $\overline{z} = x - iy$. In the questions below do not worry that *i* is not real. You can formally think that z, \overline{z} parameterise 2-dimensional real space (they indeed do, even though you cannot draw coordinate axes for them) and treat $i = \sqrt{-1}$ as just a number that you know how to operate with.

- 1. Rewrite $x \, dy y \, dx$ in polar coordinates and complex coordinates. Solution/Hint/Comment: Answer: $r^2 \, d\phi$ and $\frac{i}{2} (z \, d\bar{z} - \bar{z} \, dz)$.
- For ω = y dx+dy, find such coordinate system {u, v} in which ω = h(u)dv, where h is some function.
 Solution/Hint/Comment: v = x + log y, h(u) = u = y.

3* Explain, by counting the number of equations and variables, why for any 1-form ω in 2 dimensions one can always find a coordinate system such that $\omega = h(u)dv$. Show that a similar statement does not hold in higher dimensions.

Solution/Hint/Comment: $h(u)dv = h\frac{\partial v}{\partial x}dx + h\frac{\partial v}{\partial y}dy$. We have two equations, $h\frac{\partial v}{\partial x} = \omega_x$ and $h\frac{\partial v}{\partial y} = \omega_y$ to find two functions. In higher dimensions, there will be three or more equations on two functions.

Take a slightly different point of view on the topic of the last lecture. To each point x of certain domain D, which can be \mathbb{R}^n or its part, we are assigning some object.

A very simple object is a real constant. Such assignment is nothing but definition of a function f(x).

More complicated object is a k-dimensional vector. Assigning a vector to each point defines for us a vector field. In practice, we are introducing k functions $\{\omega_1(x), \ldots, \omega_k(x)\}$ to describe it, however a nontrivial point is that these functions may depend on the choice of the coordinate system in D. For the case k = n and ω_i being the components of the **differential form**, we discussed this dependence on the lecture. Remind that differential form is parameterised as follows:

$$\omega(x) = \omega_i(x) \, dx^i \,. \tag{2}$$

Note aside: Take a look one more time on the function f(x) that was discussed above. To precise that the value of the function f at point x does not depend on the choice of a coordinate system, we say that f is a scalar field.

Another example of non-trivial vector structure is **tangent vector field**. In this case also k = n, and the tangent vector field is parameterised as

$$v(x) = v^i(x)\partial_i.$$
(3)

Above, dx^i and ∂_i can be thought simply as suitable mnemonic notations for basis forms, reps. tangent vectors, at each point x.

v at point x is the same as the displacement vector $\Delta \vec{x}$ used during lecture. ∂_i can be thought as unit displacements Δx_i in the basis directions.

Both differential form and tangent vector field are vector fields, but of different nature. At each point x, $\omega(x)$ and v(x) are elements of vector spaces which are dual to one another.

4. Knowing that dx^i and ∂_i are canonically dual bases, i.e. that $dx^i(\partial_j) = \delta^i_j$, find transformation rule for $v^i(x)$ under the change of basis.

Solution/Hint/Comment: Below $\mathbf{x} = {\mathbf{x}^1, \mathbf{x}^2, \dots, \mathbf{x}^n}$ and $\mathbf{y} = {\mathbf{y}^1, \mathbf{y}^2, \dots, \mathbf{y}^n}$. These are the coordinates of THE SAME point, but in different coordinate systems.

$$\omega_i(x) = \frac{\partial y^j}{\partial x^i} \omega_j(y) \quad \text{(Discussed on the lecture)}
v^i(x) = \frac{\partial x^i}{\partial y^j} v^j(y) \quad \text{(Required answer)}$$
(4)

- 5. Show that $[\iota_v w](x) \equiv v^i(x)\omega_i(x)$ is a scalar field. Solution/Hint/Comment: From (4) it is obvious that $\iota_v w$ is invariant under coordinate transformations.
- 6. Consider a set of trajectories of a particle given by $x^i(t, \theta_1, \theta_2, \ldots, \theta_{n-1})$, where t is time and θ 's are "initial conditions", so that this set covers D. *Example:* $x^1 = t \cos \theta_1, x^2 = t \sin \theta_1$, D is \mathbb{R}^2 without origin.

a) Show that the velocity vector of the particle $\{\frac{dx^1}{dt}, \ldots, \frac{dx^n}{dt}\}$ defines for us tangent vector field, i.e. that it properly transforms under the change

of coordinates (hence the name "tangent vector field" because velocities are vectors tangent to trajectory).

Solution/Hint/Comment: x and y - two coordinate systems. Considering x = x(y): $\frac{dx^i}{dt} = \frac{\partial x^i}{\partial y^j} \frac{dy^j}{dt}$, which is the same as (4), second line.

b) Compute the velocity field for the above-mentioned example in the coordinate system $\{x^1, x^2\}$ and in the polar coordinates. Draw a plot of this vector field.

Solution/Hint/Comment: Below $x^1 \equiv x, x^2 \equiv y$.

In the original coordinates the two components of the vector field is $\{\frac{dx}{dt}, \frac{dy}{dt}\}$, by substituting explicit expressions for $x^i(t, \theta_1)$ and differentiating, we get $\{\cos \theta_1, \sin \theta_1\} = \{\frac{x}{\sqrt{x^2+y^2}}, \frac{y}{\sqrt{x^2+y^2}}\}$. In this coordinate frame the basis tangent vectors are denoted by ∂_x and ∂_y . So the vector field is

$$\frac{x}{\sqrt{x^2+y^2}}\partial_x + \frac{y}{\sqrt{x^2+y^2}}\partial_y \,.$$

In the polar coordinates, the components of the vector field are $\{\frac{dr}{dt}, \frac{d\varphi}{dt}\}$. We have to find r, φ explicitly as a functions of t and θ_1 . From definition of the polar coordinates, $x = r \cos \varphi$, $y = r \sin \varphi$, it is evident that r = t, $\varphi = \theta_1$. Therefore, the components of the vector field is $\{1, 0\}$. Since the basis vectors are denoted as ∂_r and ∂_{φ} , we get $1 \times \partial_r + 0 \times \partial_{\varphi} =$

 ∂_r

Note the answer in $\{x, y\}$ fame is easy to obtain by applying chain rule:

$$\partial_r = \frac{\partial x}{\partial r} \partial_x + \frac{\partial y}{\partial r} \partial_y = \frac{x}{\sqrt{x^2 + y^2}} \partial_x + \frac{y}{\sqrt{x^2 + y^2}} \partial_y.$$

7. Rewrite $x\partial_y - y\partial_x$ in polar coordinates and complex coordinates. Solution/Hint/Comment: Answer: ∂_{ϕ} .

Example of code in *Mathematica*:

x pd[y]-y pd[x]/.pd[a_]:> D[ArcTan[y/x],a]pd[\[Phi]]+D[Sqrt[x^2+y^2],a]pd[r]//Simplify

The vector field $x\partial_y - y\partial_x = \partial_\phi$ generates rotations. It is very common, and you have to know this relation by heart.

Although the derivative $\frac{d \arctan(x)}{dx} = \frac{1}{1+x^2}$ is an easy one, it is common to forget this relation. To avoid remembering it, let us discover $x\partial_y - y\partial_x = \partial_\phi$ in a bit different fashion. Generically,

$$x\partial_y - y\partial_x = A\partial_r + B\partial_\phi \,,$$

with A, B being some functions of r and ϕ .

It is clear that $(A\partial_r + B\partial_\phi)r = A$. On the other hand, $(x\partial_y - y\partial_x)r = 0$ (simple computation), therefore A = 0. To find B, we compute

$$\partial_{\phi} = \frac{\partial x}{\partial \phi} \partial_x + \frac{\partial y}{\partial \phi} \partial_y = -y \partial_x + x \partial_y \,. \tag{5}$$

- 8.* Rewrite $x\partial_y y\partial_x$, $x\partial_z z\partial_x$, $y\partial_z z\partial_y$ in spherical coordinates. Spherical coordinates are defined by $x = r \sin \theta \cos \phi$, $y = r \sin \theta \sin \phi$, $z = r \cos \theta$.
 - **Solution/Hint/Comment:** Correspondingly: ∂_{ϕ} , $-\cos \phi \partial_{\theta} + \cot \theta \sin \phi \partial_{\phi}$, $-\sin \phi \partial_{\theta} \cos \phi \cot \theta \partial_{\phi}$. Answer was generated by *Mathematica*.
- 9.* Metric is a tensor field of rank 2, $g_{ij}(x)$, which defines a scalar product of vectors (at each point x): $\langle v, w \rangle \equiv v^i w^j g_{ij}$. This is another example of vector field, now with k = 2n.

Find how metric changes with the change of coordinates **Solution/Hint/Comment:**

$$g_{ij}(x) = \frac{\partial y^k}{\partial x^i} \frac{\partial y^l}{\partial x^j} g_{kl}(y) \tag{6}$$

10.* If in the Descartes coordinates $g_{ij} = \delta_{ij}$, find g explicitly in polar and complex coordinates for the case of 2-dim space and in spherical coordinates for the case of 3-dim space.

Solution/Hint/Comment: From previous exercise we see $g_{ij} = \sum_k \frac{\partial x^k}{\partial y^i} \frac{\partial x^k}{\partial y^j}$. For polar coordinates $\{r, \phi\}$: $g = \begin{pmatrix} 1 & 0 \\ 0 & r^2 \end{pmatrix}$, for complex coordinates $\{z, \bar{z}\}$: $g = \frac{1}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, for spherical coordinates $\{r, \theta, \phi\}$: $g = \begin{pmatrix} 1 & 0 & 0 \\ 0 & r^2 & 0 \\ 0 & 0 & r^2 \sin^2 \theta \end{pmatrix}$.

Integration

- 1. Is it correct, in general, to write $\int_{\gamma} y \, dx = y \, x$? Solution/Hint/Comment: No, except for the case when y = const along the contour of integration. This question was asked because some of students attempted to find f for which ydx = df.
- 2. Compute integral $\oint_{\gamma} p \, dq$, where γ is a circle of radius R: $p^2 + q^2 = R^2$. Integration is counterclockwise.

Solution/Hint/Comment: πR^2 , by Stockes theorem it is the area of the disk surrounded by the circle. Students might be willing to do it differently, e.g. by introducing polar coordinates.

- 3. Compute integral $\int_{\gamma} d(x/y)$ for the following 3 contours. Each contour consists of straight lines connecting the following points:
 - a) $\{0,0\},\{1,1\},\$
 - b) $\{0,0\},\{1,0\},\{1,1\},$
 - c) $\{0,0\},\{0,1\},\{1,1\}.$

Solution/Hint/Comment: Although the form is exact, integral should be regularised in the vicinity of zero. a)=0, b) diverges, c)=1.

Legendre transform

Legendre transform of function f(x) on the interval I is a function g(p) defined as

$$g(p) = \sup_{x \in I} (x p - f(x)).$$
 (7)

- 1. It is well-defined operation if $\frac{\partial^2 f(x)}{\partial x^2} \ge 0$. Why?
- 2. Find the Legendre transform of $\sqrt{1+x^2}$. What is the range of x and p for which the Legendre transform is defined?

Solution/Hint/Comment: First check when Legendre transform is defined. $\sqrt{1+x^2}'' = \frac{1}{(1+x^2)^{3/2}}$, therefore for any x. Note: on the exam you should not do this verification, unless is explicitly asked to. To find the maximum over x of x p - f(p), we solve (x p - f(x))' = 0 which gives the standard p = f', or explicitly

$$p = \frac{x}{\sqrt{1+x^2}} \,. \tag{8}$$

Now, solve it with respect to x. Write equation for p^2 :

$$p^2 = \frac{x^2}{1+x^2} \quad \to \quad x^2 = \frac{p^2}{1-p^2}.$$

Then you have $x = \pm \frac{p}{\sqrt{1-p^2}}$, the sign ambiguity appears because we were taking square root. To fix this ambiguity, we note from (8) that p has the same sign as x. Therefore

$$x = \frac{p}{\sqrt{1 - p^2}} \,. \tag{9}$$

Finally, we substitute the found value of x into x p - f(x):

$$g(p) = x p - \sqrt{1 + x^2}$$
, for $x = \frac{p}{\sqrt{1 - p^2}}$. (10)

We can of course boldly substitute x, but this will result in nested square root structure and a bit painful simplification. It is much easier to note that $\sqrt{1+x^2} = \frac{x}{p} = \frac{1}{\sqrt{1-p^2}}$. Therefore

$$g(p) = \frac{p}{\sqrt{1-p^2}} p - \frac{1}{\sqrt{1-p^2}} = -\sqrt{1-p^2},$$
(11)

so the answer $g(p) = -\sqrt{1-p^2}$.

On exact differentials

- 1. Find all f such that $df = 2 x y dx + (x^2 y^2) dy$. Solution/Hint/Comment: $f = x^2 y - \frac{1}{3}y^3 + \text{const}$
- 2. Prove that if ω is exact then $\oint_{\gamma} \omega = 0$ for any closed contour.
- 3*Since for exact differential ω one has $\omega_i = \frac{\partial f}{\partial x^i}$, the necessary condition of exactness is

$$\frac{\partial \omega_i}{\partial x^j} = \frac{\partial \omega_j}{\partial x^i} \,. \tag{12}$$

Prove that if (12) holds than $\oint_{\gamma} \omega = 0$ for any closed contour γ (note that (12) was not proven to be sufficient condition). Consider for this first γ being a square. Then use the argument that any closed contour is a limit of many squares (at this second step you are not required to be rigorous).

4* Consider $\omega = \frac{xdy-ydx}{x^2+y^2}$. Is condition (12) satisfied? Compute $\int_{\gamma} \omega$ for contour being a circle of unit radius $x^2 + y^2 = 1$. Do you get zero? Are you happy with the statements that you proved above?

Solution/Hint/Comment: In polar coordinates, $\omega = d\phi$, so integral will give 2π . The problem is that ω is singular at 0. Statements above apply only for a contour which can be shrinker to point, and no singularities encountered during shrinking.