Obsegnment 6 Du Thur 10th Wand 1. Prove Lim Jos7 = L (=> + x - a x-2 a J (x) - 3 L

Do #35, 40, 45 from page 64.

Solution:

We claim that f(p) = 0. If f(p) < 0, then, by the preceding problem, there is an open interval $(p - \delta, p + \delta)$ in which f is negative, i.e.,

 $(p-\delta, p+\delta) \subset A$

So p cannot be an upper bound for A. On the other hand, if f(p) > 0, then there exists an interval $(p - \delta, p + \delta)$ in which f is positive; so

$$(p-\delta, p+\delta) \cap A = \emptyset$$

which implies that p cannot be a least upper bound for A. Thus f(p) can only be zero, i.e. f(p) = 0. Remark. The theorem is also true and proved similarly in the case f(b) < 0 < f(a).

37. Prove Theorem (Weierstrass) 4.9: Let $f: \mathbb{R} \to \mathbb{R}$ be continuous on a closed interval [a, b]. Then the function assumes every value between f(a) and f(b).

Suppose f(a) < f(b) and let y_0 be a real number such that $f(a) < y_0 < f(b)$. We want to prove that there is a point p such that $f(p) = y_0$. Consider the function $g(x) = f(x) - y_0$ which is also continuous. Observe that g(a) < 0 < g(b).

By the preceding problem, there exists a point p such that $g(p) = f(p) - y_0 = 0$. Hence $f(p) = y_0$. The case when f(b) < f(a) is proved similarly.

Supplementary Problems

OPEN SETS, CLOSED SETS, ACCUMULATION POINTS

- 38. Prove: If A is a finite subset of R, then the derived set A' of A is empty, i.e. $A' = \emptyset$.
- 39. Prove: Every finite subset of R is closed.
- 40. Prove: If $A \subset B$, then $A' \subset B'$.
- 41. Prove: A subset B of \mathbb{R}^2 is closed if and only if d(p,B)=0 implies $p\in B$, where $d(p,B)=\inf\{d(p,q):q\in B\}$.
- 42. Prove: $A \cup A'$ is closed for any set A.
- 43. Prove: $A \cup A'$ is the smallest closed set containing A, i.e. if F is closed and $A \subset F \subset A \cup A'$ then $F = A \cup A'$.
- 44. Prove: The set of interior points of any set A, written int (A), is an open set.
- 45. Prove: The set of interior points of A is the largest open set contained in A, i.e. if G is open and int $(A) \subset G \subset A$, then int (A) = G.
- 46. Prove: The only subsets of R which are both open and closed are Ø and R.

SEQUENCES

- 47. Prove: If the sequence $\langle a_n \rangle$ converges to $b \in \mathbb{R}$, then the sequence $\langle |a_n b| \rangle$ converges to 0.
- 48. Prove: If the sequence $\langle a_n \rangle$ converges to 0, and the sequence $\langle b_n \rangle$ is bounded, then the sequence $\langle a_n b_n \rangle$ also converges to 0.
- 49. Prove: If $a_n \to a$ and $b_n \to b$, then the sequence $(a_n + b_n)$ converges to a + b.
- 50. Prove: If $a_n \to a$ and $b_n \to b$, then the sequence $\langle a_n b_n \rangle$ converges to ab.