Assignments 7+8

Due Wed 21st.

1. Properties of \(\bar{A} = A \cup A' \).

 (i) \(\bar{A} \) is closed

 (ii) \(A \subseteq B \Rightarrow \bar{A} \subseteq \bar{B} \)

 (iii) \(A \subseteq \bar{A} \)

 (iv) \(A \) is closed \(\Leftrightarrow \) \(A = \bar{A} \)

 (v) \(\bar{A} \) is smallest closed superset of \(A \).

 (vi) \(\bar{A} = \bigcap H \)
 \(H \) closed \(\supseteq A \)

 (vii) \(A \) is closed \(\Leftrightarrow \forall x_n \in A, x_n \to x \Rightarrow x \in A \).

 (viii) \(\bar{A} = \bar{\bar{A}} \)

2. Properties of \(A^0 = \text{Int} A \).

 Do (i - viii) of corresponding properties

 (vii) because \(A \) is open \(\Rightarrow \exists x_n \subseteq x \in A \)

 \(\Rightarrow x_n \neq x \in A \)
4. \(\bar{\delta A} = \delta A \cap (A^c)^c \)

Show \(\delta A = (A^c \cup (A^c)^c)^c \)

5. (i) Prove \(\text{d.u.b. } A = A \) if \(A \) is closed.

(ii) Prove \(\text{d.u.b. } A = A \) if \(A \) is open.

6. Prove \(x_n \to x \implies \) every subsequence \(x_{n_k} \to x \)