Zorno tro

46

CARDINALITY, ORDER

[CHAP, 3

37. Let $X = \{1, 2, 3, 4, 5, 6\}$ be ordered as in the adjacent diagram. Consider the subset $A = \{2, 3, 4\}$ of X. (i) Find the maximal elements of X. (ii) Find the minimal elements of X. (iii) Does X have a first element? (iv) Does X have a last element? (v) Find the set of upper bounds of A. (vi) Find the set of lower bounds of A. (vii) Does sup (A) exist? (viii) Does inf (A) exist?

- 38. Consider Q, the set of rational numbers, with the natural order, and its subset $A = \{x : x \in Q, x^3 < 3\}$. (i) Is A bounded above? (ii) Is A bounded below? (iii) Does sup (A) exist? (iv) Does inf (A) exist?
- Let N, the positive integers, be ordered by "x divides y", and let $A \subset N$. (i) Does inf (A) exist?
- 40. Prove: Every finite partially ordered set has a maximal element.
- Give an example of an ordered set which has exactly one maximal element but does not have a last
- 42. Prove: If R is a partial order on A, then R^{-1} is also a partial order on A.

ZORN'S LEMMA

43. Consider the proof of the following statement: There exists a finite set of positive integers which is not a proper subset of any other finite set of positive integers. Proof. Let A be the class of all finite sets of positive integers. Partially order A by set inclusion. Now let $\mathcal{B} = \{B_i : i \in I\}$ be a totally ordered subclass of \mathcal{A} . Consider the set $A = \bigcup_i B_i$. Observe that $B_i \subset A$ for every $B_i \in \mathcal{B}$; hence A is an upper bound of \mathcal{B} .

Since every totally ordered subset of ${\mathscr A}$ has an upper bound, by Zorn's Lemma, ${\mathscr A}$ has a maximal element, a finite set which is not a proper subset of another finite set. Question: Since the statement is clearly false, which step in the proof is incorrect?

- 44. Prove the following fact which was assumed in the proof in Problem 24: Let $\{f_i:A_i\to B\}$ be a class of functions which is totally ordered by set inclusion. Then $\cup_i f_i$ is a function from $\cup_i A_i$ into B.
- 45. Prove that the following two statements are equivalent:
 - (Axiom of Choice.) The product $\prod \{A_i : i \in I\}$ of a non-empty class of non-empty sets is non-empty.
 - If $\mathcal A$ is a non-empty class of non-empty disjoint sets, then there exists a subset $B\subset \mathbf U\{A:A\in \mathcal A\}$ such that the intersection of B and each set $A \in \mathcal{A}$ consists of exactly one element.
- 46. Prove: If every totally ordered subset of an ordered set X has a lower bound in X, then X has a