37. Let \(X = \{1, 2, 3, 4, 5, 6\} \) be ordered as in the adjacent diagram. Consider the subset \(A = \{2, 4, 5\} \) of \(X \). (i) Find the maximal elements of \(X \). (ii) Find the minimal elements of \(X \). (iii) Does \(X \) have a first element? (iv) Does \(X \) have a last element? (v) Find the set of upper bounds of \(A \). (vi) Find the set of lower bounds of \(A \). (vii) Does \(\sup(A) \) exist? (viii) Does \(\inf(A) \) exist?

38. Consider \(Q \), the set of rational numbers, with the natural order, and its subset \(A = \{x : x \in Q, x^3 < 3\} \). (i) Is \(A \) bounded above? (ii) Is \(A \) bounded below? (iii) Does \(\sup(A) \) exist? (iv) Does \(\inf(A) \) exist?

39. Let \(N \), the positive integers, be ordered by "\(z \) divides \(y \)" and let \(A \subset N \). (i) Does \(\inf(A) \) exist? (ii) Does \(\sup(A) \) exist?

40. Prove: Every finite partially ordered set has a maximal element.

41. Give an example of an ordered set which has exactly one maximal element but does not have a last element.

42. Prove: If \(B \) is a partial order on \(A \), then \(B^{-1} \) is also a partial order on \(A \).

ZORN'S LEMMA

43. Consider the proof of the following statement: There exists a finite set of positive integers which is not a proper subset of any other finite set of positive integers.

Proof: Let \(\mathcal{A} \) be the class of all finite sets of positive integers. Partially order \(\mathcal{A} \) by set inclusion. Now let \(\mathcal{B} = \{B_i : i \in I\} \) be a totally ordered subclass of \(\mathcal{A} \). Consider the set \(A = \bigcup B_i \). Observe that \(B_i \subseteq A \) for every \(B_i \in \mathcal{B} \); hence \(A \) is an upper bound of \(\mathcal{B} \).

Since every totally ordered subset of \(\mathcal{A} \) has an upper bound, by Zorn's Lemma, \(\mathcal{A} \) has a maximal element, a finite set which is not a proper subset of another finite set.

Question: Since the statement is clearly false, which step in the proof is incorrect?

44. Prove the following fact which was assumed in the proof of Problem 24: Let \(\{f_i : A_i \to B\} \) be a class of functions which is totally ordered by set inclusion. Then \(\bigcup f_i \) is a function from \(\bigcup A_i \) into \(B \).

45. Prove that the following two statements are equivalent:
 (i) (Axiom of Choice.) The product \(\prod \{A_i : i \in I\} \) of a non-empty class of non-empty sets is non-empty.
 (ii) If \(\mathcal{A} \) is a non-empty class of non-empty disjoint sets, then there exists a subset \(B \subseteq \bigcup \{A : A \in \mathcal{A}\} \) such that the intersection of \(B \) and each set \(A \in \mathcal{A} \) consists of exactly one element.

46. Prove: If every totally ordered subset of an ordered set \(X \) has a lower bound in \(X \), then \(X \) has a minimal element.