- 1. (a) Use a true/false table to prove $(P \wedge Q) \wedge R \equiv P \wedge (Q \wedge R)$. Is there a name for this statement?
 - (b) Complete and prove the following $A \lor (B \land C) \equiv$
 - (c) Is the following a valid argument? $P \lor Q \lor R$, and $Q \land R$, therefore P. Be sure 7 to prove your answer.
 - (d) State Zorn's Lemma and the Axiom of Choice and the Well Ordering Principle.
- 2. (a) Define what it means for two sets to have the same cardinal number. Define countable set. Prove that $\mathbb Q$ is countable but $\mathbb R$ is not.
 - (b) State the Schroeder-Bernstein Theorem and Cantor's Theorem. Prove Cantor's Theorem.
 - (c) Prove $\prod_{1,\infty} \{0,1\} \sim \mathbb{P}(\mathbb{N})$.
- 3. (a) Define open set in \mathbb{R} , and closed set. Prove that a set is closed if and only if it contains all its accumulation points.
 - (b) Define Cauchy sequence. State and prove the Nested Intervals Theorem. State the least upper bound axiom for \mathbb{R} . State The Bolzano- Weierstrass Theorem for \mathbb{R} . What are the connections?
- 4. (a) Show that $f: \mathbb{R} \to \mathbb{R}$ is continuous iff for every open set $O, f^{-1}(O)$ is open.
 - (b) Prove that the continuous image of a connected subset of $\mathbb R$ is connected. $\ref{eq:connected}$
 - (c) Use part (b) to prove the Intermediate Value Theorem. 6