FIRST ANSWER IS THE CORRECT ONE

All questions

differential geometry and related

dual vector space

Q:Find the wrong statement.

- (A) We need a metric to define the dual vector space
- (B) Dual space of V is the space of linear functionals on V
- (C) Dimensions of dual space and V are equal assuming V is finite-dimensional
- (D) Metric establishes a natural isomorphism between V and its dual
- (E) $(V^*)^*$ is isomorphic to V assuming V is finite-dimensional

Q:Find the wrong statement.

- (A) For each vector from V, there is a canonically dual vector in V^*
- (B) Dual space of V is the space of linear functionals on V
- (C) Dimensions of dual space and V are equal assuming V is finite-dimensional
- (D) For each basis in V, there is a canonically dual basis in V^* .
- (E) $(V^*)^*$ coincides with V assuming V is finite-dimensional

value of differential form

Answer:3

Q:Find the value of 2dx + dy on the following vector:

Answer:1

Answer:0

(A) $r^2 d\phi$	(B)	$d\phi$
$(C) -r d\phi$	(D)	$\cos(\phi) dr$
(E) $\phi dr - r d\phi$		
x dy + y dx becomes in the polar coordinates		
(A) $\cos(2\phi)r^2 d\phi$	(B)	$r^2 d\phi -r d\phi$
(C) $d\phi$	(D)	$-rd\phi$
(E) $\phi dr - r d\phi$		
dx becomes in the complex coordinates		
(A) $\frac{1}{2}(dz+d\bar{z})$	(B)	$\frac{1}{2}\left(dz - d\bar{z}\right)$
(C) $\overline{2}(dz + d\overline{z})$	(D)	dz
(E) $\sqrt{2} \left(dz - d\bar{z} \right)$		
x dx + y dy becomes in the polar coordinates		
(A) $\frac{1}{2}r dr$	(B)	dr
(C) $d\phi$	(D)	
(E) $2r^2 \sin \phi \cos \phi d\phi$		
Q:Rewrite rdr in the $\{x, y\}$ coordinates		

Answer: $x \, dx + y \, dy$ Q:Rewrite $r^2 d\phi$ in the $\{x, y\}$ coordinates Answer: $x \, dy - y \, dx$

Integration of differential form

Find $\int_{\gamma} dx + y \, dy$, where γ connects points $\{0, 0\}$ and $\{1, 1\}$ (A) 3/2(B) 0(C) 1/2(D) 1 (E) 2 (F) 5/2Find $\int_{\gamma} x dx - y dy$, where γ is a straight line connecting points $\{0, 0\}$ and $\{1, 1\}$ (A) 0(B) 3/2(C) 1/2(D) 1 (E) 2 (F) 5/2Find $\int_{\gamma} x dx + dy$, where γ connects points $\{-1, 0\}$ and $\{1, 1\}$ (A) 1 (B) 0 (C) 1/2(D) -3/2(E) 2 (F) 3/2Find $\int_{\infty} x \, dy - y \, dx$, where γ is a unit circle, integration is in a clock-wise direction (A) -2π (B) π (C) 0 (D) $+2\pi$ (E) 1 (F) -1Find $\int_{\gamma} x \, dy - y \, dx$, where γ is a unit circle, integration is in a counter-clock-wise direction (A) $+2\pi$ (B) π (C) 0 (D) -2π (F) -1(E) 1 Find $\int_{\gamma} x \, dy + y \, dx$, where γ is a unit circle, integration is in a clock-wise direction (A) 0 (B) π (C) 2π (D) -2π (E) 1 (F) -1

Scalar product

Q:For a vector space with metric $g_{ij} = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$, find the scalar product between vectors (1, 0, 0) and (0, 1, 0). Answer:-1 Q:For a vector space with metric $g_{ij} = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$, find the scalar product between vectors (1, 0, 0) and (0, 0, 1). Answer:0 Q:For a vector space with metric $g_{ij} = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$, find the scalar product between vectors (0, 1, 0) and (0, 0, 1). Answer:-1 Q:For a vector space with metric $g_{ij} = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$, find the norm of the vector (1, 0, 0). Answer: $\sqrt{2}$ Q:For a vector space with metric $g_{ij} = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$, find the norm of the vector (0, 1, 0). Answer: $\sqrt{2}$ Q:For a vector space with metric $g_{ij} = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$, find the norm of the vector (0, 1, 0). Answer: $\sqrt{2}$

Legendre transform

Legendre transform of $2x^4$ is (A) $\frac{3}{8} p^{4/3}$ (B) $\frac{1}{2}p^4$ (C) $p x - 2x^4$ (D) 0 (F) $6x^4$ (E) ill-defined Legendre transform of $\sqrt{1+p^2}$ for p>0 is (A) $-\sqrt{1-x^2}$ (B) $x p - \sqrt{1+p^2}$ (C) $\sqrt{1+x^2}$ (D) 0 (E) ill-defined Legendre transform of $\cos x$ is a well-defined operation for (B) $\frac{3\pi}{2} < x < \frac{5\pi}{2}$ (A) $\frac{\pi}{2} < x < \frac{3\pi}{2}$ (C) $\bar{\pi} < x < 2\bar{\pi}$ (D) $\bar{0} < x < \pi$ (E) any xLegendre transform of $\sin x$ is a well-defined operation for (A) $\pi < x < 2\pi$ (B) $0 < x < \pi$ $(C) \frac{\pi}{2} < x < \frac{3\pi}{2}$ (D) $\frac{3\pi}{2} < x < \frac{5\pi}{2}$

(E) any x

Lagrangians and Hamiltonians

Lagrangians in different coordinates

Lagrangian of a free particle of mass m in two dimensions in polar coordinates is

(A)	$rac{m}{2}\left(\dot{r}^2+r^2\dot{arphi}^2 ight)$	(B)	$\frac{m}{2}\left(\dot{r}^2 - r^2\dot{\varphi}^2\right)$
(C)	$\frac{m}{2}\left(\dot{r}^2 + r^2\sin(2\phi)\dot{\varphi}^2\right)$	(D)	$\frac{mr^2}{2}\dot{\varphi}^2$
(E)	none of proposed		

Lagrangian of a free particle of mass m in two dimensions which is constrained to move on a circle of radius r is
(A) $\frac{mr^2}{r^2}$, r^2 , $r^$

(C) $\frac{m}{2} (\dot{r}^2 - r^2 \dot{\varphi}^2)$ (D) $\frac{m}{2} (\dot{r}^2 + r^2 \sin(2\theta))$ (E) $\frac{mr^2}{2} \sin(2\theta) \dot{\varphi}^2$ (F) $\frac{m}{2} \dot{\varphi}^2$		
(E) $\frac{mr^2}{2}\sin(2\phi)\dot{\varphi}^2$ (F) $\frac{m}{2}\dot{\varphi}^2$	$(2\phi)\dot{\varphi}^2$	

Lagrangian of a free particle of mass m in two dimensions is written in complex coordinates z = x + iy, $\bar{z} = x - iy$ as

Lagrangian of a free particle of mass m in two dimensions is written in complex coordinates z = x + iy, $\bar{z} = x - iy$ as

(\mathbf{A})	none of proposed	(B) $i \frac{m}{2} \dot{z} \dot{\overline{z}}$
(C)	$\frac{m}{2}\left(\dot{z}^2+\dot{\bar{z}}^2\right)$	(D) $\frac{m}{2}(\dot{z}^2 - \dot{\bar{z}}^2)$

(E)
$$\frac{\bar{m}}{2} \left(\dot{z}^2 + i \dot{\bar{z}}^2 \right)$$
 (F) $\bar{m} (\dot{z} + \dot{\bar{z}})^2$

Lagrangian of a free particle of mass m in three dimensions in spherical coordinates is

(A)
$$\frac{m}{2} \left(\dot{r}^2 + r^2 \dot{\theta}^2 + r^2 \sin^2 \theta \dot{\varphi}^2 \right)$$

(B) $\frac{m}{2} \left(\dot{r}^2 + r^2 \dot{\theta}^2 + r^2 \dot{\varphi}^2 \right)$
(C) $\frac{m}{2r^2} \left(\dot{r}^2 + \dot{\theta}^2 + \dot{\varphi}^2 \right)$
(D) $\frac{m}{2} \left(\dot{r}^2 + r^2 \dot{\theta}^2 + r^2 \sin \theta \dot{\varphi}^2 \right)$

(E) $\frac{m}{2} \left(\dot{r}^2 + \dot{\theta}^2 + \dot{\varphi}^2 \right)$ (F) none of proposed Lagrangian of a free particle of mass m in three dimensions in spherical coordinates is (A) none of the proposed (B) $\frac{m}{2} \left(\dot{r}^2 + r^2 \dot{\theta}^2 + r^2 \sin(2\theta) \dot{\varphi}^2 \right)$ (C) $\frac{m}{2} \left(\dot{r}^2 + r^2 \dot{\theta}^2 + r^2 \dot{\varphi}^2 \right)$ (D) $\frac{m}{2r^2} \left(\dot{r}^2 + \dot{\theta}^2 + \dot{\varphi}^2 \right)$ (E) $\frac{m}{2} \left(\dot{r}^2 + r^2 \dot{\theta}^2 + \sin^2 \theta \dot{\varphi}^2 \right)$ (F) $\frac{m}{2} \left(\dot{r}^2 + \dot{\theta}^2 + \dot{\varphi}^2 \right)$

Hamiltonians from lagrangians

Q:Lagrangian is given by $L = \dot{x}^2$. Write down the Hamiltonian (as a function of p) Answer: $p^2/4$

Q:Lagrangian is given by $L = \frac{1}{2}\dot{q}^i M_{ij}\dot{q}^j$, summation over repeated index is assumed. Without loss of generality, we can assume that

- (A) M is symmetric
- (B) M is non-degenerate
- (C) M is degenerate
- (D) M is anti-symmetric
- (E) none assumption about M can be made
- (F) trM = 1

Lagrangian is given by $L = \frac{1}{2}\dot{q}_i M_{ij}\dot{q}_j$, summation over repeated index is assumed. For M being a symmetric non-degenerate matrix that depends on q, the Hamiltonian is

(A) $H = \frac{1}{2}p_i \left(M^{-1}\right)_{ij} p_j$ (B) $H = \frac{1}{2}p_i M_{ij} p_j$ (C) $H = \frac{1}{2(\det M)^2} p_i M_{ij} p_j$ (D) $H = \frac{\det M}{2} p_i \left(M^{-1}\right)_{ij} p_j$ (E) none of the proposed Lagrangian is given by $L = -m\sqrt{1-\dot{x}^2}$. The Hamiltonian is (A) $\sqrt{m^2 + p^2}$ (B) $m\sqrt{1+p^2}$ (C) mc^2 (D) $\sqrt{1+(p/m)^2}$ (E) $-\sqrt{1+(p/m)^2}$ Lagrangian is given by $L = \frac{m}{2} \left(\dot{x}^2 + \dot{y}^2\right) + B(x \dot{y} - y \dot{x})$. The Hamiltonian is

$$\begin{array}{l} \text{(A)} \quad \frac{1}{2m} \left(p_x^2 + p_y^2 \right) - \frac{B}{m} \left(x \, p_y - y \, p_x \right) + \frac{B^2}{2m} \left(x^2 + y^2 \right) \\ \text{(C)} \quad \frac{1}{2m} \left(p_x^2 + p_y^2 \right) + \frac{2B}{m} \left(x \, p_y - y \, p_x \right) \\ \text{(D)} \quad \frac{1}{2m} \left(p_x^2 + p_y^2 \right) - \frac{B}{m} \left(x \, p_y + y \, p_x \right) + \frac{B^2}{2m} \left(x^2 + y^2 \right) \\ \end{array}$$

Poisson brackets I

Q:Compute the Poisson bracket $\{x^2, p^3\}$ Answer:6 $p^2 x$ Q:Compute the Poisson bracket $\{x^3 + p, p^2\}$ Answer:6 $p x^2$ Q:Compute the Poisson bracket $\{x^2 + y^2, x p_y - y p_x\}$ Answer:0 Q:What is the value of the Poisson bracket $\{L_x, L_y\}$ (give the answer in terms of L_x, L_y, L_z)?

Answer: L_z Q:What is the value of the Poisson bracket $\{L_x, L_z\}$ (give the answer in terms of L_x, L_y, L_z)? Answer: $-L_y$

Q:What is the value of the Poisson bracket $\{L_z, L_y\}$ (give the answer in terms of L_x, L_y, L_z)? Answer: $-L_x$ Q:What is the value of the Poisson bracket $\{L_x, L_x^2 + L_y^2 + L_z^2\}$? Answer:0

Poisson brackets II

Q:Let f(x, p, t) be a function of x, p, t. The equation $\frac{df}{dt} - \frac{\partial f}{\partial t} + \{H, f\} = 0$ tells us

- (A) nothing, it is just true for any f
- (B) that $\frac{\partial f}{\partial t} = 0$ (C) that f is a conserved quantity
- (D) that $\{H, f\} = 0$
- (E) this equation can only hold if $f \equiv 0$

Q:Let f(x, p, t) be a function of x, p, t. The equation $\frac{df}{dt} + \{H, f\} = 0$ tells us

- (A) that $\frac{\partial f}{\partial t} = 0$
- (B) nothing, it is just true for any f
- (C) that f is a conserved quantity
- (D) that $\{H, f\} = 0$
- (E) this equation can only hold if $f \equiv 0$

Q:Let f(x, p, t) be a function of x, p, t. The equation $\frac{\partial f}{\partial t} + \{f, H\} = 0$ tells us

- (A) that f is a conserved quantity
- (B) nothing, it is just true for any f
- (C) that $\frac{\partial f}{\partial t} = 0$
- (D) that $\{H, f\} = 0$
- (E) this equation can only hold if $f \equiv 0$

Q:Let for some functions A(x, p, t) and B(x, p, t) one has $\{A, H\} = 0$ and $\{B, H\} = 0$. What we can say about the quantity $C = \{A, B\}$?

(A) $\{C, H\} = 0$ (B) C = 0(C) C is proportional to H(D) $\frac{\partial C}{\partial t} = 0$ (E) $\frac{dC}{dt} = 0$

Phase portraits

PP from differential equation

The phase portrait of the system of equations $\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = A \begin{pmatrix} x \\ y \end{pmatrix}$ with $A = \begin{pmatrix} 3 & 1 \\ 1 & 2 \end{pmatrix}$ is

PP from hamiltonians

The phase portrait of the vector flow generated by the Hamiltonian $\mathcal{H}=\frac{1}{2}p\,x$ is

(E) ______ The phase portrait of the vector flow generated by the Hamiltonian $\mathcal{H} = \frac{1}{2}(p^2 - 1)(x - 1)$ is

The phase portrait of a Hamiltonian vector flow is
(A)
$$\mathcal{H} = p(x - p)$$

(B) $\mathcal{H} = \frac{1}{2}(p^2 + 3x^2)$
(D) $\mathcal{H} = \frac{1}{2}(p^2 + x^2)$
(D) $\mathcal{H} = \frac{1}{2}(p^2 + x^2)$
(D) $\mathcal{H} = \frac{1}{2}p^2 - (x^2 - 1)^2$
(F) $\mathcal{H} = \frac{1}{2}p^2 - (x^2 - 1)^2$
(F) $\mathcal{H} = \frac{1}{2}p^2 - (x^2 - 1)^2$
(B) $\mathcal{H} = p(x - p)$
(C) $\mathcal{H} = \frac{1}{2}(p^2 + x^2)$
(D) $\mathcal{H} = \frac{1}{2}p^2 + (x^2 - 1)^2$
(D) $\mathcal{H} = \frac{1}{2}p^2 + \sin(3x)$
(E) $\mathcal{H} = \frac{1}{2}p^2 + (x^2 - 1)^2$
(B) $\mathcal{H} = p(x - p)$
(C) $\mathcal{H} = \frac{1}{2}(p^2 + x^2)$
(D) $\mathcal{H} = \frac{1}{2}p^2 - (x^2 - 1)^2$
(E) $\mathcal{H} = \frac{1}{2}p^2 + (x^2 - 1)^2$
(B) $\mathcal{H} = p(x - p)$
(C) $\mathcal{H} = \frac{1}{2}(p^2 + x^2)$
(D) $\mathcal{H} = \frac{1}{2}p^2 - (x^2 - 1)^2$
(E) $\mathcal{H} = \frac{1}{2}p^2 + (x^2 - 1)^2$
(B) $\mathcal{H} = p(x - p)$
(C) $\mathcal{H} = \frac{1}{2}p^2 + (x^2 - 1)^2$
(D) $\mathcal{H} = \frac{1}{2}p^2 - (x^2 - 1)^2$
(E) $\mathcal{H} = \frac{1}{2}p^2 + (x^2 - 1)^2$
(D) $\mathcal{H} = \frac{1}{2}p^2 - (x^2 - 1)^2$
(D) $\mathcal{H} = \frac{1}{2}p^2 - (x^2 - 1)^2$
(D) $\mathcal{H} = \frac{1}{2}p^2 + x^2)$
(E) $\mathcal{H} = \frac{1}{2}p^2 + \sin(3x)$
(B) $\mathcal{H} = p(x - p)$
(C) $\mathcal{H} = \frac{1}{2}p^2 + \sin(3x)$
(C) $\mathcal{H} = \frac{1}{2}p^2 + \sin(3x)$
(C) $\mathcal{H} = \frac{1}{2}p^2 + \sin(3x)$
(C) $\mathcal{H} = \frac{1}{2}p^2 + (x^2 - 1)^2$
(D) $\mathcal{H} = \frac{1}{2}p^2 - (x^2 - 1)^2$

- (E) any
- For which value of β the transformation $P = q p, Q = \log (p^{2014} q^{\beta})$ is canonical?
- (B) 2012 (A) 2015 (D) 2013
- (C) 2014
- (E) any (F) none

Assuming $\cos \theta \neq 0$, for which value of α the transformation $P = \alpha \cos \theta p + \sin \theta q$, $Q = -\sin \theta p + \cos \theta q$ is canonical?

(A) 1	(B) -1
(C) 0	(D) any

- (E) none

Canonical transformations II

The generating function which performs the canonical transformation Q = p, P = -q is (B) -qQ

- (A) +qQ
- (C) q p

(E) this transformation is not canonical

- The physical meaning of the transformation generated by $S_3(p,Q) = -pQ + ap$ is
- (A) shift of q by a
- (C) shift of q by a p
- (E) this transform is not canonical

(B) shift of q by -a(D) shift of p by a

Let q(t), p(t) be a phase space trajectory of a 1-dimensional free particle. Define the following canonical transformation dependent on some parameter τ implicitly: $Q = q(\tau), P = p(\tau), q = q(0), p = p(0)$. The generating function for this transformation is

(D) -qp(F) QP

(A) $S_1(q,Q) = -\frac{m}{2} \frac{(Q-q)^2}{\tau}$	(B) $S_1(q,Q) = \frac{m}{2} \frac{(Q-q)^2}{\tau^2}$ (D) $S_4(p,P) = \frac{\tau p^2}{2m}$
(C) $S_2(q, P) = \tau q P$	(D) $S_4(p, P) = \frac{\tau p^2}{2m}$

Hamilton-Jacobi

Q:When the Hamilton-Jacobi equation is interpreted as an eikonal approximation of a wave equation, the velocity of the particle is interpreted as

- (A) group velocity of the wave
- (B) phase velocity of the wave
- (C) has no interpretation

Dispersion relation

Consider a wave equation in 1 time and 3 spartial dimensions: $\frac{\partial^2 \Phi}{\partial t^2} - \sum_{i,j=1}^3 \frac{\partial \Phi}{\partial x_i} \Omega_{ij} \frac{\partial \Phi}{\partial x_j}$. Dispersion relation reads:

(A) $\omega^2 = \sum_{i,j=1}^3 k_i \Omega_{ij} k_j$ (B) $\omega = |k| \operatorname{tr} \Omega$

(1) $\omega = \sum_{i,j=1}^{n} k_i \omega_{ij} w_j$ (C) There are three solutions, with dispersion relation $\omega = \Lambda_{\alpha} |k|$, Λ_{α} is an eigenvalue of Ω . Q:Suppose that dispersion relation for a 3-dimensional wave is $\omega^2 = \sum_{i,j=1}^3 k_i \Omega_{ij} k_j$ and Ω is symmetric positivedefinite matrix. If the vector \mathbf{k} is an eigenvector of Ω then

- (A) Phase velocity and group velocity coincide
- (B) Phase velocity and group velocity are parallel but do not have the same absolute value
- (C) Phase velocity and group velocity are not parallel but have the same absolute value
- (D) Phase velocity and group velocity do not coincide neither in direction nor in absolute value

Special relativity

Basic questions

Q:Which of the following statements is correct (if two are correct, choose the strongest one)?

- (A) If in some reference frame A happens later than B and both A and B happen at the same point of space then A happens later than B in any reference frame
- (B) If in some reference frame A happens later than B then A happens later than B in any reference frame
- (C) If in some reference frame two space-time events happen in different points of space, they happen in different points of space in any reference frame
- (D) If interval between two events is zero then these two events coincide
- (E) Time inversion can be continuously transformed to the space inversion

Q:The interval $\Delta s^2 > 0$ is called (if two are correct, choose the best):

- (A) time-like
- (B) space-like
- (C) light-like
- (D) positive

Q:The interval $\Delta s^2 < 0$ is called (if two are correct, choose the best):

- (A) space-like
- (B) time-like
- (C) light-like
- (D) negative

SR, basic computations

Length of rod at rest is 5m. Rod moves with $\beta = 0.6$ with respect to an observer A. Observer A perceives the rod's length to be

- (A) 4m (B) 6.25m (D) 7.8m
- (C) 5m
- (E) 3.2m

The proper life time of certain particle is $10^{-7}s$. The particle moves with $\beta = 0.6$ with respect to an observer A. From the point of view of the observer A, the particle will cover the following distance before decaying $(c = 3 \times 10^8 m/s)$:

(B) 37.5m

- (A) 22.5m
- (C) 24m (D) 30m
- (E) 14.4m

Paradoxes

Q:Twin A and twin B start traveling from earth at the same time (and being of the same age). From the

point of view of an inertial observer (e.g. Earth), their space-time trajectories are

dashed line denotes propagation of light. When twins meet again at point M,

- (A) The twin A is older
- (B) The twin B is older
- (C) Twins are of the same age
- (D) Conclusion cannot be made from the provided information