CHAPTER 6 REVIEW EXERCISES

Graphing Utility

- 1. In each part, find $f^{-1}(x)$ if the inverse exists.

 - (b) $f(x) = \sin\left(\frac{1-2x}{x}\right), \quad \frac{2}{4+\pi} \le x \le \frac{2}{4-\pi}$
 - (c) $f(x) = \frac{1}{1 + 3 \tan^{-1} x}$
- 2. (a) State the restrictions on the domains of $\sin x$, $\cos x$, tan x, and sec x that are imposed to make those functions one-to-one in the definitions of $\sin^{-1} x$, $\cos^{-1} x$, $\tan^{-1} x$, and $\sec^{-1} x$.
 - (b) Sketch the graphs of the restricted trigonometric functions in part (a) and their inverses.
- 3. In each part, find the exact numerical value of the given expression.
 - (a) $\cos[\cos^{-1}(4/5) + \sin^{-1}(5/13)]$
 - (b) $\sin[\sin^{-1}(4/5) + \cos^{-1}(5/13)]$
- 4. In each part, sketch the graph, and check your work with a graphing utility.
 - (a) $f(x) = 3\sin^{-1}(x/2)$
 - (b) $f(x) = \cos^{-1} x \pi/2$
 - (c) $f(x) = 2 \tan^{-1}(-3x)$
 - (d) $f(x) = \cos^{-1} x + \sin^{-1} x$
 - 5. Suppose that the graph of $y = \log x$ is drawn with equal scales of 1 inch per unit in both the x- and y-directions. If a bug wants to walk along the graph until it reaches a height of 5 ft above the x-axis, how many miles to the right of the origin will it have to travel?

Find the largest value of a such that the function $f(x) = xe^{-x}$ has an inverse on the interval $(-\infty, a]$.

7. Express the following function as a rational function of x:

$$3 \ln (e^{2x} (e^x)^3) + 2 \exp(\ln 1)$$

Suppose that $y = Ce^{kt}$, where C and k are constants, and whet $Y = \ln y$. Show that the graph of Y versus t is a line, and state its slope and Y-intercept.

- \bigcirc 9. (a) Sketch the curves $y = \pm e^{-x/2}$ and $y = e^{-x/2} \sin 2x$ for $-\pi/2 \le x \le 3\pi/2$ in the same coordinate system, and check your work using a graphing utility.
 - (b) Find all x-intercepts of the curve $y = e^{-x/2} \sin 2x$ in the stated interval, and find the x-coordinates of all points where this curve intersects the curves $y = \pm e^{-x/2}$.
- 10. Suppose that a package of medical supplies is dropped from a helicopter straight down by parachute into a remote area. The velocity v (in feet per second) of the package t seconds after it is released is given by $v = 24.61(1 - e^{-1.3t})$.
 - (a) Graph v versus t.
 - (b) Show that the graph has a horizontal asymptote v=c.
 - (c) The constant c is called the terminal velocity. Explain what the terminal velocity means in practical terms.
 - Can the package actually reach its terminal velocity? Explain.

- (e) How long does it take for the package to reach 98% of its terminal velocity?
- 211. A breeding group of 20 bighorn sheep is released in a protected area in Colorado. It is expected that with careful management the number of sheep, N, after t years will be given by the formula

$$N = \frac{220}{1 + 10(0.83')}$$

and that the sheep population will be able to maintain itself without further supervision once the population reaches a size of 80.

- (a) Graph N versus t.
- (b) How many years must the state of Colorado maintain a program to care for the sheep?
- (c) How many bighorn sheep can the environment in the protected area support? [Hint: Examine the graph of N versus t for large values of t.]

An oven is preheated and then remains at a constant temperature. A potato is placed in the oven to bake. Suppose that the temperature T (in °F) of the potato t minutes later is given by $T = 400 - 325(0.97^t)$. The potato will be considered done when its temperature is anywhere between 260°F and 280°F.

- (a) During what interval of time would the potato be considered done?
- (b) How long does it take for the difference between the potato and oven temperatures to be cut in half?
- \sim 13. (a) Show that the graphs of $y = \ln x$ and $y = x^{0.2}$ intersect
 - (b) Approximate the solution(s) of the equation $\ln x = r^{0.2}$ to three decimal places.
- $\[\]$ 14. (a) Show that for x > 0 and $k \not\equiv 0$ the equations

$$x^k = e^x$$
 and $\frac{\ln x}{x} = \frac{1}{k}$

have the same solutions.

- (b) Use the graph of $y = (\ln x)/x$ to determine the value of k for which the equation $x^k = e^x$ has two distinct positive solutions.
- (c) Estimate the positive solution(s) of $x^8 = e^x$.

15-18 Find the limits.

15.
$$\lim_{t \to \pi/2^+} e^{\tan t}$$

16.
$$\lim_{\theta \to 0^+} \ln(\sin 2\theta) - \ln(\tan \theta)$$

17.
$$\lim_{x \to +\infty} \left(1 + \frac{3}{x} \right)^{-1}$$

17.
$$\lim_{x \to +\infty} \left(1 + \frac{3}{x}\right)^{-x}$$

$$\lim_{x \to +\infty} \left(1 + \frac{a}{x}\right)^{b,c} \quad a, b > 0$$

19-20 Find dy/dx by first using algebraic properties of the xural logarithm function. 3

ural logarithm function.
19.
$$y = \ln\left(\frac{(x+1)(x+2)^2}{(x+3)^3(x+4)^4}\right)$$
 $y = \ln\left(\frac{\sqrt{x\sqrt[3]{x+4}}}{\sin x \sec^3 x}\right)$

$$\sum_{y=1}^{n} 2x$$

$$23. \ y = \sqrt[3]{\ln x + 1}$$

$$y = \log(\ln x)$$

$$\mathbf{y}_{3,3} = \ln(x^{3/2}\sqrt{1+x^4})$$

29,
$$y = e^{\ln(x^2+1)}$$

$$31. \ y = 2xe^{\sqrt{x}}$$

$$\frac{1}{2^{2}} = \frac{1}{-} \tan^{-1} 2x$$

$$35. \ \gamma = x^{(e^{\tau})}$$

37.
$$v = \sec^{-1}(2x + 1)$$

33.
$$y = \frac{1}{\pi} \tan^{-1} 2x$$

36.
$$y = (1+x)^{1/x}$$

34. $y = 2^{\sin^{-1} x}$

32. $y = \frac{a}{1 + he^{-x}}$

22. $y = (\ln x)^2$

26. $y = \frac{1 + \log x}{1 - \log x}$

24. $y = \ln(\sqrt[3]{x+1})$

28. $y = \ln\left(\frac{\sqrt{x}\cos x}{1+x^2}\right)$

30. $y = \ln\left(\frac{1 + e^x + e^{2x}}{1 - e^{3x}}\right)$

38.
$$y = \sqrt{\cos^{-1} x^2}$$

39-40 Find dy/dx using logarithmic differentiation.

39.
$$y = \frac{x^3}{\sqrt{x^2 + 1}}$$

40.
$$y = \sqrt[3]{\frac{x^2 - 1}{x^2 + 1}}$$

- 41. (a) Make a conjecture about the shape of the graph of $y = \frac{1}{2}x - \ln x$, and draw a rough sketch.
 - (b) Check your conjecture by graphing the equation over the interval 0 < x < 5 with a graphing utility.
 - (c) Show that the slopes of the tangent lines to the curve at x = 1 and x = e have opposite signs.
 - (d) What does part (c) imply about the existence of a horizontal tangent line to the curve? Explain.
 - (e) Find the exact x-coordinates of all horizontal tangent lines to the curve.
 - 42. Recall from Section 6.1 that the loudness β of a sound in decibels (dB) is given by $\beta = 10 \log(I/I_0)$, where I is the intensity of the sound in watts per square meter (W/m2) and I_0 is a constant that is approximately the intensity of a sound at the threshold of human hearing. Find the rate of change of β with respect to I at the point where
 - (a) $I/I_0 = 10$
- (b) $I/I_0 = 100$
- (c) $I/I_0 = 1000$.
- 43. A particle is moving along the curve $y = x \ln x$. Find all values of x at which the rate of change of y with respect to time is three times that of x. [Assume that dx/dt is never zero.]
- 44. Find the equation of the tangent line to the graph of $y = \ln(5 - x^2)$ at x = 2.
- 45. Find the value of b so that the line y = x is tangent to the graph of $y = \log_b x$. Confirm your result by graphing both y = x and $y = \log_b x$ in the same coordinate system.
- 46. In each part, find the value of k for which the graphs of y = f(x) and $y = \ln x$ share a common tangent line at their point of intersection. Confirm your result by graphing y = f(x) and $y = \ln x$ in the same coordinate system.
 - (a) $f(x) = \sqrt{x} + k$
- (b) $f(x) = k\sqrt{x}$

- 47. If f and g are inverse functions and f is differentiable on its domain, must g be differentiable on its domain? Give a reasonable informal argument to support your answer.
- **48.** In each part, find $(f^{-1})'(x)$ using Formula (2) of Section 6.3, and check your answer by differentiating f^{-1} directly.
 - (a) f(x) = 3/(x+1)
- (b) $f(x) = \sqrt{e^x}$
- 49. Find a point on the graph of $y = e^{3x}$ at which the tangent line passes through the origin.
- **50.** Show that the rate of change of $y = 5000e^{1.07x}$ is proportional to y.
- **51.** Show that the function $y = e^{ax} \sin bx$ satisfies

$$y'' - 2ay' + (a^2 + b^2)y = 0$$

for any real constants a and b.

52. Show that the function $y = \tan^{-1} x$ satisfies

$$y'' = -2\sin y \cos^3 y$$

53. Suppose that the population of deer on an island is modeled by the equation

$$P(t) = \frac{95}{5 - 4e^{-t/4}}$$

where P(t) is the number of deer t weeks after an initial observation at time t = 0.

- (a) Use a graphing utility to graph the function P(t).
- (b) In words, explain what happens to the population over time. Check your conclusion by finding $\lim_{t\to +\infty} P(t)$.
- (c) In words, what happens to the rate of population growth over time? Check your conclusion by graphing P'(t).
- The equilibrium constant k of a balanced chemical reaction changes with the absolute temperature T according to the law $k = k_0 \exp\left(-\frac{q(T - T_0)}{2T_0 T}\right)$

where k_0 , q, and T_0 are constants. Find the rate of change of k with respect to T.

55-56 Find the limit by interpreting the expression as an appropriate derivative.

- 55. $\lim_{h \to 0} \frac{(1+h)^{\pi} 1}{h}$ 56. $\lim_{x \to e} \frac{1 \ln x}{(x-e) \ln x}$
- 57. Suppose that $\lim f(x) = \pm \infty$ and $\lim g(x) = \pm \infty$. In each of the four possible cases, state whether $\lim [f(x) - g(x)]$ is an indeterminate form, and give a reasonable informal argument to support your answer.
 - (a) Under what conditions will a limit of the form

$$\lim_{x \to a} [f(x)/g(x)]$$

be an indeterminate form?

- (b) If $\lim_{x\to a} g(x) = 0$, must $\lim_{x\to a} [f(x)/g(x)]$ be an indeterminate form? Give some examples to support your answer.
- 59-62 Evaluate the given limit. ■

486 Chapter 6 / Exponential, Logarithmic, and Inverse Trigonometric Functions

59.
$$\lim_{x \to +\infty} (e^x - x^2)$$

$$\lim_{x \to 1} \sqrt{\frac{\ln x}{x^4 - 1}}$$
61. $\lim_{x \to 0} \frac{x^2 e^x}{\sin^2 3x}$ 62. $\lim_{x \to 0} \frac{a^x - 1}{x}$, $a > 0$

63-64 Find: (a) the intervals on which f is increasing, (b) the intervals on which f is decreasing, (c) the open intervals on which f is concave up, (d) the open intervals on which f is concave down, and (e) the x-coordinates of all inflection points.

63.
$$f(x) = 1/e^{x^2}$$
 64. $f(x) = \tan^{-1} x^2$

65-66 Use any method to find the relative extrema of the function f.

65.
$$f(x) = \ln(1 + x^2)$$
 66. $f(x) = x^2 e^x$

67-68 In each part, find the absolute minimum m and the absolute maximum M of f on the given interval (if they exist), and state where the absolute extrema occur.

67.
$$f(x) = e^x/x^2$$
; $(0, +\infty)$

68.
$$f(x) = x^x$$
; $(0, +\infty)$

69. Use a graphing utility to estimate the absolute maximum and minimum values of $f(x) = x/2 + \ln(x^2 + 1)$, if any, on the interval [-4, 0], and then use calculus methods to find the exact values.

70. Prove that
$$x \leq \sin^{-1} x$$
 for all x in $[0, 1]$.

71-74 Evaluate the integrals.

71.
$$\int [x^{-2/3} - 5e^x] dx$$
72.
$$\int \left[\frac{3}{4x} - \sec^2 x \right] dx$$
73.
$$\int \left[\frac{1}{1+x^2} + \frac{2}{\sqrt{1-x^2}} \right] dx$$

$$\int \left[\frac{12}{x\sqrt{x^2 - 1}} + \frac{1-x^4}{1+x^2} \right] dx$$

75-76 Use a calculating utility to find the left endpoint, right endpoint, and midpoint approximations to the area under the curve y = f(x) over the stated interval using n = 10 subintervals.

75.
$$y = \ln x$$
; [1, 2] 76. $y = e^x$; [0, 1]

77. Interpret the expression as a definite integral over [0, 1], and then evaluate the limit by evaluating the integral.

$$\lim_{\max \Delta x_k \to 0} \sum_{k=1}^n e^{x_k^*} \Delta x_k$$

78. Find the limit

$$\lim_{n \to +\infty} \frac{e^{1/n} + e^{2/n} + e^{3/n} + \dots + e^{n/n}}{n}$$

by interpreting it as a limit of Riemann sums in which the interval [0, 1] is divided into n subintervals of equal length,

79-80 Find the area under the curve y = f(x) over the stated interval.

79.
$$f(x) = e^x$$
; [1, 3] 80. $f(x) = \frac{1}{x}$; [1, e^3]

81. Solve the initial-value problems.

(a)
$$\frac{dy}{dx} = \cos x - 5e^x$$
, $y(0) = 0$

(b)
$$\frac{dy}{dx} = xe^{x^2}$$
, $y(0) = 0$

82-84 Evaluate the integrals by making an appropriate substitution.

82.
$$\int_{e}^{e^{2}} \frac{dx}{x \ln x}$$
 83. $\int_{0}^{1} \frac{dx}{\sqrt{e^{x}}}$

84.
$$\int_0^{2/\sqrt{3}} \frac{1}{4+9x^2} \, dx$$

85. Find the volume of the solid whose base is the region bounded between the curves $y_q = \sqrt{x}$ and $y = 1/\sqrt{x}$ for $1 \le x \le 4$ and whose cross sections taken perpendicular to the x-axis are squares.

86. Find the average value of $f(x) = e^x + e^{-x}$ over the interval $\left[\ln \frac{1}{2}, \ln 2\right]$.

87. In each part, prove the identity.

(a)
$$\cosh 3x = 4 \cosh^3 x - 3 \cosh x$$

(b)
$$\cosh \frac{1}{2}x = \sqrt{\frac{1}{2}(\cosh x + 1)}$$

(c)
$$\sinh \frac{1}{2}x = \pm \sqrt{\frac{1}{2}(\cosh x - 1)}$$

88. Show that for any constant a, the function $y = \sinh(ax)$ satisfies the equation $y'' = a^2y$.