
School of Mathematics
Trinity College Dublin

String Tension of

Quark-Anti-Quark Pairs in

Lattice QCD

Author:

David Taylor

Supervisor:

Prof. Mike Peardon

1



Abstract

This project used lattice QCD gauge field configurations to mea-

sure the energy of a static quark-anti-quark pair for various separa-

tions. String tensions for several different pion masses were obtained.

The string tensions and Coulomb parameters were plotted against the

respective pion masses. The string tension for a physical π+ meson

was obtained to be
√
σ = 463.7±23.7 MeV, with a Coulomb parameter

α = 0.096± 0.002.
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Chapter 1

Introduction

Quantum Chromodynamics (QCD) is the theory which describes interactions

between quarks and gluons via the strong nuclear force. It is a quantum field

theory, specifically a non-abelian gauge theory of SU(3). It describes the

“color field” which is mediated by gluons.

Gluons, unlike their counterpart photons in QED, are self-interacting. That

is, gluons carry color charge. This has a significant outcome; confinement.

Confinement is the phenomenon whereby the potential between quarks

increases with separation. This is due to gluons carrying, as well as mediating

color charge. This leads to quarks being bound in “colorless” states known

as hadrons.

The gluon-gluon interactions give rise to producing so called “flux tubes”.

These are string-like objects which are manifested from the color field. It is

this string tension which is of interest here.

1.1 Brief History of QCD

The birth of QCD is not a clear-cut one. There were hints of its emergence

by 1965 when Han and Nambu said that QCD is a Yang-Mills theory in

which the basic particles are quarks, the gauge group is color SU(3), there

are eight gluons which mediate the force and that they carry color charge
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[8]. They also noted that hadrons would be colorless. Despite this, QCD was

not yet formed. By 1967 the idea of Yang-Mills theory appealed to many,

however it was not known whether it was renormalizable. Glashow, Weinberg

and Salam had, by this time, set out a Yang-Mills theory of the weak force.

Veltman and ’t Hooft showed in 1971 that it was renormalizable [9].

This was what was needed to make Yang-Mills theory interesting again. The

electroweak theory was resuscitated and there began the natural extension

to think of the strong interaction in terms of Yang-Mills theory.

From late 1971, Gell-Mann spent some time working at CERN with Fritzsch

and Bardeen from Princeton. Bardeem was concerned with the discrepancy

of the decay rate of the neutral pion into two photons. Experiment was nine

times the theorized rate. Gell-Mann, Fritzsch and Bardeem wrote a paper

in 1972 [10] which showed that the decay rate matched theory and experi-

ment if each of the quarks are assigned three colors. In the same paper they

also explained another discrepancy, that of the ratio of hadrons to muons in

electron-positron collisions.

Again in 1972, Gell-Mann presented a paper on behalf of himself and

Fritzsch at the XVI International Conference on High Energy Physics [11],

at the National Accelerator Laboratory (as Fermilab was then known). In

this paper, they tried to model the strong interaction with colored quarks,

however, they were using a single, colorless gluon. It begins to sound more

like QCD, “real particles are required to be singlets with respect to the SU(3)

of color”. They also referred to the idea that gluons too should be colored.

“For example, they could form a color octet of neutral vector fields obeying

the Yang-Mills equations,”. This paper to some is the birth of QCD.

A third result further pushes toward QCD. in 1969, it was shown at SLAC

that protons seemed to contain point-like scattering centres. This was a

major challenge for theorists. It was shown by Gross, Wilczek and Politzer

that at high energies, the interaction strength for Yang-Mills theory decreases

to nothing. They noted “one can construct many interesting models of the
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strong interaction”, one being where quarks having the same flavour but

different colors are mixed by virtue of neutral “vector mesons”; gluons. This

sounds more like QCD. In fact, Gross claims that he and Wilczek were the

first to publish the master equation of QCD.

1.2 Moving to LQCD

The problem with QCD is that for low energies, the coupling parameter is

extremely high; so much so that perturbative methods fail. Wilson intro-

duced, in 1974 the idea of discretizing spacetime and putting it on a lattice

[12] which allows the infinities that emerge from QCD to be controlled. In

the limit of the distance between the points shrinking to zero and the volume

growing to infinity, the continuum is recovered.

The four-dimensional lattice is represented by sets of numbers in a com-

puter, but is analogous to the more familiar two and three dimensional lat-

tices. The points on the lattice represent the quarks and the links represent

the gluons. A typical number of lattice points to consider would be 48 in

each dimension; this leads to 484 = 5, 308, 416 lattice points in all. This

is equivalent to calculating the volume of an irregular region within a box

having almost two hundred million sides [13].

This problem is dealt with by using a Monte Carlo sampling estimation

method to calculate the path integral. In practice, to calculate the mass of,

say, a π+, a number of lattice points for the four dimensions, quark masses

and interaction strength are fed into a computer. Then an initial config-

uration is introduced. The Monte Carlo program creates several hundred

independent configurations based on the initial one. The probability that

the up and anti-down quarks (i.e. the π+) can propagate along the time

dimension of the lattice can be computed from the average values of each of

the configurations of the quark, anti-quark and gluon fields.
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Since the distance a particle will propagate through the lattice falls away

with mass and temporal spacing, the decay rate in the particle making its

journey can be used to determine a value for its mass.

1.3 Approach

Feynmann showed the equivalence of the path integral formulation to the

partition function formulation. Thus, to calculate correlation functions, a

solution to equation 1.1 is needed.

Z =

∫
ψ,A

dψdAeiS ⇐⇒ Z = Tr[e−ĤT ] (1.1)

Where S is the action and Ĥ is the Hamiltonian.

However, this is infinite dimensional over the fields ψ and A. We must

therefore consider approximate solutions. The natural choice would be per-

turbation theory which is the approach used in quantum electrodynamics

(QED). The perturbation method works only if the coupling constant g is

much less than 1. This is the case in QED, but not in QCD, where g > 1.

Another method is needed.

Lattice QCD (LQCD) is a non-perturbative approach to solving this prob-

lem. It is a lattice gauge theory which places quarks on the sites of the lat-

tice and gluons on the connecting links. LQCD discretizes four-dimensional

spacetime into four-dimensional Euclidean space.

Two immediate problems are that of lattice spacing and finite boundary. The

volume of the lattice should ideally be infinite and the lattice spacing should

be close to zero. As mentioned above in the limit of infinite volume and zero

lattice spacing, the continuum is recovered.

The lattice formulation is suited to parallel processing as a regular lattice

can be distributed evenly on a four-dimensional physical network among

parallel nodes [7].
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1.3.1 Outline of Steps Involved in LQCD

1. Perform the Wick rotation, mapping Minkowski spacetime to Euclidean

space.

2. Discretize the Euclidean action.

3. Then the operators in the correlation functions become classical field

variables.

4. Compute the correlation functions on a given lattice configuration, us-

ing the Boltzmann e−S factor as a weight.
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Chapter 2

Theory

2.1 Correlation Function

Consider a finite number of sites on a one-dimensional lattice. The two-point

correlation function is defined as follows [1]:

C(t2, t1) = 〈0|Φ̂(t2)Φ̂†(t1)|0〉T (2.1)

Setting t1 = 0 and t2 = t, we have

C(t) = 〈0|Φ̂(t)Φ̂†(0)|0〉T (2.2)

where Φ̂(t) is a quantum mechanical operator acting on a hilbert space

and T is temperature. In particular, the operator (and Hermitian conjugate)

is given in the Heisenberg representation by,

Φ̂(t) = eiĤtΦ̂e−iĤt, Φ̂†(t) = e−iĤtΦ̂†eiĤt (2.3)

with ~ = 1.

2.2 Wick Rotation

In order to calculate quantities such as the mass or the string tension nu-

merically, we must transform from a Minkowski space-time to a Euclidean
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space. We make the following transformation to imaginary time, i.e. a Wick

Rotation.

t 7→ −iτ (2.4)

which gives,

Φ̂(τ) = eĤτ Φ̂e−Ĥτ , Φ̂†(τ) = e−Ĥτ Φ̂†eĤτ (2.5)

so the correlation function becomes,

C(τ) = 〈0|e−Ĥ(T−τ)Φ̂e−Ĥτ Φ̂†|0〉T (2.6)

2.3 Quark Fields on the Lattice

Consider a finite lattice of N sites with periodic boundary conditions. Ap-

plying a creation operator at Φ̂†(0) and an annihilation operator at Φ̂(τ)

and inserting a complete set of eigenstates, the correlation function may be

written as follows [1]:

C(τ) = 〈Φ̂(τ)Φ̂†(0)〉T

=
1

Z(T )

∑
m,n

〈m|e−Ĥ(T−τ)Φ̂|n〉〈n|e−Ĥτ Φ̂†|m〉 (2.7)

where Z(T ) is the partition function and is given by

Z(T ) =
∑
n

〈n|e−ĤT |n〉

= Tr[e−ĤT ]

(2.8)

By using the eigenvalue equation, the completeness and normalization

relations:
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Ĥ|n〉 = En|n〉, 1 =
∑
n

|n〉〈n|, 〈n|n〉 = 1 (2.9)

we then have

C(τ) =
1

Z(T )

∑
m,n

〈m|Φ̂|n〉〈n|Φ̂†|m〉e−Em(T−τ)e−Enτ (2.10)

Using equation 2.9, 2.8 becomes

Z(T ) =
∑
n

e−EnT

= e−E0T + e−E1T + e−E2T + · · ·
(2.11)

Defining the difference in energy from the vacuum state as

∆En = En − E0 (2.12)

then the partition function becomes

Z(T ) = e−E0T (1 + e−∆E1T + e−∆E2T + · · · ) (2.13)

Subbing this into equation 2.10 we get,

C(τ) =

∑
m,n

〈m|Φ̂|n〉〈n|Φ̂†|m〉e−∆Enτe−∆Em(T−τ)

1 + e−∆E1T + e−∆E2T + · · ·
(2.14)

Thus, the correlation function depends on the energies normalized relative

to the vacuum energy E0. So denote ∆En by En

Now we take the limit as T →∞

lim
T→∞

C(τ) = lim
T→∞

∑
m,n

〈m|Φ̂|n〉〈n|Φ̂†|m〉e−Enτe−Em(T−τ)

1 + e−E1T + e−E2T + · · ·
(2.15)

The sum of the exponentials in the denominator tends to 0 thus leaving

1. Similarly, in the numerator only the Em = 0 terms survive the limit, so

we get
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lim
T→∞

C(τ) =
∑
n

〈0|Φ̂|n〉〈n|Φ̂†|0〉e−Enτ

= |〈n|Φ̂†|0〉|2e−Enτ + |〈n′|Φ̂†|0〉|2e−En′τ + · · ·
(2.16)

where n, n′ etc. are the excited states. So we have that the correlation

function is exponentially decreasing.

2.3.1 Choosing Operators

From equation 2.16, it is clear that the energy does not depend on the

coefficients. Thus, to measure the energy more easily, these coefficients are

chosen to be as large as possible. These are the smearing values discussed

below. The energy En is the string tension i.e.
√
σ.

2.4 Potential Between Static Quarks

If a quark-anti-quark pair are forced apart, the potential between them in-

creases linearly with separation [2]. As the pair become more and more

separated there comes a point where the potential becomes large enough to

create another quark anti-quark pair. This effect is due to confinement which

is due to the color charge.

It seems that only colorless combinations of quarks are observable. E.g.

a proton is observable since its three quarks (two up and one down) are

combined in a colorless state. In a quark-anti-quark pair, where again the

composite meson is colorless, as the pair are separated, the string tension

becomes larger and larger; at some point it becomes more favourable for

another quark-anti-quark pair to form than for the string tension to further

increase.

Thus, it would seem that quarks may not be observed individually, that is

they respect the color symmetry.
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Figure 2.1: A pion-plus, π+, quark-anti-quark pair. A red up and anti-red
anti-down connected by a gluon.

2.4.1 Wilson Loop

Consider a static pair of charges created at imaginary time τ1 and annihi-

lated at τ2. This is the correlation function from section 2.1. This construct

is known as a Wilson Loop [3].

Figure 2.2: A graphical representation of a Wilson loop for a π+ created at
τ1 and annihilated at τ2. It is the measurement of the exponential decay of
this propagator that gives the string tension.
Shown also, is the gluon flux tube connecting the quark and anti-quark.
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Chapter 3

Smearing Optimization

To determine which values for the smear file were best, a range of values were

tested using the following method [5].

3.1 Method

Firstly, various smearing configurations ranging from 0.1 to 0.8 with 5 itera-

tions were chosen. Then for each of these smearings, the R3 separation was

found and plotted, figure 3.1.
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Figure 3.1: Configurations with 5 iterations.

It should be noted that the log plots for the various smearings give parallel

lines as a good fit. This implies, as expected, that the string tension is

unaffected by the smearing configurations.

Further testing was done over the same range of values, but for 10 itera-

tions, figure 3.2.
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Figure 3.2: configurations with 10 iterations.

Again, as expected, the string tension is unaffected by the smearing con-

figurations.
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3.2 Further Testing

More values were then tested.
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Figure 3.3: more configurations with 10 iterations.

The data becomes noisy for the value 0.25, so the 0.24 value was chosen

to be used for the second, third and fourth datasets.
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Chapter 4

First Dataset

This first dataset was a trial run of the procedure, which followed in the

later datasets. Thus, these configurations did not contain any quark fields

and so the results are not used in the final analysis.

A simple script was run for various gauge field configurations [6] over a

range of separations. This returned datasets which were then concatenated

and imported into Mathematica where it was analysed as follows:

• The data was of the form where each gauge configuration was performed

over the twenty separations. Various functions in Mathematica were

defined to simplify the handling of the data.

• The average value over all the configurations for each separation was

evaluated and then plotted, figure 4.1.

• Appropriate mass values were determined for each separation and plot-

ted against lattice spacing 4.2.

• A Cornell fit was applied and the string tension was extracted.
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Figure 4.1: Energies over 20 temporal separations for 1 spacial separation.

This is what would be expected, i.e. an exponentially decreasing correla-

tion function.

The log plot of this gives a straight line with negative slope. It is the

negative of this slope that we wish to determine; it is the string tension. The

negative slope for each log plot was found and these values were plotted.

A Cornell fit was applied; equation 4.1. Gnuplot was used to determine

the fit parameters and to produce the final plot.

V (r) = V0 −
α

r
+ σr (4.1)

A value for string tension was found to be
√
σ = 549.8MeV, which is

reasonable.
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Figure 4.2: Figure showing the string tension
√
σ = 549.8MeV
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Chapter 5

Second Dataset

This dataset contained many more gauge configurations [6] than the first.

The same procedure was followed and the correlation functions displayed

exponential decay.

For this dataset, a second script was used to determine the best fit via the

χ2 method. This script ran over ranges of values for tmax and tmin. The

resulting output files gave values of the best fit in terms of χ2. It also gave

the corresponding masses and errors along with the fit ranges. These files

were then concatenated and imported into Mathematica where they were

analysed.

5.1 First Approximation

As a first approximation, the minimum of the quotient of the set of χ2 values

and the set of degrees of freedom was computed. The corresponding mass

values and errors were then found. This was done for all separations. These

masses were then plotted and a Cornell fit was used, figure 5.1. A string

tension of
√
σ = 504± 26MeV was found.
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Figure 5.1:
√
σ = 504± 26MeV

This is a good first approximation.

5.2 Goodness of Fit function

As a more accurate method of choosing the correct mass value, several func-

tions from Numerical Recipes in C were used [4].

Firstly, a function to determine the probability that a particular value of

χ2 should occur by chance was found to be:

Q(N,χ2) =
1

Γ(N)

∫ ∞
χ2

e−ttN−1dt, N > 0 (5.1)

where N is the number of degrees of freedom.

This formula led to some irregularities. Namely, it gave some negative

probabilities (perhaps due to “rounding errors” in Mathematica). This was

rectified by evaluating the indefinite integral and then evaluating the limits
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to get,

Q(N,χ2) =
Γ(N/2, χ2/2)

Γ(N/2)
(5.2)

Equation 5.2 is more efficient computationally being approximately 4001

times faster than equation 5.1.

Equation 5.2 was then evaluated over the sets of degrees-of-freedom and χ2.

A cut-off was then specified, above which the probabilities were considered.

Then the corresponding mass values were plotted.

For most separations, there was no problem in choosing a value, however, in

some separations it was not as simple.

æ

æ
æ æ æ

æ

1 2 3 4 5 6

0.3038

0.3040

0.3042

0.3044

0.3046

0.3048

0.3050

Energies for R3 separation with a cutoff of 0.01

Figure 5.2: Here we may choose any value as they are statistically equivalent.

Figure 5.3 below shows the various values of energy after the “Goodness-

of-fit” was applied. This was an interesting outcome as it was not expected.

The energy vs. tmin was then plotted.

1This number was found using Mathematica’s in-built settings
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Figure 5.3: Not as simple to choose an appropriate mass value.

Further analysis was performed on the mass values, to determine how to

choose appropriate ones.

5.2.1 Mass vs. tmin

The mass values were plotted against their corresponding values for the min-

imum of their fit range, figure 5.4.
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Figure 5.4: The values of mass vs. tmin (expanded for clarity).

It was decided that any of the masses from the “smallest mass block”

were appropriate to take. The same procedure was performed for the other

separations and these masses were plotted with their respective errors, Fig.

5.5.

5.2.2 Some Quantities From R3 Separation

Table 5.1: Various Quantities for 2nd Dataset, 1st mass, R3 Separation with
a 0.01 Cut-off

χ2 Masses (GeV) Degrees of Freedom Q Values

2.69082 1.63693± 0.00305 4 0.6108
3.0052 1.63705± 0.00304 5 0.6992
3.06444 1.63696± 0.00302 6 0.8007
3.08076 1.63695± 0.00302 7 0.8774
3.08527 1.63698± 0.00300 8 0.9289
3.66777 1.63722± 0.00299 9 0.9318
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Figure 5.5:
√
σ = 525.2± 25.6MeV α = 0.078± 0.015

This graph shows the Coulomb part of the interaction (α = 0.078± 0.015)

over lengths up to about 0.5fm. It also shows the dominance of the linear

part (the string tension) over larger distances, i.e. confinement.
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Chapter 6

Third Dataset

This dataset used slightly less configurations [6] than the previous analysis.

The log plots of the correlation functions for the various separations were all

decreasing straight lines, as expected.
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Figure 6.1: Correlation Functions for the 10 separations of the third dataset,
all decreasing linearly.
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As an example, for the second separation the following data was obtained:

Table 6.1: Various Quantities for 3rd Dataset, R2 Separation with a 0.01
Cut-off

χ2 Masses (GeV) Degrees of Freedom Q Values

11.9871 1.38122± 0.00123 4 0.0174
4.04367 1.38112± 0.00131 1 0.0443
4.66436 1.38095± 0.00130 2 0.0971
8.71435 1.37958± 0.00157 3 0.0330
0.05975 1.37901± 0.00158 1 0.8069
8.96094 1.37960± 0.00157 2 0.0130

The good fit procedure was performed on the data and the filtered energies

were plotted against the lattice spacing.
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Figure 6.2: A string tension of
√
σ = 532.6 ± 19.7MeV was found. α =

0.071± 0.013
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Chapter 7

Fourth Dataset

A small number of configurations was used for the final analysis [6]. As

with the previous datasets, the usual procedure was carried out. That is,

the correlation functions were determined and observed to be exponentially

decreasing. The energies for each separation were calculated and were then

plotted against the lattice spacing.
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Figure 7.1: Correlation Functions for 7 separations, all decreasing linearly.
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Again, the goodness-of-fit function was used to determine the appropriate

values to select. The energies were then plotted against the lattice spacing.
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Figure 7.2: A string tension of
√
σ = 488.2± 22.7 MeV was found. Coulomb

potential parameter, α = 0.086± 0.014.
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Chapter 8

Results & Conclusions

8.1 String Tension vs. Pion Mass

By plotting the string tensions from the above analyses against the respective

pion masses, the string tension for a physical π+ may be determined by

extrapolating the data back to the y-axis via a straight-line fit.
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Figure 8.1: The y-intercept is at 463.7 ± 23.7 MeV.
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8.2 α vs. Pion Mass
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Figure 8.2: The y-intercept is at 0.096± 0.002.

The α vs pion mass plot shows that, there too is a mass dependence on the

parameter relating to the Coulomb potential. By extrapolating to the y-axis,

the value of the Coulomb parameter for a physical pion may be determined.

8.3 Conclusions

This project set out to determine string tensions of static quark-anti-quark

pairs. Optimal quantum mechanical operators for the correlation function

were calculated by running a series of tests over a range of various values.

Then scripts were run on the HPC machines to gather data for the various

time and space separations. The data was then imported into Mathematica

where it was organized and analysed. Functions were defined to make the

large datasets more manageable. The data showed that the correlation func-

tions were exponentially decreasing, as expected. The energies for each of
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the separations were determined using another script which ran χ2 tests for a

goodness-of-fit. The energies for each space separation over several time sep-

arations were plotted against lattice spacing. These plots were then fitted via

a Cornell potential. The string tensions and Coulomb parameters were then

extracted from the Cornell fit. Finally, these values for the three datasets

were plotted against their respective pion mass. A mass dependence on both

string tension and Coulomb parameter was observed. Values of string ten-

sion and Coulomb parameter for a physical π+ were determined by regression.

Further analysis could be carried out with different pion masses to get more

accurate values for string tension and Coulomb parameter.
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Appendix A

Mathematica Notebook

Here I have given an excerpt from one of the Mathematica notebooks where

I performed my calculations.

Outline

1. Define functions to filter the appropriate data from the datasets.

2. Look at the LogPlots of each separation; they should be linearly de-

creasing functions.

3. Determine goodness-of-fit by using the “Complete Gamma Function”.

(a) First define the probability function Q[dof, chi2]. For some reason

the integral version doesn’t work properly with Mathematica, so

evaluate the indefinite integral first then figure it out at the limits.

(b) With the probability function, now define the “Goodness of Fit”

function with a “cut-off”.

(c) Then find the corresponding chi-squared, mass and error values.

(d) Use the good fit function and “ErrorListPlot” for each separation

to find an appropriate mass to take.

(e) If it is not clear which one to take then the several mass values

for each separation should be plotted. I.e. tmin vs mass in order
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to find the best one.

4. Then, with an energy for each separation plot them all vs lattice spac-

ing.

5. Make a Cornell fit then and determine a string tension.

Setting Directory

SetDirectory[SetDirectory[SetDirectory[

"C:\\Users\\David\\Dropbox\\Documents\\College\\Dissertation\\Data\\Third"C:\\Users\\David\\Dropbox\\Documents\\College\\Dissertation\\Data\\Third"C:\\Users\\David\\Dropbox\\Documents\\College\\Dissertation\\Data\\Third

Dataset"]Dataset"]Dataset"]

C:\\Users\\David\\Dropbox\\Documents\\College\\Dissertation\\Data\\Third

Dataset

Data

Separations

R1 = Import[“R1.dat”];R1 = Import[“R1.dat”];R1 = Import[“R1.dat”];

R2 = Import[“R2.dat”];R2 = Import[“R2.dat”];R2 = Import[“R2.dat”];

R3 = Import[“R3.dat”];R3 = Import[“R3.dat”];R3 = Import[“R3.dat”];

R4 = Import[“R4.dat”];R4 = Import[“R4.dat”];R4 = Import[“R4.dat”];

R5 = Import[“R5.dat”];R5 = Import[“R5.dat”];R5 = Import[“R5.dat”];

R5 = Import[“R6.dat”];R5 = Import[“R6.dat”];R5 = Import[“R6.dat”];

R6 = Import[“R7.dat”];R6 = Import[“R7.dat”];R6 = Import[“R7.dat”];

R7 = Import[“R8.dat”];R7 = Import[“R8.dat”];R7 = Import[“R8.dat”];
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R8 = Import[“R9.dat”];R8 = Import[“R9.dat”];R8 = Import[“R9.dat”];

R9 = Import[“R9.dat”];R9 = Import[“R9.dat”];R9 = Import[“R9.dat”];

R10 = Import[“R10.dat”];R10 = Import[“R10.dat”];R10 = Import[“R10.dat”];

Chi-Squared

chiR1 = Import[“chiR1.dat”];chiR1 = Import[“chiR1.dat”];chiR1 = Import[“chiR1.dat”];

chiR2 = Import[“chiR2.dat”];chiR2 = Import[“chiR2.dat”];chiR2 = Import[“chiR2.dat”];

chiR3 = Import[“chiR3.dat”];chiR3 = Import[“chiR3.dat”];chiR3 = Import[“chiR3.dat”];

chiR4 = Import[“chiR4.dat”];chiR4 = Import[“chiR4.dat”];chiR4 = Import[“chiR4.dat”];

chiR5 = Import[“chiR5.dat”];chiR5 = Import[“chiR5.dat”];chiR5 = Import[“chiR5.dat”];

chiR6 = Import[“chiR6.dat”];chiR6 = Import[“chiR6.dat”];chiR6 = Import[“chiR6.dat”];

chiR7 = Import[“chiR7.dat”];chiR7 = Import[“chiR7.dat”];chiR7 = Import[“chiR7.dat”];

chiR8 = Import[“chiR8.dat”];chiR8 = Import[“chiR8.dat”];chiR8 = Import[“chiR8.dat”];

chiR9 = Import[“chiR9.dat”];chiR9 = Import[“chiR9.dat”];chiR9 = Import[“chiR9.dat”];

chiR10 = Import[“chiR10.dat”];chiR10 = Import[“chiR10.dat”];chiR10 = Import[“chiR10.dat”];

chiR11 = Import[“chiR11.dat”];chiR11 = Import[“chiR11.dat”];chiR11 = Import[“chiR11.dat”];

Functions

Needs[“ErrorBarPlots̀”]Needs[“ErrorBarPlots̀”]Needs[“ErrorBarPlots̀”]

Defining Rows

row[n ,R ]:=Table[R[[n;;;;21]][[i, 2]], {i, 1, 86}]row[n ,R ]:=Table[R[[n;;;;21]][[i, 2]], {i, 1, 86}]row[n ,R ]:=Table[R[[n;;;;21]][[i, 2]], {i, 1, 86}]
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This function re-organizes each of the “Ri.dat” files such that the time

separations are listed together in a “row”. (Imagining for clarity, that for

each Ri.dat file the 85 dat files are aligned side-by-side.)

For each separation (i.e. Ri.dat file) all 85 dat files have been concatenated,

and each dat file contained data from 0 to 20 time-steps.

I have defined the above function which gives the “row” I mentioned in the

first line above.

With this function, I can now manipulate the data much more easily; e.g.

averages, errors, etc.

Average value of each row for each separation

avg[R1 ]:=Table[Table[Mean[row[i,R1]], {i, 1, 21}][[j]], {j, 1, 10}]avg[R1 ]:=Table[Table[Mean[row[i,R1]], {i, 1, 21}][[j]], {j, 1, 10}]avg[R1 ]:=Table[Table[Mean[row[i,R1]], {i, 1, 21}][[j]], {j, 1, 10}]

This function averages each “row” from the row function for each Ri.dat

file.

It is this data that we can plot to measure the potential from the correlation

function.

Here we are also only plotting up to the first 10 separations since the data

gets quite noisy afterwards.

Extracting data from chi-squared files

Define a functions to extract the chi-squared, mass and errors from the

chi-squared data:

Chi2[chi ]:=Table[chi[[2;;;;3]][[i, 3]], {i, 1,Length[chi[[2;;;;3]]]}]Chi2[chi ]:=Table[chi[[2;;;;3]][[i, 3]], {i, 1,Length[chi[[2;;;;3]]]}]Chi2[chi ]:=Table[chi[[2;;;;3]][[i, 3]], {i, 1,Length[chi[[2;;;;3]]]}]

Chi2[chiR1]Chi2[chiR1]Chi2[chiR1]

8.97581×108,29040.8,29453.4,1.28498×107,10224.7,3545.55,3574.46,3994.05,

1831.65,933.539,1781.55,1796.73,108.571,29.9442,81.1233,102.656,22.7666,

2.64741,12.978,22.2199,4.10254,5.43901×10−18,3.6028,4.07592

Mass[chi ]:=Table[chi[[3;;;;3]][[i, 2]], {i, 1,Length[chi[[3;;;;3]]]}]Mass[chi ]:=Table[chi[[3;;;;3]][[i, 2]], {i, 1,Length[chi[[3;;;;3]]]}]Mass[chi ]:=Table[chi[[3;;;;3]][[i, 2]], {i, 1,Length[chi[[3;;;;3]]]}]
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MassErrors[chi ]:=Table[chi[[3;;;;3]][[i, 4]],MassErrors[chi ]:=Table[chi[[3;;;;3]][[i, 4]],MassErrors[chi ]:=Table[chi[[3;;;;3]][[i, 4]],

{i, 1,Length[chi[[3;;;;3]]]}]{i, 1,Length[chi[[3;;;;3]]]}]{i, 1,Length[chi[[3;;;;3]]]}]

Degrees of Freedom

m = tmax − tmin − 1

m is the number of degrees of freedom. So, define a function which extracts

the fit range (i.e. tmax and tmin) and computes m.

dof[chi ]:=(Table[chi[[1;;;;3]][[i, 5]], {i, 1,Length[chi[[2;;;;3]]]}])−dof[chi ]:=(Table[chi[[1;;;;3]][[i, 5]], {i, 1,Length[chi[[2;;;;3]]]}])−dof[chi ]:=(Table[chi[[1;;;;3]][[i, 5]], {i, 1,Length[chi[[2;;;;3]]]}])−

(Table[chi[[1;;;;3]][[i, 3]], {i, 1,Length[chi[[2;;;;3]]]}])− 1(Table[chi[[1;;;;3]][[i, 3]], {i, 1,Length[chi[[2;;;;3]]]}])− 1(Table[chi[[1;;;;3]][[i, 3]], {i, 1,Length[chi[[2;;;;3]]]}])− 1

tmin[R ]:=(Table[R[[1;;;;3]][[i, 3]], {i, 1,Length[R[[2;;;;3]]]}])tmin[R ]:=(Table[R[[1;;;;3]][[i, 3]], {i, 1,Length[R[[2;;;;3]]]}])tmin[R ]:=(Table[R[[1;;;;3]][[i, 3]], {i, 1,Length[R[[2;;;;3]]]}])

Probability Function

Q[dof , fxnchi ]:=
Gamma[dof2

, fxnchi
2 ]

Gamma[dof2 ]
Q[dof , fxnchi ]:=

Gamma[dof2
, fxnchi

2 ]
Gamma[dof2 ]

Q[dof , fxnchi ]:=
Gamma[dof2

, fxnchi
2 ]

Gamma[dof2 ]

Goodness-Of-Fit Function

Define a GOF function where the integral has already been evaluated:

GOF[chi ]:=N [Table[Q[dof[chi][[i]],Chi2[chi][[i]]], {i, 1,Length[dof[chi]]}],GOF[chi ]:=N [Table[Q[dof[chi][[i]],Chi2[chi][[i]]], {i, 1,Length[dof[chi]]}],GOF[chi ]:=N [Table[Q[dof[chi][[i]],Chi2[chi][[i]]], {i, 1,Length[dof[chi]]}],

10]10]10]

Cutoff Function

Qcutoff[chi , cutoff ]:=ArrayRules[Map[#Boole[# > cutoff]&,GOF[chi]]]Qcutoff[chi , cutoff ]:=ArrayRules[Map[#Boole[# > cutoff]&,GOF[chi]]]Qcutoff[chi , cutoff ]:=ArrayRules[Map[#Boole[# > cutoff]&,GOF[chi]]]
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Corresponding mass and error values

Now that I have the probabilities of the good fits, I must find the correspond-

ing mass values and their errors

MassGoodFit[chi , cutoff ]:=MassGoodFit[chi , cutoff ]:=MassGoodFit[chi , cutoff ]:=

Partition[Partition[Partition[

Riffle[Riffle[Riffle[

Mass[chi][[Flatten[Table[Qcutoff[chi, cutoff][[i]][[1]],Mass[chi][[Flatten[Table[Qcutoff[chi, cutoff][[i]][[1]],Mass[chi][[Flatten[Table[Qcutoff[chi, cutoff][[i]][[1]],

{i, 1,Length[Qcutoff[chi, cutoff]]− 1}], 1]]],{i, 1,Length[Qcutoff[chi, cutoff]]− 1}], 1]]],{i, 1,Length[Qcutoff[chi, cutoff]]− 1}], 1]]],

MassErrors[chi][[MassErrors[chi][[MassErrors[chi][[

Flatten[Table[Qcutoff[chi, cutoff][[i]][[1]],Flatten[Table[Qcutoff[chi, cutoff][[i]][[1]],Flatten[Table[Qcutoff[chi, cutoff][[i]][[1]],

{i, 1,Length[Qcutoff[chi, cutoff]]− 1}], 1]]]], 2]{i, 1,Length[Qcutoff[chi, cutoff]]− 1}], 1]]]], 2]{i, 1,Length[Qcutoff[chi, cutoff]]− 1}], 1]]]], 2]

ChiGoodFit[chi , cutoff ]:=ChiGoodFit[chi , cutoff ]:=ChiGoodFit[chi , cutoff ]:=

Chi2[chi][[Chi2[chi][[Chi2[chi][[

Flatten[Table[Qcutoff[chi, cutoff][[i]][[1]],Flatten[Table[Qcutoff[chi, cutoff][[i]][[1]],Flatten[Table[Qcutoff[chi, cutoff][[i]][[1]],

{i, 1,Length[Qcutoff[chi, cutoff]]− 1}], 1]]]{i, 1,Length[Qcutoff[chi, cutoff]]− 1}], 1]]]{i, 1,Length[Qcutoff[chi, cutoff]]− 1}], 1]]]

Corresponding chi-squared and dof values

Similarly, definie a funtion that filters out the chi-squareds and dofs.

ChiDof[chi , cutoff ]:=ChiDof[chi , cutoff ]:=ChiDof[chi , cutoff ]:=

Partition[Partition[Partition[

Riffle[Riffle[Riffle[

dof[chi][[Flatten[Table[Qcutoff[chi, cutoff][[i]][[1]],dof[chi][[Flatten[Table[Qcutoff[chi, cutoff][[i]][[1]],dof[chi][[Flatten[Table[Qcutoff[chi, cutoff][[i]][[1]],

{i, 1,Length[Qcutoff[chi, cutoff]]− 1}], 1]]],{i, 1,Length[Qcutoff[chi, cutoff]]− 1}], 1]]],{i, 1,Length[Qcutoff[chi, cutoff]]− 1}], 1]]],

Chi2[chi][[Flatten[Table[Qcutoff[chi, cutoff][[i]][[1]],Chi2[chi][[Flatten[Table[Qcutoff[chi, cutoff][[i]][[1]],Chi2[chi][[Flatten[Table[Qcutoff[chi, cutoff][[i]][[1]],
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{i, 1,Length[Qcutoff[chi, cutoff]]− 1}], 1]]]], 2]{i, 1,Length[Qcutoff[chi, cutoff]]− 1}], 1]]]], 2]{i, 1,Length[Qcutoff[chi, cutoff]]− 1}], 1]]]], 2]

Choosing mass values

TminMass[chi , cutoff ]:=TminMass[chi , cutoff ]:=TminMass[chi , cutoff ]:=

Partition[Partition[Partition[

Riffle[Riffle[Riffle[

tmin[chi][[Flatten[Table[Qcutoff[chi, cutoff][[i]][[1]],tmin[chi][[Flatten[Table[Qcutoff[chi, cutoff][[i]][[1]],tmin[chi][[Flatten[Table[Qcutoff[chi, cutoff][[i]][[1]],

{i, 1,Length[Qcutoff[chi, cutoff]]− 1}], 1]]],{i, 1,Length[Qcutoff[chi, cutoff]]− 1}], 1]]],{i, 1,Length[Qcutoff[chi, cutoff]]− 1}], 1]]],

Mass[chi][[Flatten[Table[Qcutoff[chi, cutoff][[i]][[1]],Mass[chi][[Flatten[Table[Qcutoff[chi, cutoff][[i]][[1]],Mass[chi][[Flatten[Table[Qcutoff[chi, cutoff][[i]][[1]],

{i, 1,Length[Qcutoff[chi, cutoff]]− 1}], 1]]]], 2]{i, 1,Length[Qcutoff[chi, cutoff]]− 1}], 1]]]], 2]{i, 1,Length[Qcutoff[chi, cutoff]]− 1}], 1]]]], 2]

error[chi , cutoff ]:=error[chi , cutoff ]:=error[chi , cutoff ]:=

Map[ErrorBar,Map[ErrorBar,Map[ErrorBar,

MassErrors[chi][[MassErrors[chi][[MassErrors[chi][[

Flatten[Table[Qcutoff[chi, cutoff][[i]][[1]],Flatten[Table[Qcutoff[chi, cutoff][[i]][[1]],Flatten[Table[Qcutoff[chi, cutoff][[i]][[1]],

{i, 1,Length[Qcutoff[chi, cutoff]]− 1}], 1]]]]{i, 1,Length[Qcutoff[chi, cutoff]]− 1}], 1]]]]{i, 1,Length[Qcutoff[chi, cutoff]]− 1}], 1]]]]

tminvsmass[chi , cutoff ]:=tminvsmass[chi , cutoff ]:=tminvsmass[chi , cutoff ]:=

Partition[Riffle[TminMass[chi, cutoff], error[chi, cutoff]], 2]Partition[Riffle[TminMass[chi, cutoff], error[chi, cutoff]], 2]Partition[Riffle[TminMass[chi, cutoff], error[chi, cutoff]], 2]

Analysis

Linear Log plot for correlation function

ListLogPlot[avg[R1]]ListLogPlot[avg[R1]]ListLogPlot[avg[R1]]

Tried for other separations; no problems.
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Figure A.1: Log plot of the average of the first separation.

Choosing appropriate mass values

Qcutoff[chiR1, 0.01]Qcutoff[chiR1, 0.01]Qcutoff[chiR1, 0.01]

{{18} → 0.103719, {21} → 0.250602, {23} → 0.0576823, {24} → 0.130294, { } →

0}

MassGoodFit[chiR1, 0.01]MassGoodFit[chiR1, 0.01]MassGoodFit[chiR1, 0.01]

{{0.169484,0.0000768359},{0.169127,0.0000807532},{0.169129,0.0000828497},

{0.169124,0.000082548}}

ChiGoodFit[chiR1, 0.01]ChiGoodFit[chiR1, 0.01]ChiGoodFit[chiR1, 0.01]

{2.64741, 4.10254, 3.6028, 4.07592}

ErrorListPlot[MassGoodFit[chiR1, 0.01],PlotRange→ All]ErrorListPlot[MassGoodFit[chiR1, 0.01],PlotRange→ All]ErrorListPlot[MassGoodFit[chiR1, 0.01],PlotRange→ All]
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1.5 2.0 2.5 3.0 3.5 4.0

0.1692

0.1693

0.1694

0.1695

MassGoodFit[chiR3, 0.01]MassGoodFit[chiR3, 0.01]MassGoodFit[chiR3, 0.01]

{{0.11, 6.85679× 10−15}, {0.308683, 0.000453552}, {0.30707, 0.000319915},

{0.307308, 0.000429126}, {0.30743, 0.000415472}}

MassGoodFit[chiR1, 0.01][[3]]MassGoodFit[chiR1, 0.01][[3]]MassGoodFit[chiR1, 0.01][[3]]

{0.169129, 0.0000828497}

ErrorListPlot[MassGoodFit[chiR2, 0.01],PlotRange→ All]ErrorListPlot[MassGoodFit[chiR2, 0.01],PlotRange→ All]ErrorListPlot[MassGoodFit[chiR2, 0.01],PlotRange→ All]
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0.2562

0.2566

0.2568

0.2570

ErrorListPlot[MassGoodFit[chiR3, 0.01]]ErrorListPlot[MassGoodFit[chiR3, 0.01]]ErrorListPlot[MassGoodFit[chiR3, 0.01]]
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2 3 4 5

0.05
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0.15

0.20

0.25

0.30

ErrorListPlot[MassGoodFit[chiR4, 0.01]]ErrorListPlot[MassGoodFit[chiR4, 0.01]]ErrorListPlot[MassGoodFit[chiR4, 0.01]]

2 3 4 5 6 7

0.348

0.349

0.350

0.351

0.352

0.353

0.354

ErrorListPlot[MassGoodFit[chiR5, 0.01]]ErrorListPlot[MassGoodFit[chiR5, 0.01]]ErrorListPlot[MassGoodFit[chiR5, 0.01]]

1.2 1.4 1.6 1.8 2.0

0.420

0.421

0.422

0.423

0.424

0.425

ErrorListPlot[MassGoodFit[chiR6, 0.01]]ErrorListPlot[MassGoodFit[chiR6, 0.01]]ErrorListPlot[MassGoodFit[chiR6, 0.01]]
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0.457

0.458

0.459

ErrorListPlot[MassGoodFit[chiR7, 0.01],PlotRange→ All]ErrorListPlot[MassGoodFit[chiR7, 0.01],PlotRange→ All]ErrorListPlot[MassGoodFit[chiR7, 0.01],PlotRange→ All]

2 3 4 5 6 7 8

0.480

0.481

0.482

0.483

0.484

0.485

MassGoodFit[chiR7, 0.01][[3]]MassGoodFit[chiR7, 0.01][[3]]MassGoodFit[chiR7, 0.01][[3]]

{0.456486, 0.0021317}

ErrorListPlot[MassGoodFit[chiR8, 0.01]]ErrorListPlot[MassGoodFit[chiR8, 0.01]]ErrorListPlot[MassGoodFit[chiR8, 0.01]]
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2 3 4 5 6 7

0.513

0.514

0.515

0.516

0.517

MassGoodFit[chiR8, 0.01][[3]]MassGoodFit[chiR8, 0.01][[3]]MassGoodFit[chiR8, 0.01][[3]]

{0.485695, 0.00297867}

ErrorListPlot[MassGoodFit[chiR9, 0.01]]ErrorListPlot[MassGoodFit[chiR9, 0.01]]ErrorListPlot[MassGoodFit[chiR9, 0.01]]

1.5 2.0 2.5 3.0 3.5 4.0

0.1

0.2

0.3

0.4

0.5

ErrorListPlot[MassGoodFit[chiR10, 0.01]]ErrorListPlot[MassGoodFit[chiR10, 0.01]]ErrorListPlot[MassGoodFit[chiR10, 0.01]]
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5.2 5.4 5.6 5.8 6.0

0.1692

0.1693

0.1694

0.1695

Need to plot mass vs tmin

tminvsmass[chiR1, 0.01]tminvsmass[chiR1, 0.01]tminvsmass[chiR1, 0.01]

{{{5, 0.169484},ErrorBar[0.0000768359]}, {{6, 0.169127, },

ErrorBar[0.0000807532]}, {{6, 0.169129},ErrorBar[0.0000828497]},

{{6, 0.169124},ErrorBar[0.000082548]}}

ErrorListPlot[tminvsmass[chiR1, 0.01],PlotRange→ All]ErrorListPlot[tminvsmass[chiR1, 0.01],PlotRange→ All]ErrorListPlot[tminvsmass[chiR1, 0.01],PlotRange→ All]

5.2 5.4 5.6 5.8 6.0

0.2562

0.2566

0.2568

0.2570

tminvsmass[chiR2, 0.01]tminvsmass[chiR2, 0.01]tminvsmass[chiR2, 0.01]

{{{5, 0.256837},ErrorBar[0.000238976]}, {{5, 0.256819},ErrorBar[0.000244376]},

{{5, 0.256787},ErrorBar[0.00024137]}, {{6, 0.256533},ErrorBar[0.000291634]},
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{{6, 0.256426},ErrorBar[0.000293951]}, {{6, 0.256536},ErrorBar[0.000292024]}}

ErrorListPlot[tminvsmass[chiR2, 0.01],PlotRange→ All]ErrorListPlot[tminvsmass[chiR2, 0.01],PlotRange→ All]ErrorListPlot[tminvsmass[chiR2, 0.01],PlotRange→ All]
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0.20

0.25

0.30

tminvsmass[chiR3, 0.01]tminvsmass[chiR3, 0.01]tminvsmass[chiR3, 0.01]

{{{1, 0.11},ErrorBar[6.85679×10−15]}, {{5, 0.308683},ErrorBar[0.000453552]},

{{6, 0.30707},ErrorBar[0.000319915]}, {{6, 0.307308},ErrorBar[0.000429126]},

{{6, 0.30743},ErrorBar[0.000415472]}}

ErrorListPlot[tminvsmass[chiR3, 0.01]]ErrorListPlot[tminvsmass[chiR3, 0.01]]ErrorListPlot[tminvsmass[chiR3, 0.01]]

4.0 4.5 5.0 5.5 6.0

0.348

0.349

0.350

0.351

0.352

0.353

0.354

tminvsmass[chiR4, 0.01]tminvsmass[chiR4, 0.01]tminvsmass[chiR4, 0.01]

{{{1, 0.354333},ErrorBar[1.63961×10−12]}, {{5, 0.348477},ErrorBar[0.000541807]},
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{{5, 0.350022},ErrorBar[0.000883857]}, {{5, 0.348437},ErrorBar[0.000623277]},

{{6, 0.348199},ErrorBar[0.00055809]}, {{6, 0.347793},ErrorBar[0.000836258]},

{{6, 0.347385},ErrorBar[0.00073106]}}

ErrorListPlot[tminvsmass[chiR4, 0.01]]ErrorListPlot[tminvsmass[chiR4, 0.01]]ErrorListPlot[tminvsmass[chiR4, 0.01]]

æ

æ ææ

2 3 4 5 6

-25

-20

-15

-10

-5

tminvsmass[chiR5, 0.01]tminvsmass[chiR5, 0.01]tminvsmass[chiR5, 0.01]

{{{1,−26.6474},ErrorBar[6.1782×10−12]}, {{5, 0.387031},ErrorBar[0.00108842]},

{{6, 0.385075},ErrorBar[0.0011842]}, {{6, 0.385009},ErrorBar[0.00118191]}}

ErrorListPlot[tminvsmass[chiR5, 0.01]]ErrorListPlot[tminvsmass[chiR5, 0.01]]ErrorListPlot[tminvsmass[chiR5, 0.01]]

2 3 4 5

0.420

0.421

0.422

0.423

0.424

0.425

tminvsmass[chiR6, 0.01]tminvsmass[chiR6, 0.01]tminvsmass[chiR6, 0.01]

{{{1, 0.419254},ErrorBar[4.31411×10−12]}, {{5, 0.423654},ErrorBar[0.00209894]}}
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ErrorListPlot[tminvsmass[chiR6, 0.01],PlotRange→ All]ErrorListPlot[tminvsmass[chiR6, 0.01],PlotRange→ All]ErrorListPlot[tminvsmass[chiR6, 0.01],PlotRange→ All]

5.2 5.4 5.6 5.8 6.0

0.454

0.455

0.456

0.457

0.458

0.459

ErrorListPlot[tminvsmass[chiR7, 0.01],PlotRange→ All]ErrorListPlot[tminvsmass[chiR7, 0.01],PlotRange→ All]ErrorListPlot[tminvsmass[chiR7, 0.01],PlotRange→ All]

2 3 4 5 6

0.36

0.38

0.40

0.42

0.44

0.46

0.48

ErrorListPlot[tminvsmass[chiR8, 0.01],PlotRange→ All]ErrorListPlot[tminvsmass[chiR8, 0.01],PlotRange→ All]ErrorListPlot[tminvsmass[chiR8, 0.01],PlotRange→ All]

5.2 5.4 5.6 5.8 6.0

0.513

0.514

0.515

0.516

0.517

ErrorListPlot[tminvsmass[chiR9, 0.01]]ErrorListPlot[tminvsmass[chiR9, 0.01]]ErrorListPlot[tminvsmass[chiR9, 0.01]]
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2 3 4 5 6
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0.5

ErrorListPlot[tminvsmass[chiR10, 0.01]]ErrorListPlot[tminvsmass[chiR10, 0.01]]ErrorListPlot[tminvsmass[chiR10, 0.01]]
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0.005
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0.050

0.100

0.500
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Exporting Data (for Gnuplot)

Export[“avgR1.dat”, avg[R1]]Export[“avgR1.dat”, avg[R1]]Export[“avgR1.dat”, avg[R1]]

avgR1.dat

Export[“avgR2.dat”, avg[R2]]Export[“avgR2.dat”, avg[R2]]Export[“avgR2.dat”, avg[R2]]

avgR2.dat

Export[“avgR3.dat”, avg[R3]]Export[“avgR3.dat”, avg[R3]]Export[“avgR3.dat”, avg[R3]]

avgR3.dat
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Export[“avgR4.dat”, avg[R4]]Export[“avgR4.dat”, avg[R4]]Export[“avgR4.dat”, avg[R4]]

avgR4.dat

Export[“avgR5.dat”, avg[R5]]Export[“avgR5.dat”, avg[R5]]Export[“avgR5.dat”, avg[R5]]

avgR5.dat

Export[“avgR6.dat”, avg[R6]]Export[“avgR6.dat”, avg[R6]]Export[“avgR6.dat”, avg[R6]]

avgR6.dat

Export[“avgR7.dat”, avg[R7]]Export[“avgR7.dat”, avg[R7]]Export[“avgR7.dat”, avg[R7]]

avgR7.dat

Export[“avgR8.dat”, avg[R8]]Export[“avgR8.dat”, avg[R8]]Export[“avgR8.dat”, avg[R8]]

avgR8.dat

Export[“avgR9.dat”, avg[R9]]Export[“avgR9.dat”, avg[R9]]Export[“avgR9.dat”, avg[R9]]

avgR9.dat

Export[“avgR10.dat”, avg[R10]]Export[“avgR10.dat”, avg[R10]]Export[“avgR10.dat”, avg[R10]]

avgR10.dat

Fitting

data808gf = {{0.169129, 0.0000828497}, {0.256533, 0.000291634},data808gf = {{0.169129, 0.0000828497}, {0.256533, 0.000291634},data808gf = {{0.169129, 0.0000828497}, {0.256533, 0.000291634},

{0.307308, 0.000429126}, {0.347793, 0.000836258}, {0.385075, 0.0011842},{0.307308, 0.000429126}, {0.347793, 0.000836258}, {0.385075, 0.0011842},{0.307308, 0.000429126}, {0.347793, 0.000836258}, {0.385075, 0.0011842},

{0.423654, 0.00209894}, {0.456486, 0.0021317}, {0.485695, 0.00297867}}{0.423654, 0.00209894}, {0.456486, 0.0021317}, {0.485695, 0.00297867}}{0.423654, 0.00209894}, {0.456486, 0.0021317}, {0.485695, 0.00297867}}

{{0.169129, 0.0000828497}, {0.256533, 0.000291634}, {0.307308, 0.000429126},
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{0.347793, 0.000836258}, {0.385075, 0.0011842}, {0.423654, 0.00209894},

{0.456486, 0.0021317}, {0.485695, 0.00297867}}

Partition[Partition[Partition[

Flatten[Riffle[{0.12, 0.24, 0.36, 0.48, 0.6, 0.72, 0.84, 0.96},Flatten[Riffle[{0.12, 0.24, 0.36, 0.48, 0.6, 0.72, 0.84, 0.96},Flatten[Riffle[{0.12, 0.24, 0.36, 0.48, 0.6, 0.72, 0.84, 0.96},

data808gf ∗ 5.3778]], 3]data808gf ∗ 5.3778]], 3]data808gf ∗ 5.3778]], 3]

{{0.12, 0.909542, 0.000445549}, {0.24, 1.37958, 0.00156835},

{0.36, 1.65264, 0.00230775}, {0.48, 1.87036, 0.00449723},

{0.6, 2.07086, 0.00636839}, {0.72, 2.27833, 0.0112877},

{0.84, 2.45489, 0.0114639}, {0.96, 2.61197, 0.0160187}}

Exporting data for Gnuplot.

Export[“808gf.dat”,Export[“808gf.dat”,Export[“808gf.dat”,

Partition[Partition[Partition[

Flatten[Riffle[{0.12, 0.24, 0.36, 0.48, 0.6, 0.72, 0.84, 0.96},Flatten[Riffle[{0.12, 0.24, 0.36, 0.48, 0.6, 0.72, 0.84, 0.96},Flatten[Riffle[{0.12, 0.24, 0.36, 0.48, 0.6, 0.72, 0.84, 0.96},

data808gf ∗ 5.3778]], 3]]data808gf ∗ 5.3778]], 3]]data808gf ∗ 5.3778]], 3]]

808gf.dat

Making a Cornell Fit

Table[Table[Table[

Take[Take[Take[

Partition[Flatten[Riffle[{0.12, 0.24, 0.36, 0.48, 0.6, 0.72, 0.84, 0.96},Partition[Flatten[Riffle[{0.12, 0.24, 0.36, 0.48, 0.6, 0.72, 0.84, 0.96},Partition[Flatten[Riffle[{0.12, 0.24, 0.36, 0.48, 0.6, 0.72, 0.84, 0.96},

data808gf ∗ 5.3778]], 3][[i]], 2], {i, 1, 8}]data808gf ∗ 5.3778]], 3][[i]], 2], {i, 1, 8}]data808gf ∗ 5.3778]], 3][[i]], 2], {i, 1, 8}]

{{0.12, 0.909542}, {0.24, 1.37958}, {0.36, 1.65264}, {0.48, 1.87036},

{0.6, 2.07086}, {0.72, 2.27833}, {0.84, 2.45489}, {0.96, 2.61197}}
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Fit[Fit[Fit[

Table[Table[Table[

Take[Take[Take[

Partition[Flatten[Riffle[{0.12, 0.24, 0.36, 0.48, 0.6, 0.72, 0.84, 0.96},Partition[Flatten[Riffle[{0.12, 0.24, 0.36, 0.48, 0.6, 0.72, 0.84, 0.96},Partition[Flatten[Riffle[{0.12, 0.24, 0.36, 0.48, 0.6, 0.72, 0.84, 0.96},

data808gf ∗ 5.3778]], 3][[i]], 2], {i, 1, 8}],
{

1, x, 1
x

}
, x
]

data808gf ∗ 5.3778]], 3][[i]], 2], {i, 1, 8}],
{

1, x, 1
x

}
, x
]

data808gf ∗ 5.3778]], 3][[i]], 2], {i, 1, 8}],
{

1, x, 1
x

}
, x
]

1.352 − 0.071
x

+ 1.44x

Plots

Log plots of correlation functions.

ListLogPlot[Map[avg, {R1,R2,R3,R4,R5,R6,R7,R8,R9,R10}]]ListLogPlot[Map[avg, {R1,R2,R3,R4,R5,R6,R7,R8,R9,R10}]]ListLogPlot[Map[avg, {R1,R2,R3,R4,R5,R6,R7,R8,R9,R10}]]
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Plotted and fit parameters found using Gnuplot.

V (r) = V0 − α
r

+ σr

V0 = 1.352

α = 0.071

σ = 1.44σ = 1.44σ = 1.44

Results

So string tension in GeV/fm is

{1.44, 0.20}{1.44, 0.20}{1.44, 0.20}

{1.44, 0.20}

So in (GeV)2

0.197 ∗ {1.44, 0.2}0.197 ∗ {1.44, 0.2}0.197 ∗ {1.44, 0.2}

{0.28368, 0.0394}

so
√
σ in GeV is

√
0.28368± 0.5 ∗ 0.0394
√

0.28368± 0.5 ∗ 0.0394
√

0.28368± 0.5 ∗ 0.0394

0.532616± 0.0197

Thus in MeV

0.532616 ∗ 1000± 0.0197 ∗ 1000

532.616± 19.7

so the string tension is:

√
σ = 532.6± 19.7MeV
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