Tutorial 1 - SOLUTIONS

Dual vector space

1. $v_{1}, v_{2} \in V, f_{1}, f_{2} \in V^{*}$. Suppose that in a certain basis of $V v_{1}=\binom{1}{0}$, $v_{2}=\binom{0}{1}$ and in the dual basis of V^{*} (which is uniquely defined by the choice of basis of $V) f_{1}=\left(\begin{array}{ll}1 & 0\end{array}\right), f_{2}=\left(\begin{array}{ll}0 & 1\end{array}\right)$.
In some new basis $v_{1}=\binom{1}{1}, v_{2}=\binom{1}{-1}$. What is the form of f_{1}, f_{2} in the corresponding dual basis?

Solution/Hint/Comment: If $v \rightarrow M \cdot v$ then $f \rightarrow f \cdot M^{-1}$. Need to find M. Another option is to solve $f_{i}\left(v_{j}\right)=\delta_{i j}$ which is a basis independent relation. Answer: $f_{1}=\left(\begin{array}{ll}1 / 2 & 1 / 2\end{array}\right), f_{2}=\left(\begin{array}{ll}1 / 2 & -1 / 2\end{array}\right)$.
2. In a certain basis $v_{1}=\binom{1}{0}$ and $f_{1}=\left(\begin{array}{ll}0 & 1\end{array}\right)$. In another basis $v_{1}=\binom{0}{1}$. What are the options for f_{1} ?
Solution/Hint/Comment: $f_{1}\left(v_{1}\right)=0$. This property does not depend on basis. Hence, generically $f_{1}=\left(\begin{array}{ll}\lambda & 0\end{array}\right)$.
3. Consider a 2-dimensional metric space. For certain two basis vectors α_{1} and α_{2} the metric $A_{i j} \equiv\left\langle\alpha_{i}, \alpha_{j}\right\rangle$ is given by $A=\left(\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right)$. Here $\langle\cdot, \cdot\rangle$ means scalar product. Express the vectors δ^{1} and δ^{2} of the canonically dual (to $\left\{\alpha_{1}, \alpha_{2}\right\}$) basis as linear combinations of α_{1}, α_{2}.
Recall that presence of metrics allows us to identify V and V^{*}, so the question is meaningful.

Solution/Hint/Comment: Operation $\langle v, \cdot\rangle$ makes vector v a linear functional on V, hence the member of V^{*}. This point was discussed on the lecture.
The fastest way: Consider the ansatz $\delta^{i}=c^{i j} \alpha_{j}$ and make a trial and error search for c 's so as to satisfy $\left\langle\delta^{i}, \alpha_{j}\right\rangle=\delta_{i j}$ (which is a property defining the dual basis). Systematic way: $c=A^{-1}$ (easy to prove), so we have to inverse A. The answer is $A^{-1}=\frac{1}{3}\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$.
4. The question is the same as above, but for n-dimensional space. Now A is an $n \times n$ dimensional matrix:

$$
A_{i j}=\left(\begin{array}{cccccc}
2 & -1 & 0 & 0 & \ldots & 0 \tag{1}\\
-1 & 2 & -1 & 0 & \ldots & 0 \\
0 & -1 & 2 & -1 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & \ldots & 0 & -1 & 2 & -1 \\
0 & \ldots & 0 & 0 & -1 & 2
\end{array}\right)
$$

It is suggested to understand the answer for the case $n=3,4$ first.
Last two questions have practical application. α 's are the so called simple roots of $\mathfrak{s l}(n+1)$ Lie algebra. A is Cartan matrix. You will encounter them in your study later.
Solution/Hint/Comment: $\left(A^{-1}\right)^{i j}=\frac{j(n+1-i)}{n+1}$ for $i \leq j$ and $\left(A^{-1}\right)^{i j}=$ $\left(A^{-1}\right)^{j i}$ for $i>j$. By making trial and error game for $n=3,4$ one can guess this answer.

Vector fields and coordinate transformations

Polar coordinates r, ϕ are defined by $x=r \cos \phi, y=r \sin \phi$.
Complex coordinates are defined by $z=x+i y, \bar{z}=x-i y$. In the questions below do not worry that i is not real. You can formally think that z, \bar{z} parameterise 2-dimensional real space (they indeed do, even though you cannot draw coordinate axes for them) and treat $i=\sqrt{-1}$ as just a number that you know how to operate with.

1. Rewrite $x d y-y d x$ in polar coordinates and complex coordinates.

Solution/Hint/Comment: Answer: $r^{2} d \phi$ and $\frac{i}{2}(z d \bar{z}-\bar{z} d z)$.
2. For $\omega=y d x+d y$, find such coordinate system $\{u, v\}$ in which $\omega=h(u) d v$, where h is some function.
Solution/Hint/Comment: $v=x+\log y, h(u)=u=y$.
3* Explain, by counting the number of equations and variables, why for any 1-form ω in 2 dimensions one can always find a coordinate system such that $\omega=h(u) d v$. Show that a similar statement does not hold in higher dimensions.
Solution/Hint/Comment: $h(u) d v=h \frac{\partial v}{\partial x} d x+h \frac{\partial v}{\partial y} d y$. We have two equations, $h \frac{\partial v}{\partial x}=\omega_{x}$ and $h \frac{\partial v}{\partial y}=\omega_{y}$ to find two functions. In higher dimensions, there will be three or more equations on two functions.

Take a slightly different point of view on the topic of the last lecture. To each point x of certain domain D , which can be \mathbb{R}^{n} or its part, we are assigning some object.

A very simple object is a real constant. Such assignment is nothing but definition of a function $f(x)$.

More complicated object is a k-dimensional vector. Assigning a vector to each point defines for us a vector field. In practice, we are introducing k functions $\left\{\omega_{1}(x), \ldots, \omega_{k}(x)\right\}$ to describe it, however a nontrivial point is that these functions may depend on the choice of the coordinate system in D. For the case $k=n$ and ω_{i} being the components of the differential form, we discussed this dependence on the lecture. Remind that differential form is parameterised as follows:

$$
\begin{equation*}
\omega(x)=\omega_{i}(x) d x^{i} \tag{2}
\end{equation*}
$$

Note aside: Take a look one more time on the function $f(x)$ that was discussed above. To precise that the value of the function f at point x does not depend on the choice of a coordinate system, we say that f is a scalar field.

Another example of non-trivial vector structure is tangent vector field. In this case also $k=n$, and the tangent vector field is parameterised as

$$
\begin{equation*}
v(x)=v^{i}(x) \partial_{i} \tag{3}
\end{equation*}
$$

Above, $d x^{i}$ and ∂_{i} can be thought simply as suitable mnemonic notations for basis forms, reps. tangent vectors, at each point x.
v at point x is the same as the displacement vector $\Delta \vec{x}$ used during lecture. ∂_{i} can be thought as unit displacements Δx_{i} in the basis directions.

Both differential form and tangent vector field are vector fields, but of different nature. At each point $x, \omega(x)$ and $v(x)$ are elements of vector spaces which are dual to one another.
4. Knowing that $d x^{i}$ and ∂_{i} are canonically dual bases, i.e. that $d x^{i}\left(\partial_{j}\right)=\delta_{j}^{i}$, find transformation rule for $v^{i}(x)$ under the change of basis.
Solution/Hint/Comment: Below $\mathbf{x}=\left\{\mathbf{x}^{\mathbf{1}}, \mathbf{x}^{2}, \ldots, \mathbf{x}^{\mathbf{n}}\right\}$ and $\mathbf{y}=$ $\left\{\mathbf{y}^{\mathbf{1}}, \mathbf{y}^{\mathbf{2}}, \ldots, \mathbf{y}^{\mathbf{n}}\right\}$. These are the coordinates of THE SAME point, but in different coordinate systems.

$$
\begin{align*}
\omega_{i}(x) & =\frac{\partial y^{j}}{\partial x^{i}} \omega_{j}(y) \quad \text { (Discussed on the lecture) } \\
v^{i}(x) & =\frac{\partial x^{i}}{\partial y^{j}} v^{j}(y) \quad \text { (Required answer) } \tag{4}
\end{align*}
$$

5. Show that $\left[{ }_{v} w\right](x) \equiv v^{i}(x) \omega_{i}(x)$ is a scalar field.

Solution/Hint/Comment: From (4) it is obvious that $\iota_{v} w$ is invariant under coordinate transformations.
6. Consider a set of trajectories of a particle given by $x^{i}\left(t, \theta_{1}, \theta_{2}, \ldots, \theta_{n-1}\right)$, where t is time and θ 's are "initial conditions", so that this set covers D.
Example: $x^{1}=t \cos \theta_{1}, x^{2}=t \sin \theta_{1}, \mathrm{D}$ is \mathbb{R}^{2} without origin.
a) Show that the velocity vector of the particle $\left\{\frac{d x^{1}}{d t}, \ldots, \frac{d x^{n}}{d t}\right\}$ defines for us tangent vector field, i.e. that it properly transforms under the change
of coordinates (hence the name "tangent vector field" because velocities are vectors tangent to trajectory).

Solution/Hint/Comment: x and y - two coordinate systems. Considering $x=x(y): \frac{d x^{i}}{d t}=\frac{\partial x^{i}}{\partial y^{j}} \frac{d y^{j}}{d t}$, which is the same as (4), second line.
b) Compute the velocity field for the above-mentioned example in the coordinate system $\left\{x^{1}, x^{2}\right\}$ and in the polar coordinates. Draw a plot of this vector field.
Solution/Hint/Comment: Below $x^{1} \equiv x, x^{2} \equiv y$.
In the original coordinates the two components of the vector field is $\left\{\frac{d x}{d t}, \frac{d y}{d t}\right\}$, by substituting explicit expressions for $x^{i}\left(t, \theta_{1}\right)$ and differentiating, we get $\left\{\cos \theta_{1}, \sin \theta_{1}\right\}=\left\{\frac{x}{\sqrt{x^{2}+y^{2}}}, \frac{y}{\sqrt{x^{2}+y^{2}}}\right\}$. In this coordinate frame the basis tangent vectors are denoted by ∂_{x} and ∂_{y}. So the vector field is

$$
\frac{x}{\sqrt{x^{2}+y^{2}}} \partial_{x}+\frac{y}{\sqrt{x^{2}+y^{2}}} \partial_{y} .
$$

In the polar coordinates, the components of the vector field are $\left\{\frac{d r}{d t}, \frac{d \varphi}{d t}\right\}$. We have to find r, φ explicitly as a functions of t and θ_{1}. From definition of the polar coordinates, $x=r \cos \varphi, y=r \sin \varphi$, it is evident that $r=t$, $\varphi=\theta_{1}$. Therefore, the components of the vector field is $\{1,0\}$. Since the basis vectors are denoted as ∂_{r} and ∂_{φ}, we get $1 \times \partial_{r}+0 \times \partial_{\varphi}=$

$$
\partial_{r}
$$

Note the answer in $\{x, y\}$ fame is easy to obtain by applying chain rule:

$$
\partial_{r}=\frac{\partial x}{\partial r} \partial_{x}+\frac{\partial y}{\partial r} \partial_{y}=\frac{x}{\sqrt{x^{2}+y^{2}}} \partial_{x}+\frac{y}{\sqrt{x^{2}+y^{2}}} \partial_{y}
$$

7. Rewrite $x \partial_{y}-y \partial_{x}$ in polar coordinates and complex coordinates.

Solution/Hint/Comment: Answer: ∂_{ϕ}.
Example of code in Mathematica:

```
x pd[y]-y pd[x]/.pd[a_]:>
D[ArcTan[y/x],a] pd[\[Phi]]+D[Sqrt [x^2+y^2],a]pd[r]//Simplify
```

The vector field $x \partial_{y}-y \partial_{x}=\partial_{\phi}$ generates rotations. It is very common, and you have to know this relation by heart.
Although the derivative $\frac{d \arctan (x)}{d x}=\frac{1}{1+x^{2}}$ is an easy one, it is common to forget this relation. To avoid remembering it, let us discover $x \partial_{y}-y \partial_{x}=$ ∂_{ϕ} in a bit different fashion. Generically,

$$
x \partial_{y}-y \partial_{x}=A \partial_{r}+B \partial_{\phi}
$$

with A, B being some functions of r and ϕ.
It is clear that $\left(A \partial_{r}+B \partial_{\phi}\right) r=A$. On the other hand, $\left(x \partial_{y}-y \partial_{x}\right) r=0$ (simple computation), therefore $A=0$. To find B, we compute

$$
\begin{equation*}
\partial_{\phi}=\frac{\partial x}{\partial \phi} \partial_{x}+\frac{\partial y}{\partial \phi} \partial_{y}=-y \partial_{x}+x \partial_{y} \tag{5}
\end{equation*}
$$

8* Rewrite $x \partial_{y}-y \partial_{x}, x \partial_{z}-z \partial_{x}, y \partial_{z}-z \partial_{y}$ in spherical coordinates. Spherical coordinates are defined by $x=r \sin \theta \cos \phi, y=r \sin \theta \sin \phi, z=r \cos \theta$.

Solution/Hint/Comment: Correspondingly: $\partial_{\phi},-\cos \phi \partial_{\theta}+\cot \theta \sin \phi \partial_{\phi}$, $-\sin \phi \partial_{\theta}-\cos \phi \cot \theta \partial_{\phi}$. Answer was generated by Mathematica.

9* Metric is a tensor field of rank $2, g_{i j}(x)$, which defines a scalar product of vectors (at each point $x):\langle v, w\rangle \equiv v^{i} w^{j} g_{i j}$. This is another example of vector field, now with $k=2 n$.

Find how metric changes with the change of coordinates
Solution/Hint/Comment:

$$
\begin{equation*}
g_{i j}(x)=\frac{\partial y^{k}}{\partial x^{i}} \frac{\partial y^{l}}{\partial x^{j}} g_{k l}(y) \tag{6}
\end{equation*}
$$

$10 *$ If in the Descartes coordinates $g_{i j}=\delta_{i j}$, find g explicitly in polar and complex coordinates for the case of 2 -dim space and in spherical coordinates for the case of 3-dim space.
Solution/Hint/Comment: From previous exercise we see $g_{i j}=\sum_{k} \frac{\partial x^{k}}{\partial y^{i}} \frac{\partial x^{k}}{\partial y^{j}}$.
For polar coordinates $\{r, \phi\}: g=\left(\begin{array}{cc}1 & 0 \\ 0 & r^{2}\end{array}\right)$, for complex coordinates $\{z, \bar{z}\}$: $g=\frac{1}{2}\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$, for spherical coordinates $\{r, \theta, \phi\}: g=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & r^{2} & 0 \\ 0 & 0 & r^{2} \sin ^{2} \theta\end{array}\right)$.

Integration

1. Is it correct, in general, to write $\int_{\gamma} y d x=y x$?

Solution/Hint/Comment: No, except for the case when $y=$ const along the contour of integration. This question was asked because some of students attempted to find f for which $y d x=d f$.
2. Compute integral $\oint_{\gamma} p d q$, where γ is a circle of radius R : $p^{2}+q^{2}=R^{2}$. Integration is counterclockwise.
Solution/Hint/Comment: πR^{2}, by Stockes theorem it is the area of the disk surrounded by the circle. Students might be willing to do it differently, e.g. by introducing polar coordinates.
3. Compute integral $\int_{\gamma} d(x / y)$ for the following 3 contours. Each contour consists of straight lines connecting the following points:
a) $\{0,0\},\{1,1\}$,
b) $\{0,0\},\{1,0\},\{1,1\}$,
c) $\{0,0\},\{0,1\},\{1,1\}$.

Solution/Hint/Comment: Although the form is exact, integral should be regularised in the vicinity of zero. $a)=0, b$) diverges, $c)=1$.

Legendre transform

Legendre transform of function $f(x)$ on the interval I is a function $g(p)$ defined as

$$
\begin{equation*}
g(p)=\sup _{x \in I}(x p-f(x)) . \tag{7}
\end{equation*}
$$

1. It is well-defined operation if $\frac{\partial^{2} f(x)}{\partial x^{2}} \geq 0$. Why?
2. Find the Legendre transform of $\sqrt{1+x^{2}}$. What is the range of x and p for which the Legendre transform is defined?
Solution/Hint/Comment: First check when Legendre transform is defined. $\sqrt{1+x^{2}}{ }^{\prime \prime}=\frac{1}{\left(1+x^{2}\right)^{3 / 2}}$, therefore for any x. Note: on the exam you should not do this verification, unless is explicitly asked to. To find the maximum over x of $x p-f(p)$, we solve $(x p-f(x))^{\prime}=0$ which gives the standard $p=f^{\prime}$, or explicitly

$$
\begin{equation*}
p=\frac{x}{\sqrt{1+x^{2}}} . \tag{8}
\end{equation*}
$$

Now, solve it with respect to x. Write equation for p^{2} :

$$
p^{2}=\frac{x^{2}}{1+x^{2}} \quad \rightarrow \quad x^{2}=\frac{p^{2}}{1-p^{2}}
$$

Then you have $x= \pm \frac{p}{\sqrt{1-p^{2}}}$, the sign ambiguity appears because we were taking square root. To fix this ambiguity, we note from (8) that p has the same sign as x. Therefore

$$
\begin{equation*}
x=\frac{p}{\sqrt{1-p^{2}}} \tag{9}
\end{equation*}
$$

Finally, we substitute the found value of x into $x p-f(x)$:

$$
\begin{equation*}
g(p)=x p-\sqrt{1+x^{2}}, \quad \text { for } \quad x=\frac{p}{\sqrt{1-p^{2}}} \tag{10}
\end{equation*}
$$

We can of course boldly substitute x, but this will result in nested square root structure and a bit painful simplification. It is much easier to note that $\sqrt{1+x^{2}}=\frac{x}{p}=\frac{1}{\sqrt{1-p^{2}}}$. Therefore

$$
\begin{equation*}
g(p)=\frac{p}{\sqrt{1-p^{2}}} p-\frac{1}{\sqrt{1-p^{2}}}=-\sqrt{1-p^{2}} \tag{11}
\end{equation*}
$$

so the answer $g(p)=-\sqrt{1-p^{2}}$.

On exact differentials

1. Find all f such that $d f=2 x y d x+\left(x^{2}-y^{2}\right) d y$.

Solution/Hint/Comment: $f=x^{2} y-\frac{1}{3} y^{3}+$ const
2. Prove that if ω is exact then $\oint_{\gamma} \omega=0$ for any closed contour.

3* Since for exact differential ω one has $\omega_{i}=\frac{\partial f}{\partial x^{i}}$, the necessary condition of exactness is

$$
\begin{equation*}
\frac{\partial \omega_{i}}{\partial x^{j}}=\frac{\partial \omega_{j}}{\partial x^{i}} \tag{12}
\end{equation*}
$$

Prove that if $\sqrt[12]{ }$ holds than $\oint_{\gamma} \omega=0$ for any closed contour γ (note that (12) was not proven to be sufficient condition). Consider for this first γ being a square. Then use the argument that any closed contour is a limit of many squares (at this second step you are not required to be rigorous).

4* Consider $\omega=\frac{x d y-y d x}{x^{2}+y^{2}}$. Is condition $\sqrt{12}$ satisfied? Compute $\int_{\gamma} \omega$ for contour being a circle of unit radius $x^{2}+y^{2}=1$. Do you get zero? Are you happy with the statements that you proved above?
Solution/Hint/Comment: In polar coordinates, $\omega=d \phi$, so integral will give 2π. The problem is that ω is singular at 0 . Statements above apply only for a contour which can be shrinker to point, and no singularities encountered during shrinking.

