HW5: Canonical transformations and Hamilton-Jacobi equation

If you find misprints, have any questions, find some task difficult and want a hint, contact me by email vel145@gmail.com.

Canonical transformations

1. Let $S_{1}(q, Q, t), S_{2}(q, P, t), S_{3}(p, Q, t), S_{4}(p, P, t)$ be the four generating functions of the canonical transformation. Express
(a) p and P, and $\mathcal{H}^{\prime}-\mathcal{H}$ as the derivatives of $S_{1}(q, Q, t)$,
(b) p and Q, and $\mathcal{H}^{\prime}-\mathcal{H}$ as the derivatives of $S_{2}(q, P, t)$,
(c) q and P, and $\mathcal{H}^{\prime}-\mathcal{H}$ as the derivatives of $S_{3}(p, Q, t)$,
(d) q and Q, and $\mathcal{H}^{\prime}-\mathcal{H}$ as the derivatives of $S_{4}(p, P, t)$.

Sign conventions follow from $d S_{1}=p d q-P d Q-\left(\mathcal{H}-\mathcal{H}^{\prime}\right) d t$.
2. Find canonical transformations $Q=Q(q, p, t), P=P(q, p, t)$ generated by the functions below and explain their meaning. Here 3-dimensional vector a and parameters m, τ, t_{1}, t_{2} are all some fixed numbers. Find answers only in a linear approximation with respect to a and τ.
(a) $S_{3}(p, Q)=\sum_{i=1}^{3}\left(-p_{i} Q^{i}-a^{i} p_{i}\right)$,
(b) $S_{2}(q, P)=\sum_{i, j, k=1}^{3}\left(q^{i} P_{i}-\epsilon_{i j k} a^{i} q^{j} P_{k}\right)$,
(c) $S_{3}(p, Q, t)=-p Q-\tau \mathcal{H}(p, Q, t)$,
(d) $S_{1}(q, Q)=\frac{m}{2} \frac{(Q-q)^{2}}{t_{2}-t_{1}}$.
3. Find action $S\left(q_{f}, q_{i}, t\right)$ for a one-dimensional free particle of mass m as a function of its initial and final positions and time. Treating $q_{f}=q$ and $q_{i}=Q$, find the canonical transformation generated by this action.
4. For what values of α and β the following transformation is canonical

$$
\begin{array}{ll}
X=\frac{1}{\alpha}\left(\sqrt{2 p_{x}} \sin x+\beta p_{y}\right), & P_{X}=+\frac{\alpha}{2}\left(\sqrt{2 p_{x}} \cos x-\beta y\right) \\
Y=\frac{1}{\alpha}\left(\sqrt{2 p_{x}} \cos x+\beta y\right), & P_{Y}=-\frac{\alpha}{2}\left(\sqrt{2 p_{x}} \sin x-\beta p_{y}\right) ? \tag{1}
\end{array}
$$

You may use any method you like. Typical approaches are to compute Poisson brackets $\left\{Q^{i}, Q^{j}\right\},\left\{P_{i}, P_{j}\right\},\left\{Q^{i}, P_{j}\right\}$ or to show that $p_{i} d q^{i}-P_{i} d Q^{i}$ is an exact differential.

Hamilton-Jacobi equation

5. Check that $S(q, Q, t)$ from question 3 satisfies the Hamilton-Jacobi equation.
6. Solve the Hamilton-Jacobi equation for a one-dimensional free particle of mass m by the separation of variables method (as on the lecture, consider an ansatz $S(q, t)=W(q, E)-E t)$. Take all integrals explicitly. Show that $W(q, E)$ is the Legendre transform of $S(q, Q, t)$ from question 3 .

The following questions are devoted to solving the Hamilton-Jacobi equation for the 2-dimensional harmonic oscillator in a constant magnetic field B which is described by the following Lagrangian

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2} \dot{x}^{2}+\frac{1}{2} \dot{y}^{2}+B(\dot{x} y-x \dot{y})-\frac{1}{2} \omega^{2}\left(x^{2}+y^{2}\right) . \tag{2}
\end{equation*}
$$

7. Write the Lagrangian in the first-order form: $\mathcal{L}=p_{x} \dot{x}+p_{y} \dot{y}-\mathcal{H}$.
8. Perform the following time-dependent canonical transformation (a rotation by the angle $B t$)

$$
\begin{array}{ll}
x=+X \cos B t-Y \sin B t, & p_{x}=+P_{X} \cos B t-P_{Y} \sin B t \\
y=+X \sin B t+Y \cos B t, & p_{y}=+P_{X} \sin B t+P_{Y} \cos B t \tag{3}
\end{array}
$$

Find the new Hamiltonian and first-order Lagrangian, show that they describe two decoupled harmonic oscillators.
Note: note that Hamiltonian is not a scalar function under time-dependent transformation, i.e. it is not enough to simply substitute x, y, p_{x}, p_{y} with X, Y, P_{X}, P_{Y} in the expression for \mathcal{H}. Recall the answer from question 1
9. Write and solve the Hamilton-Jacobi equation for the new variables. You may use $\int d x \sqrt{a^{2}-b^{2} x^{2}}=$ $\frac{1}{2} x \sqrt{a^{2}-b^{2} x^{2}}+\frac{a^{2}}{2 b} \arcsin \left(\frac{b}{a} x\right)$.
10. Find the motion in the original coordinates.
11. [extra point]. Plot the trajectory of this motion on the computer in the $\{x, y\}$ plane. Choose several different values of B and initial conditions. For which values of B the trajectory is closed, i.e. particle returns to its original location after some time?

