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Now simplify by using the Dirac equation and conjugate

—  y-pu(p) = Mu(p)
= a@)y-p =a@)M

(v-p—M)ulp) =
u(p) (y-p'=M) =

on the first and last terms in our above expression to obtain
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Thus we have shown
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Rearranging gives the general form of the Gordon Decomposition identity
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