
Notes on canonical transformations

First point of view on canonical transformations. By definition, a change of variables Q = Q(q, p),
P = P (p, q) is called canonical transformation if it preserves the symplectic structure. The most invariant
way to look on the canonical transformation is to introduce a unique letter for the collection of both q’s and
p’s: xα = (q, p), and respectively Xα = (Q,P ). In these notations the symplectic structure is a 2n × 2n
antisymmetric matrix ωαβ . This matrix is a vector-type object, more precisely a rank 2 covariant tensor,
this means that the explicit values of its components depend on the coordinate system we use. The rule of
transformation between different coordinate systems reads1

ω”x”
αβ =

∂Xα′

∂xα
∂Xβ′

∂xβ
ω”X”
α′β′ , (1)

where superscripts ”x” and ”X” precise in what coordinate system the components of ω are considered. The

matrix Jα
′
α = ∂Xα′

∂xα is what is usually called the Jacobi matrix.
The invariance of symplectic structure simply means

ω”x”
αβ = ω”X”

αβ . (2)

[ Transformation (??) is very common. For instance, in special relativity, let x be
the time-space coordinate in one inertial frame and X be the time-space coordinates in another inertial frame.
Two frames are related by the Lorentz transformation: Xµ = Lµνx

ν . The Jacobi matrix of this transformation
is, obviously, J = L. We know that vectorial objects are ”rotated” by L when we go from one frame to another.
In particular, the electromagnetic tensor Fµν is a covariant rank 2 tensor (btw, it is antisymmetric, as ω), and
it transforms precisely as (??):

Fµν = Lµ
′

µL
ν′

νF
′
µ′ν′ , (3)

F ′ stands for the F in the X-system. In index-free notation the last equation is

F = LT · F ′ · L , or F ′ = (LT)−1 · F · L−1 . (4)

]
The primary interest in the canonical transformation is that equations of motion look exactly the same in

old and new variables. Indeed, equations of motion in the x-language read

dxα

dt
= ωαβ

∂H
∂xβ

, (5)

where ωαβ ≡ (ω−1)αβ so that ωαβωβγ = δαγ .
Provided that the transformation does not depend on time we can directly perform the change of variables

and write this equation in the new coordinates:

(J−1)αα′
dXα′

dt
= ωαβJγβ

∂H
∂Xγ

(6)

1For those who studied exterior forms: ω is actually a 2-form: ω =
∑
α<β ωαβ dx

α ∧ dxβ . Transformation (??) is the pullback

π∗(ω) induced by the map π : x 7→ X.
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or

dXα

dt
= Jαα′Jγβω

α′β ∂H
∂Xγ

→ (Jαα′Jγβω
α′β = ωαγ)→ dXα

dt = ωαβ ∂H
∂Xβ (7)

Equation in the box has exactly the same form as (??). Later we generalise the statement of invariance of
equations to the time-dependent transformations.

Invariance of symplectic structure automatically implies invariance of the phase volume under canonical
transformations, or, equivalently, of the measure of integration2

∏n
i=1 dq

i dpi =
∏n
i=1 dQ

i dPi. Indeed, |det J |
is the Jacobian of transformation between two measures. But since J · ω−1 · JT = ω−1, see (??), we conclude
that |det J | = 1.

Recall that evolution of x = (q, p) under equations of motion can be considered, at a given moment of time,
as a canonical transformation between coordinates - initial conditions x0 and coordinates at a given moment
of time. I.e. if evolution is x(x0, t) then for some t = τ one relates X and x0 as X = x(x0, τ). We know that,
in particular, equations of motion preserve the phase volume of the system (Liouville’s theorem).

There is an instructive way to derive transformation rule (??). The Poisson brackets are defined as

{f, g}x ≡ ωα
′β′

”x”

∂f

∂xα′

∂g

∂xβ′ . (8)

Note that the definition is sensible to the coordinate system because we take derivatives with respect x’s in very
particular coordinate system, and ω itself depends on the coordinate system. That is why we put subscript

x near the Poisson bracket. Now, if we request that the value of the Poisson bracket does not depend on the
coordinate system, this gives us the rule how ω transforms (more precisely, its inverse ωαβ):

{f, g}X = ωαβ”X”

∂f

∂Xα

∂g

∂Xβ
= ωαβ”X”

(
∂xα

′

∂Xα

∂f

∂xα′

)(
∂xβ

′

∂Xβ

∂g

∂xβ′

)
(9)

By requiring that {f, g}x = {f, g}X , we get from (??) and (??) that

ωα
′β′

”x” = ωαβ”X”

∂xα
′

∂Xα

∂xβ
′

∂Xβ
, (10)

which is equivalent to (??). For canonical transformation, ωαβ”x” = ωαβ”X”, so we can write down the demand for

canonical transformation as ωα
′β′

= ωαβ ∂x
α′

∂Xα
∂xβ′

∂Xβ , or equivalently as

ωαβ = ωα
′β′ ∂Xα

∂xα′

∂Xβ

∂xβ′ =
(

by definition of
Poisson bracket

)
= {Xα, Xβ} (11)

Note that Poisson bracket is computed in the x-coordinates, Xα is considered as function of x’s here.
Condition {Xα, Xβ} = ωαβ is the necessary and sufficient condition for the transformation to

be canonical. It can be explicitly used in the exercises. When we write down explicitly in terms of P and Q,
this condition becomes

{Qi, Pj} = δij , {Qi, Qj} = 0 {Pi, Pj} = 0 . (12)

2In the point of view when x and X are coordinates of different spaces and the canonical transformation is the map π : x 7→ X,
and the volume is preserved in the following sense: in system x the volume of a domain D is Vx =

∫
D dµx with dµx =

∏n
i=1 dq

i dpi.
The domain D mapped to the domain π(D) in the system X. Its volume should be computed as VX =

∫
π(D) dµX with dµX =∏n

i=1 dQ
i dPi. The statement is that Vx = VX .
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Once more, Poisson bracket is computed in the (q, p)-frame, e.g. {Q,P} = ∂Q
∂q

∂P
∂p −

∂P
∂q

∂Q
∂p , written above

equalities is not a tautology.

Second point of view on canonical transformations. As above, we do not consider time-dependent
canonical transformations so far. We can think about P,Q as a different way to parameterise the same 2n-
dimensional phase space, which is originally parameterised by p, q. In this 2n-dimensional phase space we can
introduce differential 1-forms, for instance

n∑
i=1

pi dq
i − Pi dQi (13)

In the following I will write down only n = 1 case, for simplicity. So the form above is p dq − P dQ.
If we think about P and Q as functions of p and q, then dQ = ∂Q

∂p |q
dp+ ∂Q

∂q |p
dq. But, just to note, we could

think about Q as a function of any 2 variables. For instance, we can consider p and P (in non-singular cases)
as two variables we want to use. Then dQ = ∂Q

∂p |P
dp+ ∂Q

∂P |pdP . Note that ∂Q
∂p |q

6= ∂Q
∂p |P

.

Partial derivative measures the change of a function in certain direction. |q means that along the chosen
direction q is fixed. |P means that along the chosen direction P is fixed. These are different directions, so the
change of function would be different!

Canonical transformation is the transformation P = P (p, q), Q = Q(p, q) such that p dq−P dQ is the exact
differential:

dS1 = p dq − P dQ (14)

S1 is called the generating function of the canonical transformation. Given expression (??), it is the easiest to
consider S1 as a function of q,Q. Then it is immediate:

∂S1

∂q |Q
= p ,

∂S1

∂Q |q
= −P . (15)

Note that if p dq−P dQ is exact then e.g. −q dp−P dQ is exact. Indeed, d(S1− q p) = p dq−P dQ− d(q p) =
p dq − P dQ − p dq − q dp = −q dp − P dQ. The function S2 = S1 − q p is also called the generating function
(of the second kind). S2 is nothing but a Legendre transform, with proper sign chosen, of S1. Using the same
logic, we introduce S3 = S1 +QP and S4 = S1 +QP − q p. In total we have

dS1 = +p dq − P dQ (16)

dS2 = −q dp− P dQ (17)

dS3 = +p dq +QdP (18)

dS4 = −q dp+QdP . (19)

Equivalence. The discussed two points of view on the canonical transformations are equivalent. Indeed,
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you can show the following statement3

{Q,P} = 1 is equivalent to − ∂P

∂q |Q
=

∂p

∂Q |q
(20)

This equivalence is proven in the last question of the tutorial 4.
The condition on the left is the condition of invariance of the symplectic structure.
The condition on the right is the condition of exactness of the differential p dq − P dQ.
Dependence on time. If a canonical transformation has explicit dependence on time, then the equations

of motion are not covariant in a way how it was for time-independent case. In detail, if one has X = X(x, t),

then from equation dXα

dt = ωαβ ∂H
′

∂Xβ we will get

Jαα′
dxα

′

dt
+
∂Xα

∂t
= Jαα′ωα

′β ∂H′

∂xβ

or equivalently

dxα

dt
= ωαβ

∂H′

∂xβ
− ∂xα

∂Xγ

∂Xγ

∂t
. (21)

The last term spoils covariance! However, it appears that ∂xα

∂Xγ
∂Xγ

∂t defines a symplectic (Hamiltonian) vector

flow (proof is below). This means that there exists such K that ∂xα

∂Xγ
∂Xγ

∂t = ωαβ ∂K
∂xβ . Hence, for H′ = H +K

we will get the usual equations of motion

dxα

dt
= ωαβ

∂H
∂xβ

. (22)

Conclusion: time-dependent canonical transformation also changes Hamiltonian of the system (H → H′). On
the language of the generating function one can show that this statement transforms to the statement that

dS1 = p dq − P dQ− (H−H′)dt . (23)

I.e. p dq−P dQ is no longer exact in the extended phase space of p, q and t, but the combination in the formula
above is exact. The last equation is the practical way to find H′.

The minimum requirement for you is to know (??), its meaning, and how to use it (e.g. connection to
Hamilton-Jacobi equation). Details of derivations are not compulsory.

Let us prove now that ∂xα

∂Xγ
∂Xγ

∂t is a symplectic vector flow. Reminder: vector field vα defines the symplectic
flow if ωαγv

γ is exact. The last we check by computing ∂αωβγv
γ − ∂βωαγvγ and checking whether it is 0. Let

us apply this program to vα = ∂xα

∂Xγ
∂Xγ

∂t . We use ωαβ
∂xβ

∂Xγ = ∂Xβ

∂xα ωβγ , which is a consequence of (??), to get

ωαsv
s = ∂Xβ

∂xα ωβγ
∂Xγ

∂t . Then

∂αωβsv
s − ∂βωαsvs =

∂

∂xα

(
∂Xδ

∂xβ
ωδγ

∂Xγ

∂t

)
− ∂

∂xβ

(
∂Xδ

∂xα
ωδγ

∂Xγ

∂t

)
= − ∂

∂t

(
∂Xδ

∂xβ
ωδγ

∂Xγ

∂xα

)
=
∂ωαβ
∂t

= 0 , (24)

where we used that ω is anti-symmetric and time-independent.

3For those who are familiar with exterior forms. In the canonical coordinates, ω = dp ∧ dq. So one can write ω = dα, where
α = p dq, i.e. ω is d-exact.

Note aside: dω = 0 is true in any basis, not only canonical. Symplectic structure, strictly speaking, is defined as a non-degenerate
(det
α,β

ωαβ 6= 0) d-closed (dω = 0) differential 2-form. Condition dω = 0 is equivalent to the Jacobi identity for the Poisson brackets

defined by ωαβ . Exactness of ω (ω = dα) is not always true, depends on the topology of the manifold. It is true for trivial
topologies, we discuss only such topologies.

Canonical transformation preserves ω which means ω−π∗(ω) = 0. But the last equality can be also written as d(p dq−P dQ) = 0.
This means that p dq − P dQ is d-exact, as requested. The opposite is obvious.
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