CHAPTER 6 REVIEW EXERCISES

☐ Graphing Utility

- 1. In each part, find $f^{-1}(x)$ if the inverse exists.

 - (a) $f(x) = (e^x)^2 + 1$ (b) $f(x) = \sin\left(\frac{1-2x}{x}\right), \quad \frac{2}{4+\pi} \le x \le \frac{2}{4-\pi}$
- 2. (a) State the restrictions on the domains of $\sin x$, $\cos x$, tan x, and sec x that are imposed to make those functions one-to-one in the definitions of $\sin^{-1} x$, $\cos^{-1} x$, $\tan^{-1} x$, and $\sec^{-1} x$.
 - (b) Sketch the graphs of the restricted trigonometric functions in part (a) and their inverses.
- 3. In each part, find the exact numerical value of the given expression.
 - (a) $\cos[\cos^{-1}(4/5) + \sin^{-1}(5/13)]$
 - (b) $\sin[\sin^{-1}(4/5) + \cos^{-1}(5/13)]$
- 4. In each part, sketch the graph, and check your work with a graphing utility.
 - (a) $f(x) = 3\sin^{-1}(x/2)$
 - (b) $f(x) = \cos^{-1} x \pi/2$
 - (c) $f(x) = 2 \tan^{-1}(-3x)$
 - (d) $f(x) = \cos^{-1} x + \sin^{-1} x$
 - 5. Suppose that the graph of $y = \log x$ is drawn with equal scales of 1 inch per unit in both the x- and y-directions. If a bug wants to walk along the graph until it reaches a height of 5 ft above the x-axis, how many miles to the right of the origin will it have to travel?
- Find the largest value of a such that the function $f(x) = xe^{-x}$ has an inverse on the interval $(-\infty, a]$.
- 7. Express the following function as a rational function of x:

$$3 \ln \left(e^{2x} (e^x)^3 \right) + 2 \exp(\ln 1)$$

- 8. Suppose that $y = Ce^{kt}$, where C and k are constants, and let $Y = \ln y$. Show that the graph of Y versus t is a line, and state its slope and Y-intercept.
- \bigcirc 9. (a) Sketch the curves $y = \pm e^{-x/2}$ and $y = e^{-x/2} \sin 2x$ for $-\pi/2 \le x \le 3\pi/2$ in the same coordinate system, and check your work using a graphing utility.
 - (b) Find all x-intercepts of the curve $y = e^{-x/2} \sin 2x$ in the stated interval, and find the x-coordinates of all points where this curve intersects the curves $y = \pm e^{-x/2}$.
- 10. Suppose that a package of medical supplies is dropped from a helicopter straight down by parachute into a remote area. The velocity v (in feet per second) of the package t seconds after it is released is given by $v = 24.61(1 - e^{-1.3t})$.
 - (a) Graph v versus t.
 - (b) Show that the graph has a horizontal asymptote v = c.
 - (c) The constant c is called the *terminal velocity*. Explain what the terminal velocity means in practical terms.
 - (d) Can the package actually reach its terminal velocity? Explain.

- (e) How long does it take for the package to reach 98% (its terminal velocity?
- ☐ 11. A breeding group of 20 bighorn sheep is released in a pro tected area in Colorado. It is expected that with carefu management the number of sheep, N, after t years will b given by the formula

$$N = \frac{220}{1 + 10(0.83^t)}$$

and that the sheep population will be able to maintain itself without further supervision once the population reaches a size of 80.

- (a) Graph N versus t.
- (b) How many years must the state of Colorado maintain a program to care for the sheep?
- (c) How many bighorn sheep can the environment in the protected area support? [Hint: Examine the graph of N versus t for large values of t.]
- An oven is preheated and then remains at a constant temperature. A potato is placed in the oven to bake. Suppose that the temperature T (in °F) of the potato t minutes later is given by $T = 400 - 325(0.97^t)$. The potato will be considered done when its temperature is anywhere between 260°F and 280°F.
 - (a) During what interval of time would the potato be considered done?
 - (b) How long does it take for the difference between the potato and oven temperatures to be cut in half?
- \bigcirc 13. (a) Show that the graphs of $y = \ln x$ and $y = x^{0.2}$ intersect.
 - (b) Approximate the solution(s) of the equation $\ln x = x^{0.2}$ to three decimal places.
- $\boxed{}$ 14. (a) Show that for x > 0 and $k \neq 0$ the equations

$$x^k = e^x$$
 and $\frac{\ln x}{x} = \frac{1}{k}$

have the same solutions.

- (b) Use the graph of $y = (\ln x)/x$ to determine the values of k for which the equation $x^k = e^x$ has two distinct positive solutions.
- (c) Estimate the positive solution(s) of $x^8 = e^x$.

15-18 Find the limits.

15.
$$\lim_{t \to \pi/2^+} e^{\tan t}$$

16.
$$\lim_{\theta \to 0^+} \ln(\sin 2\theta) - \ln(\tan \theta)$$

17.
$$\lim_{x \to +\infty} \left(1 + \frac{3}{x} \right)^{-1}$$

17.
$$\lim_{x \to +\infty} \left(1 + \frac{3}{x} \right)^{-x}$$
 18. $\lim_{x \to +\infty} \left(1 + \frac{a}{x} \right)^{bx}$, $a, b > 0$

19-20 Find dy/dx by first using algebraic properties of the new ural logarithm function.

19.
$$y = \ln\left(\frac{(x+1)(x+2)^2}{(x+3)^3(x+4)^4}\right)$$
 $y = \ln\left(\frac{\sqrt{x}\sqrt[3]{x+1}}{\sin x \sec x}\right)$

$$21. y = \ln 2x$$

21.
$$y = \ln 2x$$

22. $y = (\ln x)^2$
23. $y = \sqrt[3]{\ln x + 1}$
24. $y = \ln(\sqrt[3]{x + 1})$

$$25. y = \log(\ln x)$$

26.
$$y = \frac{1 + \log x}{1 - \log x}$$

$$27. \ y = \ln(x^{3/2}\sqrt{1+x^4})$$

$$28. \ y = \ln\left(\frac{\sqrt{x}\cos x}{1+x^2}\right)$$

29.
$$y = e^{\ln(x^2+1)}$$

30.
$$y = \ln\left(\frac{1 + e^x + e^{2x}}{1 - e^{3x}}\right)$$

31.
$$y = 2xe^{\sqrt{x}}$$

32.
$$y = \frac{a}{1 + be^{-x}}$$

33.
$$y = \frac{1}{\pi} \tan^{-1} 2x$$

$$y = 2^{\sin^{-1} x}$$

35.
$$y = x^{(e^x)}$$

38.
$$y = (1+x)^{1/x}$$

38. $y = \sqrt{\cos^{-1} x^2}$

37.
$$y = \sec^{-1}(2x + 1)$$

38.
$$y = \sqrt{\cos^{-1} x^2}$$

39-40 Find dy/dx using logarithmic differentiation.

39.
$$y = \frac{x^3}{\sqrt{x^2 + 1}}$$

40.
$$y = \sqrt[3]{\frac{x^2 - 1}{x^2 + 1}}$$

- 41. (a) Make a conjecture about the shape of the graph of $y = \frac{1}{2}x - \ln x$, and draw a rough sketch.
 - (b) Check your conjecture by graphing the equation over the interval 0 < x < 5 with a graphing utility.
 - (c) Show that the slopes of the tangent lines to the curve at x = 1 and x = e have opposite signs.
 - (d) What does part (c) imply about the existence of a horizontal tangent line to the curve? Explain.
 - (e) Find the exact x-coordinates of all horizontal tangent lines to the curve.
 - 42. Recall from Section 6.1 that the loudness β of a sound in decibels (dB) is given by $\beta = 10 \log(I/I_0)$, where I is the intensity of the sound in watts per square meter (W/m2) and I_0 is a constant that is approximately the intensity of a sound at the threshold of human hearing. Find the rate of change of β with respect to I at the point where
 - (a) $I/I_0 = 10$
- (b) $I/I_0 = 100$
- (c) $I/I_0 = 1000$.
- 43. A particle is moving along the curve $y = x \ln x$. Find all values of x at which the rate of change of y with respect to time is three times that of x. [Assume that dx/dt is never zero.]
- 44. Find the equation of the tangent line to the graph of $y = \ln(5 - x^2)$ at x = 2.
- 45. Find the value of b so that the line y = x is tangent to the graph of $y = \log_b x$. Confirm your result by graphing both y = x and $y = \log_b x$ in the same coordinate system.
- 46. In each part, find the value of k for which the graphs of y = f(x) and $y = \ln x$ share a common tangent line at their point of intersection. Confirm your result by graphing y = f(x) and $y = \ln x$ in the same coordinate system.
 - (a) $f(x) = \sqrt{x} + k$
- (b) $f(x) = k\sqrt{x}$

- 47. If f and g are inverse functions and f is differentiable on its domain, must g be differentiable on its domain? Give a reasonable informal argument to support your answer.
- 46. In each part, find $(f^{-1})'(x)$ using Formula (2) of Section 6.3, and check your answer by differentiating f^{-1} directly. (b) $f(x) = \sqrt{e^x}$ (a) f(x) = 3/(x+1)
- 49. Find a point on the graph of $y = e^{3x}$ at which the tangent line passes through the origin.
- **50.** Show that the rate of change of $y = 5000e^{1.07x}$ is proportional to y.
- **51.** Show that the function $y = e^{ax} \sin bx$ satisfies

$$y'' - 2ay' + (a^2 + b^2)y = 0$$

for any real constants a and b.

$$y'' = -2\sin y \cos^3 y$$

by the equation

$$P(t) = \frac{95}{5 - 4e^{-t/4}}$$

where P(t) is the number of deer t weeks after an initial observation at time t = 0.

- (a) Use a graphing utility to graph the function P(t).
- (b) In words, explain what happens to the population over time. Check your conclusion by finding $\lim_{t\to +\infty} P(t)$.
- (c) In words, what happens to the rate of population growth over time? Check your conclusion by graphing P'(t).
- 54. The equilibrium constant k of a balanced chemical reaction changes with the absolute temperature T according to the $k = k_0 \exp\left(-\frac{q(T - T_0)}{2T_0 T}\right)$ law

where k_0 , q, and T_0 are constants. Find the rate of change of k with respect to T.

55-56 Find the limit by interpreting the expression as an appropriate derivative.

55.
$$\lim_{h \to 0} \frac{(1+h)^{\pi} - 1}{h}$$
 56. $\lim_{x \to e} \frac{1 - \ln x}{(x-e) \ln x}$

56.
$$\lim_{x \to e} \frac{1 - \ln x}{(x - e) \ln x}$$

- 57. Suppose that $\lim f(x) = \pm \infty$ and $\lim g(x) = \pm \infty$. In each of the four possible cases, state whether $\lim [f(x) - g(x)]$ is an indeterminate form, and give a reasonable informal argument to support your answer.
- 58. (a) Under what conditions will a limit of the form

$$\lim_{x \to a} [f(x)/g(x)]$$

be an indeterminate form?

- (b) If $\lim_{x\to a} g(x) = 0$, must $\lim_{x\to a} [f(x)/g(x)]$ be an indeterminate form? Give some examples to support your answer.
- 59-62 Evaluate the given limit. ■

Chapter 6 / Exponential, Logarithmic, and Inverse Trigonometric Functions

59.
$$\lim_{x \to +\infty} (e^x - x^2)$$

$$\lim_{x \to 1} \sqrt{\frac{\ln x}{x^4 - 1}}$$

61.
$$\lim_{x \to 0} \frac{x^2 e^x}{\sin^2 3x}$$

62.
$$\lim_{x\to 0} \frac{a^x - 1}{x}$$
, $a > 0$

63-64 Find: (a) the intervals on which f is increasing, (b) the intervals on which f is decreasing, (c) the open intervals on which f is concave up, (d) the open intervals on which f is concave down, and (e) the x-coordinates of all inflection points.

63.
$$f(x) = 1/e^{x^2}$$

64.
$$f(x) = \tan^{-1} x^2$$

65-66 Use any method to find the relative extrema of the function f.

65.
$$f(x) = \ln(1 + x^2)$$

66.
$$f(x) = x^2 e^x$$

67-68 In each part, find the absolute minimum m and the absolute maximum M of f on the given interval (if they exist), and state where the absolute extrema occur.

67.
$$f(x) = e^x/x^2$$
; $(0, +\infty)$

68.
$$f(x) = x^x$$
; $(0, +\infty)$

$$\bigcirc$$
 69. Use a graphing utility to estimate the absolute maximum and minimum values of $f(x) = x/2 + \ln(x^2 + 1)$, if any, on the interval $[-4, 0]$, and then use calculus methods to find the exact values.

70. Prove that
$$x \le \sin^{-1} x$$
 for all x in $[0, 1]$.

71-74 Evaluate the integrals.

71.
$$\int [x^{-2/3} - 5e^x] dx$$

71.
$$\int [x^{-2/3} - 5e^x] dx$$
 72. $\int \left[\frac{3}{4x} - \sec^2 x \right] dx$

73.
$$\int \left[\frac{1}{1+x^2} + \frac{2}{\sqrt{1-x^2}} \right] dx$$

$$\int \left[\frac{12}{x\sqrt{x^2 - 1}} + \frac{1 - x^4}{1 + x^2} \right] dx$$

75-76 Use a calculating utility to find the left endpoint, right endpoint, and midpoint approximations to the area under the curve y = f(x) over the stated interval using n = 10 subintervals.

75.
$$y = \ln x$$
; [1, 2]

76.
$$y = e^x$$
; [0, 1]

77. Interpret the expression as a definite integral over [0, 1], and then evaluate the limit by evaluating the integral.

$$\lim_{\max \Delta x_k \to 0} \sum_{k=1}^n e^{x_k^*} \Delta x_k$$

78. Find the limit

$$\lim_{n \to +\infty} \frac{e^{1/n} + e^{2/n} + e^{3/n} + \dots + e^{n/n}}{n}$$

by interpreting it as a limit of Riemann sums in which the interval [0, 1] is divided into n subintervals of equal length,

79-80 Find the area under the curve y = f(x) over the stated interval.

79.
$$f(x) = e^x$$
; [1, 3]

79.
$$f(x) = e^x$$
; [1, 3] 80. $f(x) = \frac{1}{x}$; [1, e^3]

Solve the initial-value problems.
(a)
$$\frac{dy}{dx} = \cos x - 5e^x$$
, $y(0) = 0$

(b)
$$\frac{dy}{dx} = xe^{x^2}$$
, $y(0) = 0$

82-84 Evaluate the integrals by making an appropriate substi-

82.
$$\int_{a}^{e^2} \frac{dx}{x \ln x}$$

$$83. \int_0^1 \frac{dx}{\sqrt{e^x}}$$

84.
$$\int_0^{2/\sqrt{3}} \frac{1}{4+9x^2} \, dx$$

85. Find the volume of the solid whose base is the region bounded between the curves
$$y = \sqrt{x}$$
 and $y = 1/\sqrt{x}$ for $1 \le x \le 4$ and whose cross sections taken perpendicular to the x-axis are squares.

86. Find the average value of $f(x) = e^x + e^{-x}$ over the interval $\left[\ln\frac{1}{2}, \ln 2\right]$.

87. In each part, prove the identity.

(a)
$$\cosh 3x = 4 \cosh^3 x - 3 \cosh x$$

(b)
$$\cosh \frac{1}{2}x = \sqrt{\frac{1}{2}(\cosh x + 1)}$$

(c)
$$\sinh \frac{1}{2}x = \pm \sqrt{\frac{1}{2}(\cosh x - 1)}$$

88. Show that for any constant a, the function $y = \sinh(ax)$ satisfies the equation $y'' = a^2 y$.

QUICK CHECK EXERCISES 7.2 (See page 500 for answers.)

1. (a) If
$$G'(x) = g(x)$$
, then
$$\int f(x)g(x) dx = f(x)G(x) - ____$$

- (b) If u = f(x) and v = G(x), then the formula in part (a) can be written in the form $\int u \, dv =$ ____
- 2. Find an appropriate choice of u and dv for integration by parts of each integral. Do not evaluate the integral.

(a)
$$\int x \ln x \, dx; \ u = \underline{\qquad}, \ dv = \underline{\qquad}$$

(b)
$$\int (x-2)\sin x \, dx$$
; $u =$ _____, $dv =$ _____

3. Use integration by parts to evaluate the integral.

(a)
$$\int xe^{2x} dx$$

(b)
$$\int \ln(x-1) \, dx$$

(c)
$$\int_0^{\pi/6} x \sin 3x \, dx$$

4. Use a reduction formula to evaluate $\int \sin^3 x \, dx$.

EXERCISE SET 7.2

1-38 Evaluate the integral.

$$1. \int xe^{-2x} dx$$

2.
$$\int xe^{4x} dx$$

3.
$$\int x^2 e^x dx$$

$$4. \int x^2 e^{-2x} dx$$

$$5. \int x^2 \cos x \, dx$$

6.
$$\int x \cos 2x \, dx$$

$$7. \int x \sin 3x \, dx$$

8.
$$\int x^2 \sin x \, dx$$

9.
$$\int x \ln x \, dx$$

10.
$$\int \sqrt{x} \ln x \, dx$$

11.
$$\int (\ln x)^2 dx$$

$$\int \frac{\ln x}{\sqrt{x}} dx$$

$$13. \int \ln(3x-2) \, dx$$

$$\iint \int \ln(x^2 + 16) \, dx$$

$$15. \int \sin^{-1} 2x \, dx$$

16.
$$\int \cos^{-1}(2x) dx$$

17.
$$\int \tan^{-1}(3x) dx$$

$$18. \int x \tan^{-1} x \, dx$$

$$19. \int \sin(\ln x) \, dx$$

$$20. \int \cos(\ln x) \, dx$$

$$21. \int e^x \sin x \, dx$$

$$22. \int e^{3x} \cos 2x \, dx$$

$$23. \int x \sec^2 x \, dx$$

$$24. \int x \tan^2 x \, dx$$

$$25. \int x^3 e^{x^2} dx$$

$$\int \frac{xe^x}{(x+1)^2} \, dx$$

$$27. \int_0^2 xe^{3x} dx$$

$$28. \int_0^1 x e^{-3x} \, dx$$

29.
$$\int_{1}^{e} x^{2} \ln x \, dx$$

$$30. \int_{\sqrt{e}}^{e} \frac{\ln x}{x^2} \, dx$$

31.
$$\int_{-1}^{1} \ln(x+2) dx$$

$$32. \int_0^{\sqrt{3}/2} \sin^{-1} x \, dx$$

33.
$$\int_{2}^{4} \sec^{-1} \sqrt{\theta} d\theta$$

33.
$$\int_{2}^{4} \sec^{-1} \sqrt{\theta} \, d\theta$$
 34. $\int_{1}^{2} x \sec^{-1} x \, dx$

$$35. \int_0^\pi x \sin 2x \, dx$$

35.
$$\int_0^{\pi} x \sin 2x \, dx$$
 36. $\int_0^{\pi} (x + x \cos x) \, dx$

37.
$$\int_{1}^{3} \sqrt{x} \tan^{-1} \sqrt{x} dx$$
 38. $\int_{0}^{2} \ln(x^{2} + 1) dx$

38.
$$\int_{0}^{2} \ln(x^2 + 1) dx$$

- 39-42 True-False Determine whether the statement is true or false. Explain your answer.
- 39. The main goal in integration by parts is to choose u and dvto obtain a new integral that is easier to evaluate than the
- **40.** Applying the LIATE strategy to evaluate $\int x^3 \ln x \, dx$, we should choose $u = x^3$ and $dv = \ln x \, dx$.
- 41. To evaluate $\int \sin(\ln x) dx$ using integration by parts, choose $dv = \ln dx$.
- 42. Tabular integration by parts is useful for integrals of the form $\int p(x) f(x) dx$, where p(x) is a polynomial and f(x)can be repeatedly integrated.
- 43-44 Evaluate the integral by making a u-substitution and then integrating by parts.

43.
$$\int \sin \sqrt{x} \, dx$$

44.
$$\int e^{\sqrt{x}} dx$$

45. Prove that tabular integration by parts gives the correct answer for

$$\int p(x) f(x) dx$$

- where p(x) is any quadratic polynomial and f(x) is any function that can be repeatedly integrated.
- 46. The computations of any integral evaluated by repeated integration by parts can be organized using tabular integration by parts. Use this organization to evaluate $\int e^x \cos x \, dx$ in

two ways: first by repeated differentiation of $\cos x$ (compare Example 5), and then by repeated differentiation of e^x .

47-52 Evaluate the integral using tabular integration by parts.

47.
$$\int 4x^4 \sin 2x \, dx$$
 48. $\int (x^2 + x + 1) \sin x \, dx$
49. $\int (3x^2 - x + 2)e^{-x} \, dx$ 50. $\int x^3 \sqrt{2x + 1} \, dx$
51. $\int e^{ax} \sin bx \, dx$ 52. $\int e^{-2\theta} \sin 3\theta \, d\theta$

53. Consider the integral
$$\int \sin x \cos x \, dx$$
.

- (a) Evaluate the integral two ways: first using integration by parts, and then using the substitution $u = \sin x$.
- (b) Show that the results of part (a) are equivalent.
- (c) Which of the two methods do you prefer? Discuss the reasons for your preference.

54. Evaluate the integral

$$\int_{0}^{1} \frac{x^{3}}{\sqrt{x^{2}+1}} dx$$

using

- (a) integration by parts
- (b) the substitution $u = \sqrt{x^2 + 1}$

55. (a) Find the area of the region enclosed by $y = \ln x$, the line x = e, and the x-axis.

(b) Find the volume of the solid generated when the region in part (a) is revolved about the x-axis.

56. Find the area of the region between
$$y = x \sin x$$
 and $y = x$ for $0 \le x \le \pi/3$.

58. Find the volume of the solid generated when the region enclosed between
$$y = \cos x$$
 and $y = 0$ for $0 \le x \le \pi/2$ is revolved about the y-axis.

59. A particle moving along the x-axis has velocity function
$$v(t) = t^2 \sin t$$
. How far does the particle travel from time $t = 0$ to $t = \pi$?

$$\int_{-\pi/\omega}^{\pi/\omega} t \sin(k\omega t) \, dt$$

where k is an integer and ω is a nonzero constant. Evaluate the integral.

61. Use reduction formula (9) to evalua

Use reduction formula (5) to evaluate (a)
$$\int \sin^4 x \, dx$$
 (b)
$$\int_0^{\pi/2} \sin^5 x \, dx$$
.

62. Use reduction formula (10) to evalua

Use reduction formula (10) to evaluate
(a)
$$\int \cos^5 x \, dx$$
 (b) $\int_0^{\pi/2} \cos^6 x \, dx$.

In each part, use integration by parts or other methods to derive the reduction formula.

derive the reduction formula.
(a)
$$\int \sec^n x \, dx = \frac{\sec^{n-2} x \tan x}{n-1} + \frac{n-2}{n-1} \int \sec^{n-2} x \, dx$$
(b)
$$\int \tan^n x \, dx = \frac{\tan^{n-1} x}{n-1} - \int \tan^{n-2} x \, dx$$

(b)
$$\int \tan^n x \, dx = \frac{\tan^{n-1} x}{n-1} - \int \tan^{n-2} x \, dx$$

(c)
$$\int x^n e^x dx = x^n e^x - n \int x^{n-1} e^x dx$$

65-66 Use the reduction formulas in Exercise 64 to evaluate the integrals.

the integrals.

65. (a)
$$\int \tan^3 x \, dx$$
 (b) $\int \sec^4 x \, dx$ (c) $\int x^3 e^x \, dx$

67. Let f be a function whose second derivative is continuous on [-1, 1]. Show that

$$\int_{-1}^{1} x f''(x) \, dx = f'(1) + f'(-1) - f(1) + f(-1)$$

FOCUS ON CONCEPTS

68. (a) In the integral $\int x \cos x \, dx$, let

$$u = x, \quad dv = \cos x \, dx,$$

$$du = dx$$
, $v = \sin x + C_1$

Show that the constant C_1 cancels out, thus giving the same solution obtained by omitting C_1 .

(b) Show that in general

$$uv - \int v \, du = u(v + C_1) - \int (v + C_1) \, du$$

thereby justifying the omission of the constant of integration when calculating v in integration by parts.

69. Evaluate $\int \ln(x+1) dx$ using integration by parts. Simplify the computation of $\int v du$ by introducing a constant of integration $C_1 = 1$ when going from dv to v.

70. Evaluate
$$\int \ln(3x-2) dx$$
 using integration by parts. Simplify the computation of $\int v du$ by introducing a constant of integration $C_1 = -\frac{2}{3}$ when going from dv to v . Compare your solution with your answer to Exercise 13.

71. Evaluate
$$\int x \tan^{-1} x \, dx$$
 using integration by parts. Simplify the computation of $\int v \, du$ by introducing a constant of integration $C_1 = \frac{1}{2}$ when going from dv to v .

72. What equation results if integration by parts is applied to the integral
$$\int \frac{1}{x \ln x} dx$$

$$u = \frac{1}{\ln x} \quad \text{and} \quad dv = \frac{1}{x} \, dx?$$

In what sense is this equation true? In what sense is it false?