MA1123 - Solutions 5

Problem (10 - p234). Find the point in the first quadrant of the curve y = x=2 such that a

rectangle with sides on the coordinate azes and a vertex P has the smallest possible perimeler.
Solution: The perimeter function is:
flz,y) =2z + 2y

2
flz) =2z + p

= flz)=2— %
= f"(a) = fg

Since f(x) > 0 in the first quadrant, the solution to f'(xz) = 0 will give us the minumum, which
is P = (21/3, 2-2/8) O

Problem (14 - p234). A wire of length 12cm can be bent into o circle, square, or cut into
two pieces to make both. Find the length of wire used for the circle which a) minimises and b)
racimises the enclosed area.

Solution: Let the square have length ¢ and the cirele have radius r. Then the function we want
to maximise is f(a,7) = a® +7r? subject to constraint 12 = 4a + 27r, so we substitute a = 3 — o7
to get the function:

F(r) =3 - 51)2 +mr?

= fir)===(3 - gr) + 2mr

2

= 1 (r] :% + 27

Since f” > 0, the solution to f'(r) = 0 will be a local minimum, and since f(r) is quadratic this is
also the global minimum. This is at rg = 44_%. To determine the global max we must look at the
endpoints, r = 0,a = 0, which give m = 0,72 = 6/7 when the wire is used entirely for the circle

or the square. Now

flr=t6/m) =2

Since 7 < 4, we know 33 > ri—f’ and so the area is maximised when the wire is used entirely to form

a circle. (In general this is the isoperimetric inequality).

O

Problem (30 - p234). A closed cylindrical can ts to have o surface area . Show thot the volume
18 mazimised when the height is equal to the diameter of the base.
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Numerically checking gives that the volume is maximised when a = 0 and the surface area is
entirely used for the sphere. (This is the 3d version of the isoperimetric inequality). |
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