Tutorial 1 - SOLUTIONS

Dual vector space

1. vi,v9 € V, f1, fo € V*. Suppose that in a certain basis of V v, = (é),

Vg = ((1)> and in the dual basis of V* (which is uniquely defined by the
choice of basis of V') f; = (1 0), fo= (0 1).

In some new basis v; = 1 , Vg = (11>. What is the form of f1, fo in

the corresponding dual basis?

Solution/Hint/Comment: If v — M -v then f — f-M~!. Need to find
M. Another option is to solve f;(v;) = d;; which is a basis independent
relation. Answer: f; = (1/2 1/2), fo = (1/2 —1/2).

2. In a certain basis v; = (1)> and fi = (0 1). In another basis vy = (?)

What are the options for fi7

Solution/Hint /Comment: f;(v)

= 0. This property does not depend
on basis. Hence, generically f; = (/\ O).

3. Consider a 2-dimensional metric space. For certain two basis vectors a;
. L 2 -1
and oy the metric A;; = (a;, @;) is given by A = (_1 9 ) Here (-, )

means scalar product. Express the vectors ' and 62 of the canonically
dual (to {a1, as}) basis as linear combinations of oy, as.

Recall that presence of metrics allows us to identify V and V*, so the
question is meaningful.

Solution/Hint/Comment: Operation (v,-) makes vector v a linear
functional on V', hence the member of V*. This point was discussed on
the lecture.

The fastest way: Consider the ansatz 6* = ¢/ o; and make a trial and error
search for ¢’s so as to satisfy (0°, ;) = d;; (which is a property defining
the dual basis). Systematic way: ¢ = A~! (easy to prove), so we have to

inverse A. The answer is A~1 = % (? ;)

4* The question is the same as above, but for n-dimensional space. Now A is
an n X n dimensional matrix:



-1 2 -1 0 0
0 -1 2 -1 0
Aij = (1)
0 ... 0 -1 2 -1
0 0 0 -1 2

It is suggested to understand the answer for the case n = 3,4 first.

Last two questions have practical application. o’s are the so called simple
roots of sl(n + 1) Lie algebra. A is Cartan matriz. You will encounter
them in your study later.

Solution/Hint/Comment: (A~1)% = % fori < jand (A71)¥ =
(A=1)J7% for i > j. By making trial and error game for n = 3,4 one can
guess this answer.

Vector fields and coordinate transformations

Polar coordinates r, ¢ are defined by x = r cos ¢, y = rsin ¢.

Complex coordinates are defined by z = x+1iy, Z = z —iy. In the questions
below do not worry that 4 is not real. You can formally think that z,Z param-
eterise 2-dimensional real space (they indeed do, even though you cannot draw
coordinate axes for them) and treat i = y/—1 as just a number that you know
how to operate with.

1. Rewrite 2 dy — y dz in polar coordinates and complex coordinates.
Solution/Hint/Comment: Answer: 72 d¢ and 5 (2dz — zdz).

2. For w = y dx+dy, find such coordinate system {u, v} in which w = h(u)dv,
where h is some function.
Solution/Hint/Comment: v =z + logy, h(u) = u = y.

3¥ Explain, by counting the number of equations and variables, why for any
1-form w in 2 dimensions one can always find a coordinate system such
that w = h(u)dv. Show that a similar statement does not hold in higher

dimensions.
Solution/Hint/Comment: h(u)dv = h%dm + hg—Zdy. We have two
equations, hg—; = w, and h% = wy to find two functions. In higher

dimensions, there will be three or more equations on two functions.

Take a slightly different point of view on the topic of the last lecture. To each
point x of certain domain D, which can be R™ or its part, we are assigning some
object.

A very simple object is a real constant. Such assignment is nothing but
definition of a function f(z).



More complicated object is a k-dimensional vector. Assigning a vector to
each point defines for us a vector field. In practice, we are introducing k func-
tions {w1(z),...,wr(x)} to describe it, however a nontrivial point is that these
functions may depend on the choice of the coordinate system in D. For the case
k = n and w; being the components of the differential form, we discussed this
dependence on the lecture. Remind that differential form is parameterised as
follows:

w(z) = w;(z) dz’. (2)

Note aside: Take a look one more time on the function f(z) that was dis-
cussed above. To precise that the value of the function f at point x does not
depend on the choice of a coordinate system, we say that f is a scalar field.

Another example of non-trivial vector structure is tangent vector field.
In this case also k = n, and the tangent vector field is parameterised as

v(z) = v'(2)0; . (3)

Above, dz' and 9; can be thought simply as suitable mnemonic notations for
basis forms, reps. tangent vectors, at each point x.

v at point z is the same as the displacement vector AT used during lecture.
0; can be thought as unit displacements Az; in the basis directions.

Both differential form and tangent vector field are vector fields, but of differ-
ent nature. At each point x, w(z) and v(x) are elements of vector spaces which
are dual to one another.

4. Knowing that dz’ and 9; are canonically dual bases, i.e. that dz*(9;) = 07,
find transformation rule for v*(z) under the change of basis.
Solution/Hint/Comment: Below x = {x!,x% ... x"} and y =
{y1,¥2,...,¥*}. These are the coordinates of THE SAME point, but
in different coordinate systems.

J
wi(z) = gy1 w;(y) (Discussed on the lecture)
x
; ozt . )
vi(z) = o v/(y) (Required answer) (4)

5. Show that [t,w](z) = vi(z)w;(z) is a scalar field.
Solution/Hint /Comment: From it is obvious that ¢, w is invariant
under coordinate transformations.

6. Consider a set of trajectories of a particle given by x%(t, 61,0z, ...,0,_1),
where ¢ is time and 6’s are "initial conditions”, so that this set covers D.
Ezample: x' = tcosfy,z? = tsinfy, D is R? without origin.

a) Show that the velocity vector of the particle % e ddif} defines for

us tangent vector field, i.e. that it properly transforms under the change



of coordinates (hence the name ”tangent vector field” because velocities
are vectors tangent to trajectory).

Solution/Hint/Comment: z and y - two coordinate systems. Consid-

ering z = z(y): & = %%, which is the same as (4]), second line.

b) Compute the velocity field for the above-mentioned example in the
coordinate system {z', 22} and in the polar coordinates. Draw a plot of
this vector field.

Solution/Hint/Comment: Below !

=z, 2=y

In the original coordinates the two components of the vector field is
{%, %}7 by substituting explicit expressions for z*(t,6;) and differen-

tiating, we get {cosfy,sin6} = {———, ——.—1}. In this coordinate
T +y2 /w2+y2

frame the basis tangent vectors are denoted by d, and J,. So the vector
field is

T y

\/x2 +y28$ + \/(EQ +y28y.
In the polar coordinates, the components of the vector field are {%, Cfi—f}.
We have to find 7, ¢ explicitly as a functions of ¢t and #,. From definition
of the polar coordinates, © = rcosp, y = rsinyp, it is evident that r = ¢,
© = 01. Therefore, the components of the vector field is {1,0}. Since the
basis vectors are denoted as J, and 9, we get 1 x 0, + 0 x J, =

Or
Note the answer in {x,y} fame is easy to obtain by applying chain rule:
0 0
[y, R .y a——Y
or \/x2+y2 \/1'2+y2

or
. Rewrite 20y — y0, in polar coordinates and complex coordinates.
Solution/Hint/Comment: Answer: .

Example of code in Mathematica:

x pdlyl-y pdlx]/.pdl[a_]:>
D[ArcTan[y/x],alpd [\ [Phi]]+D[Sqrt [x~2+y~2],alpd[r]//Simplify

The vector field £0, — y0, = 0y generates rotations. It is very common,
and you have to know this relation by heart.

Although the derivative dam;in(m) =3 +112 is an easy one, it is common to
forget this relation. To avoid remembering it, let us discover 0, — y0, =

0y in a bit different fashion. Generically,

20y — YOy = A0, + B0y,



with A, B being some functions of r and ¢.

It is clear that (A9, + Bdy)r = A. On the other hand, (0, — yd,)r = 0
(simple computation), therefore A = 0. To find B, we compute

ox 0
0 = 500+ a—Zay = —y0, + 10, . (5)

8*Rewrite 20y —y0y, £0, — 20, y0, — 20, in spherical coordinates. Spherical
coordinates are defined by x = r sinf cos¢, y = r sinfsin ¢, z = r cos#.

Solution/Hint /Comment: Correspondingly: 04, — cos ¢ Jg+cot 8 sin ¢ Oy,
—sin¢ dp — cos ¢ cot § 0y. Answer was generated by Mathematica.

9* Metric is a tensor field of rank 2, g;;(«), which defines a scalar product of
vectors (at each point z): (v,w) = v'wig;;. This is another example of
vector field, now with k = 2n.

Find how metric changes with the change of coordinates
Solution/Hint /Comment:

oy* 0y

10*If in the Descartes coordinates g;; = d;;, find g explicitly in polar and com-
plex coordinates for the case of 2-dim space and in spherical coordinates

for the case of 3-dim space.
dz"* 9z*
Oyt OyJ *

Solution/Hint/Comment: From previous exercise we see g;; = >,

1

For polar coordinates {r, ¢}: g = (0

7"02> , for complex coordinates {z, z}:
1 0 0

g= % <(1) é) , for spherical coordinates {r,0,¢}: g= [0 r? 0
0 0 r%sin?6

Integration

1. Is it correct, in general, to write fv ydr =yx?
Solution/Hint/Comment: No, except for the case when y = const

along the contour of integration. This question was asked because some
of students attempted to find f for which ydz = df.

2. Compute integral ﬁ{pdq7 where v is a circle of radius R: p? + ¢®> = R2.
Integration is counterclockwise.
Solution/Hint/Comment: 7R? by Stockes theorem it is the area of
the disk surrounded by the circle. Students might be willing to do it
differently, e.g. by introducing polar coordinates.



3. Compute integral f,y d(x/y) for the following 3 contours. Each contour
consists of straight lines connecting the following points:

a) {0,0}, {1, 1},
b) {0,0},{1,0}, {1, 1},
c) {0,0},{0,1},{1,1}.

Solution/Hint /Comment: Although the form is exact, integral should
be regularised in the vicinity of zero. a)=0, b) diverges, ¢)=1.

Legendre transform

Legendre transform of function f(x) on the interval I is a function g(p) defined
as

g(p) = ilér;(:vp — f(x)). (7)

1. It is well-defined operation if % > 0. Why?

2. Find the Legendre transform of v/1 4+ 22. What is the range of x and p
for which the Legendre transform is defined?
Solution/Hint /Comment: First check when Legendre transform is de-
fined. v1+ 2?2 = W, therefore for any z. Note: on the exam you
should not do this verification, unless is explicitly asked to. To find the
maximum over x of xp — f(p), we solve (xp — f(z))’ = 0 which gives the
standard p = f’, or explicitly

T

e

Now, solve it with respect to z. Write equation for p?:

(8)

2 2
2 T 2 p

1+ 22 v :1—p2.

_ » . .
Then you have z iiﬂ, the sign ambiguity appears because we were

taking square root. To fix this ambiguity, we note from that p has the
same sign as x. Therefore

Finally, we substitute the found value of  into zp — f(x):

gp)=xzp—V1+22, for 2=——r=. (10)



We can of course boldly substitute x, but this will result in nested square
root structure and a bit painful simplification. It is much easier to note

that v1 + 22 = % =1 —. Therefore

1-p

so the answer g(p) = —y/1 — p?.

On exact differentials

1. Find all f such that df = 2z ydx + (2% — y?)dy.
Solution/Hint/Comment: f = 2%y — 1y* + const

2. Prove that if w is exact then ﬁy w = 0 for any closed contour.

3*Since for exact differential w one has w; = %, the necessary condition of

exactness is

Owi o 8Wj
oxd Ozt

Prove that if holds than fv w = 0 for any closed contour ~ (note that

was not proven to be sufficient condition). Consider for this first v
being a square. Then use the argument that any closed contour is a limit
of many squares (at this second step you are not required to be rigorous).

(12)

4% Consider w = %. Is condition satisfied? Compute fﬂ/ w for con-
tour being a circle of unit radius 22 + 42 = 1. Do you get zero? Are you
happy with the statements that you proved above?
Solution/Hint/Comment: In polar coordinates, w = d¢, so integral
will give 27. The problem is that w is singular at 0. Statements above ap-
ply only for a contour which can be shrinker to point, and no singularities

encountered during shrinking.



