HW2: Exterior algebra and differential forms

Recommended reading is Aronld's book, chapter 7 "Differential forms". Please do not hesitate to contact me, we can discuss its contents.

If you find misprints, have any questions, find some task difficult and want a hint, contact me by email vel145@gmail.com.

Exterior algebra

The exterior algebra is also discussed on Wikipedia.
Any n-dimensional vector space V (take \mathbb{R}^{n} for simplicity) can be thought of as the space of homogeneous linear functions of n variables. Indeed, if these variables are \mathbf{x}_{i}, any such function can be represented as

$$
\begin{equation*}
a_{1} \mathbf{x}_{1}+a_{2} \mathbf{x}_{2}+\ldots a_{n} \mathbf{x}_{n} \tag{1}
\end{equation*}
$$

One can think about x's just as the basis vectors!
Consider now the tensor product $V \otimes V$. It has dimension n^{2}, and any its element is of the form $\sum a_{i j} \mathbf{x}_{i} \otimes \mathbf{x}_{j}$.
What if we don't want to distinguish the order of terms in $\mathbf{x}_{i} \otimes \mathbf{x}_{j}$, i.e we want to identify $\mathbf{x}_{i} \otimes \mathbf{x}_{j}=\mathbf{x}_{j} \otimes \mathbf{x}_{i}$? It is possible; a space with such identification is called symmetric square of V, and is denoted by $S^{2}(V)$.

What if we want to identify $\mathbf{x}_{i} \otimes \mathbf{x}_{j}=-\mathbf{x}_{j} \otimes \mathbf{x}_{i}$? It is possible; a space with such identification is called exterior square of V, and is denoted by $\Lambda^{2}(V)$.

1. Prove that $S^{2}(V)$ and $\Lambda^{2}(V)$ are vector spaces.
$S^{2}(V)$ is isomorphic to the space of degree 2 homogeneous polynomials in n variables. Indeed, identification $\mathbf{x}_{i} \otimes \mathbf{x}_{j}=\mathbf{x}_{j} \otimes \mathbf{x}_{i}$ is equivalent to saying that we multiply two commuting variables: $\mathbf{x}_{i} \mathbf{x}_{j}$.

What about $\Lambda^{2}(V)$? To describe it, we can introduce new-type variables θ^{i} which anti-commute. They are called Grassmann variables or Grassmann numbers though they are not numbers in the usual sense. They satisfy the property:

$$
\begin{equation*}
\theta^{i} \wedge \theta^{j}=-\theta^{j} \wedge \theta^{i} \tag{2}
\end{equation*}
$$

The symbol \wedge denotes the product in the algebra of Grassmann variables and is called wedge product.
A simple consequence of (2) is

$$
\begin{equation*}
\theta^{i} \wedge \theta^{i} \equiv\left(\theta^{i}\right)^{2}=0 \tag{3}
\end{equation*}
$$

By continuing the logic, one can consider fully symmetric tensors from $V^{\otimes k}$, this space is known as symmetric power $S^{k}(V)$, and the fully antisymmetric tensors from $V^{\otimes k}$, this space is known as exterior power $\Lambda^{k}(V)$. While the former space is isomorphic to the space of degree k homogeneous polynomials in commuting variables, the latter one is isomorphic to the space of degree k homogeneous polynomials in Grassmann variables.

All possible polynomials of n Grassmann variables (not necessarily homogeneous, including constant terms for instance) is called Grassmann or exterior algebra. It is obviously an algebra because it is a vector space and multiplication is well-defined by (2). It is denoted by $\Lambda(V)$.
2. Get used to this algebra by expanding the following expressions:
(a) $\left(5 \theta_{1}+3 \theta_{2}\right) \wedge\left(\theta_{1}-2 \theta_{3}+1\right)$
(b) $\left(\theta_{1}-\theta_{2}\right)^{2}$
(c) $\left(\theta_{1}+\theta_{2}+\theta_{3}\right)^{2}$
(d) $\left(\theta_{1}+\theta_{2}+\theta_{3}+\theta_{4}\right)^{5}$
(e) $e^{\theta_{1} \wedge \theta_{2}+\theta_{3} \wedge \theta_{4}}$ (consider exponent to be defined by its Taylor series)
3. Prove that this algebra is finite-dimensional. What is dimension of $\Lambda^{k}(V)$? What is dimension of $\Lambda(V)$?

Below $\alpha, \beta \in \Lambda^{1}(V), \omega, \eta \in \Lambda^{2}(V)$. For instance, $\alpha=\alpha_{i} \theta^{i}, \omega=\sum_{i<j} \omega_{i j} \theta^{i} \wedge \theta^{j}=\frac{1}{2} \omega_{i j} \theta^{i} \wedge \theta^{j}$.
4. Let $X=\alpha \wedge \beta, Y=\alpha \wedge \omega, Z=\omega \wedge \eta$. Write down explicitly the components $X_{i j}, Y_{i j k}$ and $Z_{i j k l}$.
5. Show that if $\alpha \wedge \omega=0$ then $\omega=\alpha \wedge \beta$ for some β.
6. Is it true that if $\omega \wedge \omega=0$ then $\omega=\alpha \wedge \beta$ for some α and β ? If yes, prove. If not, give a counter-example. Let $\omega_{i j}$ be coordinates in $n(n-1) / 2$-dimensional space. Define a subspace in it by $\omega \wedge \omega=0$. What is the dimension of this subspace?
7. Let n be even. Write down explicitly $\omega^{n / 2}$ (in components). How is answer related to $\underset{1 \leq i, j \leq n}{\operatorname{det}} \omega_{i j}$? If in doubt, try $n=2$ and $n=4$ first.

Differential forms

If V from discussion above is actually a V^{*}, a linear functional on some vector space, then elements of $\Lambda^{k}\left(V^{*}\right)$ are called exterior forms of degree k, or k-forms. The k-form is naturally a linear functional on the elements of $V^{\otimes k}$. Differential k-form at each point x of the manifold M is an exterior k-form, with $V^{*}=T^{*} M_{x}$ being the dual space to tangent space at point x. In the case of differential form one uses notation $d x^{i}$ instead of θ^{i}.

Differential forms are explicitly parameterised as follows

$$
\begin{align*}
\omega_{(0)} & =f(x), 0 \text {-form is just a function (scalar field) } \\
\omega_{(1)} & =\alpha_{i}(x) d x^{i} \\
\omega_{(2)} & =\sum_{i<j} \omega_{i j}(x) d x^{i} \wedge d x^{j}=\frac{1}{2} \omega_{i j}(x) d x^{i} \wedge d x^{j}, \\
\ldots & \sum_{i_{1}<i_{2} \ldots<i_{k}} \omega_{i_{1} i_{2} \ldots i_{k}}(x) d x^{i_{1}} \wedge \ldots d x^{i_{k}}=\frac{1}{k!} \omega_{i_{1} i_{2} \ldots i_{k}}(x) d x^{i_{1}} \wedge \ldots d x^{i_{k}} . \tag{4}
\end{align*}
$$

8. Consider the case of $n=3$. Consider three vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$. Find the value of $d x^{1} \wedge d x^{2} \wedge d x^{3}$ on $\mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w}$. Prove that this value is equal to the euclidean volume of parallelogram defined by $\mathbf{u}, \mathbf{v}, \mathbf{w}$.
9. How the components of the k-form transform under the change of coordinates $\mathbf{y}=\mathbf{y}(\mathbf{x})$? Write the answer in analogy with the case of 1-forms discussed on the lecture. Can you write the answer in compact form for the case of n-forms (reminder: n is dimension of the vector space, as everywhere in this space)?
10. Rewrite $d x \wedge d y \wedge d z$ in spherical coordinates and $d x \wedge d y$ in complex coordinates.
11. Let g be the determinant of the metric. For definition of the metric see e.g. question 9 of Tutorial 1 . Prove that $d V=\sqrt{g} d x^{1} \wedge d x^{2} \wedge \ldots d x^{n}$ is invariant under coordinate transformations. This is the so-called volume form.

Differentiation and integration

De Rahm differential d is an operator defined as

$$
\begin{equation*}
d \equiv d x^{i} \wedge \frac{\partial}{\partial x^{i}} . \tag{5}
\end{equation*}
$$

The convention is that partial derivatives do not act on $d x$'s, only on components $\omega_{i_{1} \ldots .}(x)$ in (4). This is more clear when we use θ 's instead of $d x$'s.

Explicitly, for a 1 -form α :

$$
\begin{equation*}
d \alpha=d x^{i} \wedge\left(\partial_{i} \alpha_{j} d x^{j}\right)=\frac{1}{2}\left(\partial_{i} \alpha_{j}-\partial_{j} \alpha_{i}\right) d x^{i} \wedge d x^{j}, \tag{6}
\end{equation*}
$$

where we anti-symmetrised $\partial_{i} \alpha_{j}$ in the second equality using that $d x^{i} \wedge d x^{j}=-d x^{j} \wedge d x^{i}$.
12. Compute $d\left(z^{2} d x \wedge d y+e^{x} d x \wedge d z+(x-y)^{3} d y \wedge d z\right)$. Be careful about signs.
13. Write down in components, like in (6), $d \omega$, where ω is a 2 -form.
14. Prove that
(a) d is a linear operator
(b) $d\left(\omega_{(k)} \wedge \omega_{(l)}\right)=\left(d \omega_{(k)}\right) \wedge \omega_{(l)}+(-1)^{k} \omega_{(k)} \wedge\left(d \omega_{(l)}\right)$
(c) $d d=0$
15. Fromulate definition of integral of the differential k-form. Show how the generic Stokes formula ${ }^{1}$

$$
\begin{equation*}
\int_{\partial \mathrm{D}} \omega=\int_{\mathrm{D}} d \omega \tag{7}
\end{equation*}
$$

reduces to: a) Green's formula b) Gauss-Ostrogradsky theorem. Basically you need to comprehend the contents of the Wikipedia page "Stokes' theorem".

[^0]
[^0]: ${ }^{1}$ derivation of the Stokes formula is not required.

