Assignment & Mrs 1124 Attadud. d 52, 53, 54 4 also try to use the lub. oxon to prove [a, b] is compact. Hint [2,5] can be covered by one Or for some 2 7 a.

- 51. Prove: If $a_n \to a$ and $b_n \to b$ where $b_n \neq 0$ and $b \neq 0$, then the sequence $\langle a_n/b_n \rangle$ converges to a/b.
- 52. Prove: If the sequence $\langle a_n \rangle$ converges to b, then every subsequence $\langle a_{i_n} \rangle$ of $\langle a_n \rangle$ also converges to b.
- 53. Prove: If the sequence (a_n) converges to b, then either the range $\{a_n\}$ of the sequence (a_n) is finite, or b is an accumulation point of the range $\{a_n\}$.
- 54. Prove: If the sequence $\langle a_n \rangle$ of distinct elements is bounded and the range $\{a_n\}$ of $\langle a_n \rangle$ has exactly one limit point b, then the sequence $\langle a_n \rangle$ converges to b.

(Remark: The sequence $(1, \frac{1}{2}, 2, \frac{1}{3}, 3, \frac{1}{4}, 4, \dots)$ shows that the condition of boundedness cannot be removed from this theorem.)

CONTINUITY

- 55. Prove: A function $f: \mathbb{R} \to \mathbb{R}$ is continuous at $a \in \mathbb{R}$ if and only if for every sequence $\langle a_n \rangle$ converging to a, the sequence $\langle f(a_n) \rangle$ converges to f(a).
- 56. Prove: Let the function $f: \mathbb{R} \to \mathbb{R}$ be continuous at $p \in \mathbb{R}$. Then there exists an open interval S containing p such that f is bounded on the open interval S.
- 57. Give an example of a function $f: \mathbb{R} \to \mathbb{R}$ which is continuous at every point in the open interval S = (0,1) but which is not bounded on the open interval S.
- 58. Prove: Let $f: \mathbb{R} \to \mathbb{R}$ be continuous at every point in a closed interval A = [a, b]. Then f is bounded on A. (Remark: By the preceding problem, this theorem is not true if A is not closed.)
- 59. Prove: Let $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ be continuous. Then the sum $(f+g): \mathbb{R} \to \mathbb{R}$ is continuous, where f+g is defined by $(f+g)(x) \equiv f(x)+g(x)$.
- 60. Prove: Let $f: \mathbb{R} \to \mathbb{R}$ be continuous, and let k be any real number. Then the function $(kf): \mathbb{R} \to \mathbb{R}$ is continuous, where kf is defined by $(kf)(x) \equiv k(f(x))$.
- 61. Prove: Let $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ be continuous. Then $\{x \in \mathbb{R}: f(x) = g(x)\}$ is a closed set.
- 62. Prove: The projection $\pi_x : \mathbb{R}^2 \to \mathbb{R}$ is continuous where π_x is defined by $\pi_x((a,b)) = a$.
- 63. Consider the functions $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} \sin{(1/x)} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}, \qquad g(x) = \begin{cases} x \sin{(1/x)} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$

Prove g is continuous at 0 but f is not continuous at 0.

64. Recall that every rational number $q \in \mathbb{Q}$ can be written uniquely in the form q = a/b where $a \in \mathbb{Z}$, $b \in \mathbb{N}$, and a and b are relatively prime. Consider the function $f: \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} 0 & \text{if } x \text{ is irrational} \\ 1/b & \text{if } x \text{ is rational and } x = a/b \text{ as above} \end{cases}$$

Prove that f is continuous at every irrational point, but f is discontinuous at every rational point.

Answers to Supplementary Problems

57. Consider the function

$$f(x) = \begin{cases} -x & \text{if } x \leq 0 \\ 1/x & \text{if } x > 0 \end{cases}$$

The function f is continuous at every point in R except at 0 as indicated in the adjacent graph of f. Hence f is continuous at every point in the open interval (0,1). But f is not bounded on (0,1).

58. Hint. Use the result stated in Problem 56 and the Heine-Borel Theorem.

