MA1123 Solution 2

Problem 1: Prove that lim,_q 5111( V does nol exisi.

Solution: Assume 3L with limg, g s-i-n(%) = : —Ll<e
To E‘(;d(‘h a COIltrddiLtiOIl we (;hoose an € and show that no 5 will satisfy the definition. Since sin(x)

Now, (,h()ese two values xy, 29 < & w1th ‘3111(1/“) = 1,51n(1/:vg) = —1. There will always be

sufficiently large n with z; = %{}?w_ﬁ and @g = m such that zy,zy < §. Then for each of

these values of & we must have;

1 1 . 1 , 1
[91n<Ll> Lr<§ & |.~>HL<;~;)L[<§

=1-Lj<e & | —1—-L{i<e
Sl—e<L<lte & ~1-e<L<e—1
3 1, 1 3
ey —— < L —2 & - L=,
o 2< < 5 _2< <2

Since these inequalities cannot be simultaneously satisfied, we reach a contradiction, and con-
clude that the limit does not exist.
O

Problem 2: Prove that limg, o 3, fi(2) = D, Li, if lmane fi{z) = Ly Vi € {1,..,n}, using
induction.
Solution: Qur basge case is n = 2, which ig just
I fiz) + fole) = lim fi(e) + Lo fole).
This is the statement that the limit of the sums is the sum of the limits and was proved in class,
Now assume thab she proposition holds for n == k. Then for n = k- 1 we have

k+1

hmz.ﬁ(m = 1m (fh—{—l FZL{JL )

This is now the same form as Um(f + g) = (Hm f) + (limg) with f(&) = fipa (@) and g(z) =

Zi fi{=). Since, by our inductive hypothesis lim,_,q g{2) = E_i L;, and again invoking “the limit
of the sum is the sum of the limits”, we have
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