
Tutorial 1 - SOLUTIONS

Dual vector space

1. v1, v2 ∈ V , f1, f2 ∈ V ∗. Suppose that in a certain basis of V v1 =

(
1
0

)
,

v2 =

(
0
1

)
and in the dual basis of V ∗ (which is uniquely defined by the

choice of basis of V ) f1 =
(
1 0

)
, f2 =

(
0 1

)
.

In some new basis v1 =

(
1
1

)
, v2 =

(
1
−1

)
. What is the form of f1, f2 in

the corresponding dual basis?

Solution/Hint/Comment: If v →M ·v then f → f ·M−1. Need to find
M . Another option is to solve fi(vj) = δij which is a basis independent
relation. Answer: f1 =

(
1/2 1/2

)
, f2 =

(
1/2 −1/2

)
.

2. In a certain basis v1 =

(
1
0

)
and f1 =

(
0 1

)
. In another basis v1 =

(
0
1

)
.

What are the options for f1?
Solution/Hint/Comment: f1(v1) = 0. This property does not depend
on basis. Hence, generically f1 =

(
λ 0

)
.

3. Consider a 2-dimensional metric space. For certain two basis vectors α1

and α2 the metric Aij ≡ 〈αi, αj〉 is given by A =

(
2 −1
−1 2

)
. Here 〈·, ·〉

means scalar product. Express the vectors δ1 and δ2 of the canonically
dual (to {α1, α2}) basis as linear combinations of α1, α2.

Recall that presence of metrics allows us to identify V and V ∗, so the
question is meaningful.

Solution/Hint/Comment: Operation 〈v, ·〉 makes vector v a linear
functional on V , hence the member of V ∗. This point was discussed on
the lecture.

The fastest way: Consider the ansatz δi = cijαj and make a trial and error
search for c’s so as to satisfy 〈δi, αj〉 = δij (which is a property defining
the dual basis). Systematic way: c = A−1 (easy to prove), so we have to

inverse A. The answer is A−1 = 1
3

(
2 1
1 2

)
.

4.*The question is the same as above, but for n-dimensional space. Now A is
an n× n dimensional matrix:
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Aij =



2 −1 0 0 . . . 0
−1 2 −1 0 . . . 0
0 −1 2 −1 . . . 0
. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .
0 . . . 0 −1 2 −1
0 . . . 0 0 −1 2


. (1)

It is suggested to understand the answer for the case n = 3, 4 first.

Last two questions have practical application. α’s are the so called simple
roots of sl(n + 1) Lie algebra. A is Cartan matrix. You will encounter
them in your study later.

Solution/Hint/Comment: (A−1)ij = j(n+1−i)
n+1 for i ≤ j and (A−1)ij =

(A−1)ji for i > j. By making trial and error game for n = 3, 4 one can
guess this answer.

Vector fields and coordinate transformations

Polar coordinates r, φ are defined by x = r cosφ, y = r sinφ.
Complex coordinates are defined by z = x+ i y, z̄ = x− i y. In the questions

below do not worry that i is not real. You can formally think that z, z̄ param-
eterise 2-dimensional real space (they indeed do, even though you cannot draw
coordinate axes for them) and treat i =

√
−1 as just a number that you know

how to operate with.

1. Rewrite x dy − y dx in polar coordinates and complex coordinates.
Solution/Hint/Comment: Answer: r2 dφ and i

2 (z dz̄ − z̄ dz) .

2. For ω = y dx+dy, find such coordinate system {u, v} in which ω = h(u)dv,
where h is some function.
Solution/Hint/Comment: v = x+ log y, h(u) = u = y.

3.*Explain, by counting the number of equations and variables, why for any
1-form ω in 2 dimensions one can always find a coordinate system such
that ω = h(u)dv. Show that a similar statement does not hold in higher
dimensions.
Solution/Hint/Comment: h(u)dv = h ∂v∂xdx + h∂v∂ydy. We have two

equations, h ∂v∂x = ωx and h∂v∂y = ωy to find two functions. In higher
dimensions, there will be three or more equations on two functions.

Take a slightly different point of view on the topic of the last lecture. To each
point x of certain domain D, which can be Rn or its part, we are assigning some
object.

A very simple object is a real constant. Such assignment is nothing but
definition of a function f(x).

2



More complicated object is a k-dimensional vector. Assigning a vector to
each point defines for us a vector field. In practice, we are introducing k func-
tions {ω1(x) , . . . , ωk(x)} to describe it, however a nontrivial point is that these
functions may depend on the choice of the coordinate system in D. For the case
k = n and ωi being the components of the differential form, we discussed this
dependence on the lecture. Remind that differential form is parameterised as
follows:

ω(x) = ωi(x) dxi . (2)

Note aside: Take a look one more time on the function f(x) that was dis-
cussed above. To precise that the value of the function f at point x does not
depend on the choice of a coordinate system, we say that f is a scalar field.

Another example of non-trivial vector structure is tangent vector field.
In this case also k = n, and the tangent vector field is parameterised as

v(x) = vi(x)∂i . (3)

Above, dxi and ∂i can be thought simply as suitable mnemonic notations for
basis forms, reps. tangent vectors, at each point x.

v at point x is the same as the displacement vector ∆−→x used during lecture.
∂i can be thought as unit displacements ∆xi in the basis directions.

Both differential form and tangent vector field are vector fields, but of differ-
ent nature. At each point x, ω(x) and v(x) are elements of vector spaces which
are dual to one another.

4. Knowing that dxi and ∂i are canonically dual bases, i.e. that dxi(∂j) = δij ,

find transformation rule for vi(x) under the change of basis.
Solution/Hint/Comment: Below x = {x1,x2, . . . ,xn} and y =
{y1,y2, . . . ,yn}. These are the coordinates of THE SAME point, but
in different coordinate systems.

ωi(x) =
∂yj

∂xi
ωj(y) (Discussed on the lecture)

vi(x) =
∂xi

∂yj
vj(y) (Required answer) (4)

5. Show that [ιvw](x) ≡ vi(x)ωi(x) is a scalar field.
Solution/Hint/Comment: From (4) it is obvious that ιvw is invariant
under coordinate transformations.

6. Consider a set of trajectories of a particle given by xi(t, θ1, θ2, . . . , θn−1),
where t is time and θ’s are ”initial conditions”, so that this set covers D.

Example: x1 = t cos θ1, x
2 = t sin θ1, D is R2 without origin.

a) Show that the velocity vector of the particle {dx
1

dt , . . . ,
dxn

dt } defines for
us tangent vector field, i.e. that it properly transforms under the change
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of coordinates (hence the name ”tangent vector field” because velocities
are vectors tangent to trajectory).

Solution/Hint/Comment: x and y - two coordinate systems. Consid-

ering x = x(y): dxi

dt = ∂xi

∂yj
dyj

dt , which is the same as (4), second line.

b) Compute the velocity field for the above-mentioned example in the
coordinate system {x1, x2} and in the polar coordinates. Draw a plot of
this vector field.
Solution/Hint/Comment: Below x1 ≡ x, x2 ≡ y.

In the original coordinates the two components of the vector field is
{dxdt ,

dy
dt }, by substituting explicit expressions for xi(t, θ1) and differen-

tiating, we get {cos θ1, sin θ1} = { x√
x2+y2

, y√
x2+y2

}. In this coordinate

frame the basis tangent vectors are denoted by ∂x and ∂y. So the vector
field is

x√
x2 + y2

∂x +
y√

x2 + y2
∂y .

In the polar coordinates, the components of the vector field are {drdt ,
dϕ
dt }.

We have to find r, ϕ explicitly as a functions of t and θ1. From definition
of the polar coordinates, x = r cosϕ, y = r sinϕ, it is evident that r = t,
ϕ = θ1. Therefore, the components of the vector field is {1, 0}. Since the
basis vectors are denoted as ∂r and ∂ϕ, we get 1× ∂r + 0× ∂ϕ =

∂r

Note the answer in {x, y} fame is easy to obtain by applying chain rule:

∂r =
∂x

∂r
∂x +

∂y

∂r
∂y =

x√
x2 + y2

∂x +
y√

x2 + y2
∂y .

7. Rewrite x∂y − y∂x in polar coordinates and complex coordinates.
Solution/Hint/Comment: Answer: ∂φ.

Example of code in Mathematica:

x pd[y]-y pd[x]/.pd[a_]:>

D[ArcTan[y/x],a]pd[\[Phi]]+D[Sqrt[x^2+y^2],a]pd[r]//Simplify

The vector field x∂y − y∂x = ∂φ generates rotations. It is very common,
and you have to know this relation by heart.

Although the derivative d arctan(x)
dx = 1

1+x2 is an easy one, it is common to
forget this relation. To avoid remembering it, let us discover x∂y − y∂x =
∂φ in a bit different fashion. Generically,

x∂y − y∂x = A∂r +B∂φ ,

4



with A,B being some functions of r and φ.

It is clear that (A∂r + B∂φ)r = A. On the other hand, (x∂y − y∂x)r = 0
(simple computation), therefore A = 0. To find B, we compute

∂φ =
∂x

∂φ
∂x +

∂y

∂φ
∂y = −y∂x + x∂y . (5)

8.*Rewrite x∂y−y∂x, x∂z−z∂x, y∂z−z∂y in spherical coordinates. Spherical
coordinates are defined by x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ.

Solution/Hint/Comment: Correspondingly: ∂φ, − cosφ∂θ+cot θ sinφ∂φ,
− sinφ∂θ − cosφ cot θ ∂φ. Answer was generated by Mathematica.

9.*Metric is a tensor field of rank 2, gij(x), which defines a scalar product of
vectors (at each point x): 〈v, w〉 ≡ viwjgij . This is another example of
vector field, now with k = 2n.

Find how metric changes with the change of coordinates
Solution/Hint/Comment:

gij(x) =
∂yk

∂xi
∂yl

∂xj
gkl(y) (6)

10.*If in the Descartes coordinates gij = δij , find g explicitly in polar and com-
plex coordinates for the case of 2-dim space and in spherical coordinates
for the case of 3-dim space.

Solution/Hint/Comment: From previous exercise we see gij =
∑
k
∂xk

∂yi
∂xk

∂yj .

For polar coordinates {r, φ}: g =

(
1 0
0 r2

)
, for complex coordinates {z, z̄}:

g = 1
2

(
0 1
1 0

)
, for spherical coordinates {r, θ, φ}: g =

1 0 0
0 r2 0
0 0 r2 sin2 θ

.

Integration

1. Is it correct, in general, to write
∫
γ
y dx = y x?

Solution/Hint/Comment: No, except for the case when y = const
along the contour of integration. This question was asked because some
of students attempted to find f for which ydx = df .

2. Compute integral
∮
γ
p dq, where γ is a circle of radius R: p2 + q2 = R2.

Integration is counterclockwise.
Solution/Hint/Comment: πR2, by Stockes theorem it is the area of
the disk surrounded by the circle. Students might be willing to do it
differently, e.g. by introducing polar coordinates.
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3. Compute integral
∫
γ
d(x/y) for the following 3 contours. Each contour

consists of straight lines connecting the following points:

a) {0, 0}, {1, 1},
b) {0, 0}, {1, 0}, {1, 1},
c) {0, 0}, {0, 1}, {1, 1}.
Solution/Hint/Comment: Although the form is exact, integral should
be regularised in the vicinity of zero. a)=0, b) diverges, c)=1.

Legendre transform

Legendre transform of function f(x) on the interval I is a function g(p) defined
as

g(p) = sup
x∈I

(x p− f(x)) . (7)

1. It is well-defined operation if ∂2f(x)
∂x2 ≥ 0. Why?

2. Find the Legendre transform of
√

1 + x2. What is the range of x and p
for which the Legendre transform is defined?
Solution/Hint/Comment: First check when Legendre transform is de-

fined.
√

1 + x2
′′

= 1
(1+x2)3/2

, therefore for any x. Note: on the exam you

should not do this verification, unless is explicitly asked to. To find the
maximum over x of x p− f(p), we solve (x p− f(x))′ = 0 which gives the
standard p = f ′, or explicitly

p =
x√

1 + x2
. (8)

Now, solve it with respect to x. Write equation for p2:

p2 =
x2

1 + x2
→ x2 =

p2

1− p2
.

Then you have x = ± p√
1−p2

, the sign ambiguity appears because we were

taking square root. To fix this ambiguity, we note from (8) that p has the
same sign as x. Therefore

x =
p√

1− p2
. (9)

Finally, we substitute the found value of x into x p− f(x):

g(p) = x p−
√

1 + x2 , for x =
p√

1− p2
. (10)
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We can of course boldly substitute x, but this will result in nested square
root structure and a bit painful simplification. It is much easier to note
that

√
1 + x2 = x

p = 1√
1−p2

. Therefore

g(p) =
p√

1− p2
p− 1√

1− p2
= −

√
1− p2 , (11)

so the answer g(p) = −
√

1− p2.

On exact differentials

1. Find all f such that df = 2x y dx+ (x2 − y2)dy.
Solution/Hint/Comment: f = x2 y − 1

3y
3 + const

2. Prove that if ω is exact then
∮
γ
ω = 0 for any closed contour.

3.*Since for exact differential ω one has ωi = ∂f
∂xi , the necessary condition of

exactness is

∂ωi
∂xj

=
∂ωj
∂xi

. (12)

Prove that if (12) holds than
∮
γ
ω = 0 for any closed contour γ (note that

(12) was not proven to be sufficient condition). Consider for this first γ
being a square. Then use the argument that any closed contour is a limit
of many squares (at this second step you are not required to be rigorous).

4.*Consider ω = xdy−ydx
x2+y2 . Is condition (12) satisfied? Compute

∫
γ
ω for con-

tour being a circle of unit radius x2 + y2 = 1. Do you get zero? Are you
happy with the statements that you proved above?
Solution/Hint/Comment: In polar coordinates, ω = dφ, so integral
will give 2π. The problem is that ω is singular at 0. Statements above ap-
ply only for a contour which can be shrinker to point, and no singularities
encountered during shrinking.

7


