Assignment 5 MA1124 Due Wednesday
24th. $\,$

- 1. On page 233 of the text, attached 24,27,31.
- $2. \ \, {\rm On\ page\ 234,\ attached},\ 37{,}38{,}42$

Solution:

Suppose p_1 and p_2 belong to every interval. If $p_1 \neq p_2$, then $|p_1 - p_2| = \delta > 0$. Since $\lim_{n\to\infty}(b_n-a_n)=0$, there exists an interval $I_{n_0}=[a_{n_0},b_{n_0}]$ such that the length of I_{n_0} is less than the distance $|p_1-p_2|=\delta$ between p_1 and p_2 . Accordingly, p_1 and p_2 cannot both belong to I_{n_0} , a contradiction. Thus $p_1 = p_2$, i.e. only one point can belong to every interval.

Supplementary Problems

FIELD AXIOMS

- 20. Show that the Right Distributive Law [D2] is a consequence of the Left Distributive Law [D1] and the Commutative Law [M5].
- Show that the set Q of rational numbers under addition and multiplication is a field.
- 22. Show that the following set A of real numbers under addition and multiplication is a field:

$$A = \{a + b\sqrt{2} : a, b \text{ rational}\}$$

Show that the set $A = \{..., -4, -2, 0, 2, 4, ...\}$ of even integers under addition and multiplication satisfies all the axioms of a field except [M3], [M4] and [M5], that is, is a ring.

INEQUALITIES AND POSITIVE NUMBERS

24. Rewrite so that x is alone between the inequality signs:

(i)
$$4 < -2x < 10$$
, (ii) $-1 < 2x - 3 < 5$, (iii) $-3 < 5 - 2x < 7$.

- 25. Prove: The product of any two negative numbers is positive.
- 26. Prove Theorem A.2(iii): If a < b, then a + c < b + c.
- 27. Prove Theorem A.2(iv): If a < b and c is positive, then ac < bc.
- Prove Corollary A.3: The set R of real numbers is totally ordered by the relation a = b.
- Prove: If a < b and c is positive, then: (i) $\frac{a}{c} < \frac{b}{c}$, (ii) $\frac{c}{b} < \frac{c}{a}$.
- 30. Prove: $\sqrt{ab} \le (a+b)/2$. More generally, prove $\sqrt[n]{a_1a_2\cdots a_n} \le (a_1+a_2+\cdots+a_n)/n$.
- 31. Prove: Let a and b be real numbers such that $a < b + \epsilon$ for every $\epsilon > 0$. Then $a \le b$.
- 32. Determine all real values of x such that: (i) $x^3 + x^2 6x > 0$, (ii) $(x-1)(x+3)^2 \le 0$.

ABSOLUTE VALUES

- 33. Evaluate: (i) |-2| + |1-4|, (ii) |3-8| |1-9|, (iii) |-4| |2-7|.
- 34. Rewrite, using the absolute value sign: (i) -3 < x < 9, (ii) $2 \le x \le 8$, (iii) -7 < x < -1.
- 35. Prove: (i) |-a| = |a|, (ii) $a^2 = |a|^2$, (iii) $|a| = \sqrt{a^2}$, (iv) |x| < a iff -a < x < a.

- 36. Prove Proposition A.4(ii): |ab| = |a||b|.
- 37. Prove Proposition A.4(iv): $||a| |b|| \le |a b|$.

LEAST UPPER BOUND AXIOM

- 38. Prove: Let A be a set of real numbers bounded from below. Then A has a greatest lower bound, i.e. inf (A) exists.
- 39. Prove: (i) Let $x \in \mathbb{R}$ such that $x^2 < 2$; then $\exists n \in \mathbb{N}$ such that $(x + 1/n)^2 < 2$.
 - (ii) Let $x \in \mathbb{R}$ such that $x^2 > 2$; then $\exists n \in \mathbb{N}$ such that $(x 1/n)^2 > 2$.
- 40. Prove: There exists a real number $a \in \mathbb{R}$ such that $a^2 = 2$.
- 41. Prove: Between any two positive real numbers lies a number of the form r^2 , where r is rational.
- 42. Prove: Between any two real numbers there is an irrational number.

Answers to Supplementary Problems

- 24. (i) -5 < x < -2 (ii) 1 < x < 4 (iii) -1 < x < 4
- 32. (i) -3 < x < 0 or x > 2, i.e. $x \in (-3, 0) \cup (2, \infty)$ (ii) $x \le 1$
- 33. (i) 5 (ii) -3 (iii) 1
- 34. (i) |x-3| < 6 (ii) $|x-5| \le 3$ (iii) |x+4| < 3