TRINITY COLLEGE

FACULTY OF ENGINEERING, MATHEMATICS AND SCIENCE

SCHOOL OF MATHEMATICS

JF Mathematics JF Two Subject Mod Michaelmas Term 2012

MA1124 — Analysis II

Thursday, September 06

REGENT HSE

9:30 - 12:00

Prof. D. O'Donovan

Answer all Questions.

All questions carry equal marks.

Formulae & Tables tables are available from the invigilators, if required.

Non-programmable calculators are permitted for this examination,—please indicate the make and model of your calculator on each answer book used.

1. (a) Complete the following logical equivalences and use True/False tables to prove them

i.
$$P \Rightarrow Q \equiv$$

ii.
$$(P \wedge Q)' \equiv$$

iii.
$$(P \wedge Q) \vee (R \wedge Q) \equiv$$

- (b) Write down the negation of the following statements
 - i. The relation R is reflexive and symmetric
 - ii. If f is continuous and A is connected then f(A) is connected.
- 2. (a) Define what it means for two sets to have the same cardinal number. Is there a set whose cardinal number is greater than that of any other set? Explain your reasoning.
 - (b) Define what it means for one cardinal number to be greater or equal than another. Define what it means for a set to be countable. Prove that if X and Y are countable sets then $X \times Y$ is a countable set.
 - (c) Define what it means for a subset of the real line to be connected. Show that a subset with just two points is not connected. What are the connected subsets of the real line?
- 3. (a) Prove that there exists a sequence $x_n \in A$ such that $\{x_n\} \to x$ if and only if for all $\epsilon > 0$, $N(x, \epsilon) \cap A \neq \emptyset$
 - (b) Define $\liminf\{a_n\}$, and $\lim\sup\{a_n\}$. What is their relationship with $\lim\{a_n\}$?
 - (c) Define \overline{A} , the closure of a set A, and A° , the interior of A. Prove $(A^{\circ})^c = \overline{(A^c)}$.
 - (d) Prove that if f is continuous and A is connected then f(A) is connected.

- 4. (a) Prove the following for A a subset of \mathbb{R} : A is closed and bounded implies that every open covering of A has a finite subcovering.
 - (b) Define what is meant by a Cauchy sequence and prove that every Cauchy sequence is bounded.
 - (c) Prove that if a Cauchy sequence has a convergent subsequence, then the sequence converges