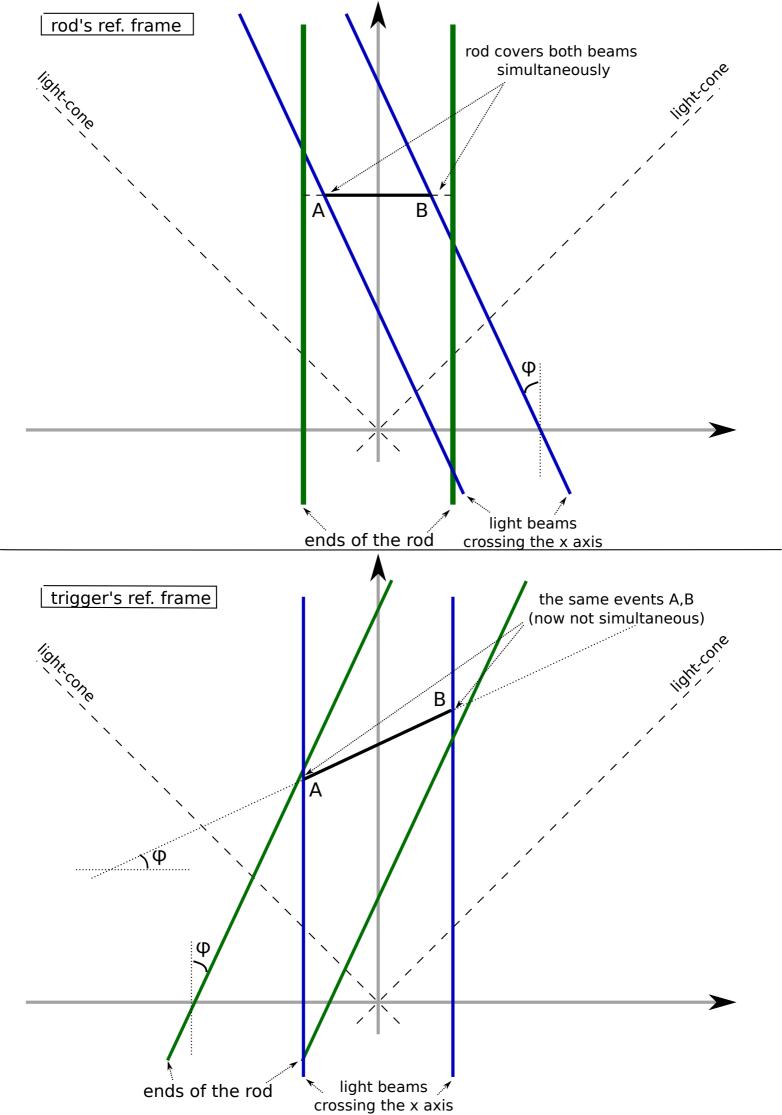
$$\frac{2}{\beta} = \tanh \theta \quad f = \cosh \theta \quad (note, \gamma > 1); \ always)$$

$$\beta g = \sinh \theta$$

$$\beta = \frac{\beta' + \beta''}{(+p'p'')} \iff \theta = \theta' + \theta''$$

It transform in the same vouy as coordinates do loster) (contra-variantly)

$$\frac{Proof}{P} (P^{m})' = \gamma'm(c, v') \neq (E'_{c}, P')$$


$$\beta' = \frac{1}{\sqrt{1 - (\beta^2)^2}} = \frac{1}{\sqrt{1 - (\beta^2 - \beta^2)^2}} = \frac{1 - \beta^2 d}{\sqrt{1 - \beta^2 + \beta^2 - \beta^2 - \beta^2}} = \frac{1 - \beta^2 d}{\sqrt{1 - \beta^2 - \beta^2 - \beta^2}}$$
$$= \frac{1 - \beta^2 d}{\sqrt{1 - \beta^2 - \beta^2 - \beta^2}}$$

$$\left[P^{m}\right]^{\prime} = \frac{1 - \beta \alpha}{\sqrt{1 - \beta^{2}}} m\left(C, C, \frac{\beta - \lambda}{1 - \beta \kappa}\right) = \beta \chi_{B}^{m}\left(\chi_{A}C - \chi_{A}\beta \alpha C, \chi_{C}C - \lambda\right) =$$

$$\frac{||V|}{|S|} = \frac{||V||}{|S|} = \frac{||V||}{|S|}$$

$$\begin{split} \hline \begin{bmatrix} G \end{bmatrix} & \text{If } \left(x \right)^{d_{\perp}} L^{\mu} _{y} x^{\nu} , \text{ then } \\ & A_{\mu\nu}^{\prime} = \left(L^{-1} \right)^{\mu \prime} _{\mu} \left(L^{-1} \right)^{\nu \prime} _{y} A_{\mu^{\prime} \nu^{\prime}} \\ & \text{Or } & \text{in } index - free notation: \\ \hline & A_{\mu\nu}^{\prime} = \left(L^{-1} \right)^{-1} A \cdot L^{-1} \\ \hline & A_{\mu\nu}^{\prime} = \left(L^{-1} \right)^{-1} A \cdot L^{-1} \\ \hline & A_{\mu\nu}^{\prime} = \left(L^{-1} \right)^{-1} A \cdot L^{-1} \\ \hline & A_{\mu\nu}^{\prime} = \left(L^{-1} \right)^{-1} A \cdot L^{-1} \\ \hline & A_{\mu\nu}^{\prime} = \left(L^{-1} \right)^{-1} A \cdot L^{-1} \\ \hline & A_{\mu\nu}^{\prime} = \left(L^{-1} \right)^{-1} A \cdot L^{-1} \\ \hline & A_{\mu\nu}^{\prime} = \left(L^{-1} \right)^{-1} A \cdot L^{-1} \\ \hline & A_{\mu\nu}^{\prime} = \left(L^{-1} A \cdot L^{-1} \right) \\ \hline & A_{\mu\nu}^{\prime} = \left(L^{-1} A \cdot L^{-1} \right) \\ \hline & A_{\mu\nu}^{\prime} = \left(L^{-1} A \cdot L^{-1} \right) \\ \hline & A_{\mu\nu}^{\prime} = \left(L^{-1} A \cdot L^{-1} \right) \\ \hline & A_{\mu\nu}^{\prime} = \left(L^{-1} A \cdot L^{-1} \right) \\ \hline & A_{\mu\nu}^{\prime} = \left(L^{-1} A \cdot L^{-1} \right) \\ \hline & A_{\mu\nu}^{\prime} = \left(L^{-1} A \cdot L^{-1} \right) \\ \hline & A_{\mu\nu}^{\prime} = \left(L^{-1} A \cdot L^{-1} \right) \\ \hline & A_{\mu\nu}^{\prime} = \left(L^{-1} A \cdot L^{-1} \right) \\ \hline & A_{\mu\nu}^{\prime} = \left(L^{-1} A \cdot L^{-1} \right) \\ \hline & A_{\mu\nu}^{\prime} = \left(L^{-1} A \cdot L^{-1} \right) \\ \hline & A_{\mu\nu}^{\prime} = \left(L^{-1} A \cdot L^{-1} \right) \\ \hline & A_{\mu\nu}^{\prime} = \left(L^{-1} A \cdot L^{-1} \right) \\ \hline & A_{\mu\nu}^{\prime} = \left(L^{-1} A \cdot L^{-1} \right) \\ \hline & A_{\mu\nu}^{\prime} = \left(L^{-1} A \cdot L^{-1} \right) \\ \hline & A_{\mu\nu}^{\prime} = \left(L^{-1} A \cdot L^{-1} \right) \\ \hline & A_{\mu\nu}^{\prime} = \left(L^{-1} A \cdot L^{-1} \right) \\ \hline & A_{\mu\nu}^{\prime} = \left(L^{-1} A \cdot L^{-1} \right) \\ \hline & A_{\mu\nu}^{\prime} = \left(L^{-1} A \cdot L^{-1} \right) \\ \hline & A_{\mu\nu}^{\prime} = \left(L^{-1} A \cdot L^{-1} \right) \\ \hline & A_{\mu\nu}^{\prime} = \left(L^{-1} A \cdot L^{-1} \right) \\ \hline & A_{\mu\nu}^{\prime} = \left(L^{-1} A \cdot L^{-1} \right) \\ \hline & A_{\mu\nu}^{\prime} = \left(L^{-1} A \cdot L^{-1} \right) \\ \hline & A_{\mu\nu}^{\prime} = \left(L^{-1} A \cdot L^{-1} A \cdot L^{-1} \right) \\ \hline & A_{\mu\nu}^{\prime} = \left(L^{-1} A \cdot L^{-1} A \cdot L^{-1} \right) \\ \hline & A_{\mu\nu}^{\prime} = \left(L^{-1} A \cdot L^{-1} A \cdot L^{-1} \right) \\ \hline & A_{\mu\nu}^{\prime} = \left(L^{-1} A \cdot L^{-1} A \cdot L^{-1} \right) \\ \hline & A_{\mu\nu}^{\prime} = \left(L^{-1} A \cdot L^{-1} A \cdot L^{-1} A \cdot L^{-1} \right) \\ \hline & A_{\mu\nu}^{\prime} = \left(L^{-1} A \cdot L^{-1} A \cdot L^{-1} A \cdot L^{-1} \right) \\ \hline & A_{\mu\nu}^{\prime} = \left(L^{-1} A \cdot L^{-1} A$$

18] From A'= (LT)-1. A.L-1	HW7 5
it follows det A' = det $((L')' - A - L'') = (det L'')^2 - A$	solutions et A
since $det L = \pm 1 \Rightarrow det A' = det A$	
Conclusion: determinant of rank 2 covariant tensor is invariant under Lorentz transfor.	mations,
2 2 points are given for the following explanation for simi	(lers)
in the reference frame of the rod, simultaneous	blocking
of the two beams are two space-time events	, A8B
(see Fig on next page).	
These two events are not simultaneous in the ti	riggeris
Alie ill sound only when light brans are sin	le :
blocked is trigger's frame. For events A&B	74.5
not the case => alarm will not sound	
Full score is only for dear explanation. In particular, If you have qualitatively using pictures, it will be	penalised
t0.5 points if you draw picture with correct angles.	
t 0.5 points if you explain clearly why simultaneous	blocking
of lig beams in the tod's frame olds no	
alacon to meno explice discuss how abser	uce of
light propagates up to the trig	97°°).

