CHAPTER 6 REVIEW EXERCISES

1. In each part, find $f^{-1}(x)$ if the inverse exists.
 (a) $f(x) = (e^x)^2 + 1$
 (b) $f(x) = \sin \left(\frac{1 - 2x}{x} \right), \quad \frac{2}{4 + \pi} \leq x \leq \frac{2}{4 - \pi}$
 (c) $f(x) = 1 + 3 \tan^{-1} x$

2. (a) State the restrictions on the domains of $\sin x$, $\cos x$, $\tan x$, and $\sec x$ that are imposed on those functions one-to-one in the definitions of $\sin^{-1} x$, $\cos^{-1} x$, $\tan^{-1} x$, and $\sec^{-1} x$.
 (b) Sketch the graphs of the restricted trigonometric functions in part (a) and their inverses.

3. In each part, find the exact numerical value of the given expression.
 (a) $\cos(\cos^{-1}(4/5) + \sin^{-1}(5/13))$
 (b) $\sin(\sin^{-1}(4/5) + \cos^{-1}(5/13))$

4. In each part, sketch the graph, and check your work with a graphing utility.
 (a) $f(x) = 3 \sin^{-1}(x/2)$
 (b) $f(x) = e^{-x} - 2$ for $x \leq 3$
 (c) $f(x) = 2 \tan^{-1}(x - 3x)$
 (d) $f(x) = x + \sin^{-1} x$

5. Suppose that the graph of $y = \log x$ is drawn with equal scales of 1 inch per unit in both the x- and y-directions. If a bug wants to walk along the graph until it reaches a height of 5 ft above the x-axis, how many miles to the right of the origin will it have to travel?

6. Find the largest value of a such that the function $f(x) = xe^{-ax}$ has an inverse on the interval $(-\infty, a]$.

7. Express the following function as a rational function of x:
 $3 \ln \left(\frac{x^2 (e^x)^2}{x^2 + 1} \right) + 2 \exp(\ln 1)$

8. Suppose that $y = Ce^k$, where C and k are constants, and let $Y = \ln y$. Show that the graph of Y versus t is a line, and state its slope and Y-intercept.

9. (a) Sketch the curves $y = xe^{-x^2}$ and $y = e^{-x^2} \sin 2x$ for $-\pi/2 \leq x \leq 3\pi/2$ in the same coordinate system, and check your work using a graphing utility.
 (b) Find all x-intercepts of the curve $y = e^{-x^2} \sin 2x$ in the stated interval, and find the x-coordinates of all points where this curve intersects the curves $y = \pm e^{-x^2}$.

10. Suppose that a package of medical supplies is dropped from a helicopter straight down by parachute into a remote area. The velocity v (in feet per second) of the package t seconds after it is released is given by $v = 24.61 (1 - e^{-1.2t})$.
 (a) Graph v versus t.
 (b) Show that the graph has a horizontal asymptote $v = c$.
 (c) The constant c is called the terminal velocity. Explain what the terminal velocity means in practical terms.
 (d) Can the package actually reach its terminal velocity? Explain.

(c) How long does it take for the package to reach 98% of its terminal velocity?

11. A breeding group of 20 bighorn sheep is released in a protected area in Colorado. It is expected that with careful management the number of sheep, N, after t years will be given by the formula

 \[N = \frac{226}{1 + 10(0.83)^t} \]

and that the sheep population will be able to maintain itself without further supervision once the population reaches a size of 80.

 (a) Graph N versus t.
 (b) How many years must the state of Colorado maintain a program to care for the sheep?
 (c) How many bighorn sheep can the environment in the protected area support? [Hint: Examine the graph of N versus t for large values of t.]

12. An oven is preheated and then remains at a constant temperature. A potato is placed in the oven to bake. Suppose that the temperature T (in °F) of the potato t minutes later is given by $T = 400 - 325(0.97)^t$. The potato will be considered done when its temperature is anywhere between 260°F and 280°F.

 (a) During what interval of time would the potato be considered done?
 (b) How long does it take for the difference between the potato and oven temperatures to be cut in half?

13. (a) Show that the graphs of $y = \ln x$ and $y = e^x$ intersect.
 (b) Approximate the solution(s) of the equation $\ln x = e^x$ to three decimal places.

14. (a) Show that for $x > 0$ and $k \neq 0$ the equations
 \[x^k = a^x \quad \text{and} \quad \frac{n}{x} = \frac{1}{k} \]

 have the same solutions.
 (b) Use the graph of $y = \ln x$ to determine the value of k for which the equation $x^k = e^x$ has two distinct positive solutions.
 (c) Estimate the positive solution(s) of $x^k = e^x$.

15-18 Find the limits.

15. $\lim_{x \to \pi/2} \frac{\sin x}{\cos x}$

16. $\lim_{x \to 0} \frac{\ln(\sin 2x)}{\ln(\tan 6x)}$

17. $\lim_{x \to 0} \left(1 + \frac{3}{x}\right)^x$

18. $\lim_{x \to a} \left(1 + \frac{a}{x}\right)^x$

19-20 Find dy/dx by first using algebraic properties of the natural logarithm function.

19. $y = \ln \left(\frac{(x + 1)(x + 2)}{(x + 3)(x + 4)}\right)$

20. $y = \ln \left(\frac{\sqrt{x + 1}}{\sin x \sec x}\right)$
21–30 Find dy/dx.
21. y = ln 2x
22. y = (ln x)^2
23. y = √ln x + 1
24. y = ln(√x + 1)
25. y = log(ln x)
26. y = 1 + log x
27. y = ln(x^3 + √1 + x^2)
28. y = ln(1 + x^2 + e^x)
29. y = e^{x^2 + 1}
30. y = 2x + e^x
31. y = x/π
32. y = 2x + e^x
33. y = tan^{-1}(2x)
34. y = 2πli^{-1}
35. y = e^{x^2}
36. y = (1 + x)^{1/x}
37. y = sec^{-1}(2x + 1)
38. y = √cos^{-1}(1/2)

39–40 Find dy/dx using logarithmic differentiation.
39. y = x^3/√x^2 + 1
40. y = x^2/√x^2 + 1

41. (a) Make a conjecture about the shape of the graph of y = x^3 ln x, and draw a rough sketch.
(b) Check your conjecture by graphing the equation over the interval 0 < x < 5 with a graphing utility.
(c) Show that the slopes of the tangent lines to the curve at x = 1 and x = e have opposite signs.
(d) What does part (c) imply about the existence of a horizontal tangent line to the curve? Explain.
(e) Find the exact x-coordinates of all horizontal tangent lines to the curve.

42. Recall from Section 6.1 that the loudness β of a sound in decibels (dB) is given by β = 10 log(I/I_0), where I is the intensity of the sound in watts per square meter (W/m^2) and I_0 is a constant that is approximately the intensity of a sound at the threshold of human hearing. Find the rate of change of β with respect to I at the point where (a) I/I_0 = 10, (b) I/I_0 = 100, and (c) I/I_0 = 1000.

43. A particle is moving along the curve y = x ln x. Find all values of x at which the rate of change of y with respect to time is three times that of x. [Assume that dx/dt is never zero.]

44. Find the equation of the tangent line in the graph of y = ln(x^2 – x^2) at x = 2.

45. Find the value of b so that the line y = x is tangent to the graph of y = log_b x. Confirm your result by graphing both y = x and y = log_b x in the same coordinate system.

46. In each part, find the value of k for which the graphs of y = f(x) and y = ln x share a common tangent line at their point of intersection. Confirm your result by graphing y = f(x) and y = ln x in the same coordinate system.
(a) f(x) = √x + k
(b) f(x) = k/√x

47. If f and g are inverse functions and f is differentiable on its domain, must g be differentiable on its domain? Give a reasonable informal argument to support your answer.

48. In each part, find (f^{-1})'(x) using Formula (2) of Section 6.3, and check your answer by differentiating f^{-1} directly.
(a) f(x) = 3/(x + 1)
(b) f(x) = √e^x

49. Find a point on the graph of y = e^{ax} at which the tangent line passes through the origin.

50. Show that the rate of change of y = 5000e^{0.07t} is proportional to y.

51. Show that the function y = e^{ax} sin bx satisfies y'' – 2ay' + (a^2 + b^2)y = 0 for any real constants a and b.

52. Show that the function y = tan^{-1} x satisfies y'' – 2y' + 1 = 0.

53. Suppose that the population of deer on an island is modeled by the equation

P(t) = \frac{95}{5 - 4e^{-t/k}}

where P(t) is the number of deer t weeks after an initial observation at time t = 0.
(a) Use a graphing utility to graph the function P(t).
(b) In words, explain what happens to the population over time. Check your conclusion by finding lim_{t→∞} P(t).
(c) In words, what happens to the rate of population growth over time? Check your conclusion by graphing P'(t).

54. The equilibrium constant k of a balanced chemical reaction changes with the absolute temperature T according to the law

k = k_0 \exp\left(-\frac{q(T - T_0)}{2TK}
ight)

where k_0, q, and T_0 are constants. Find the rate of change of k with respect to T.

55–56 Find the limit by interpreting the expression as an appropriate derivative.
55. lim_{x→a} \frac{(1 + h)^2 - 1}{h}
56. lim_{x→a} \frac{1 - \ln x}{(x - a)lnx}

57. Suppose that lim f(x) = ±∞ and lim g(x) = ±∞. In each of the four possible cases, state whether lim[f(x) – g(x)] is an indeterminate form, and give a reasonable informal argument to support your answer.

58. (a) Under what conditions will a limit of the form

lim_{x→a} f(x)/g(x)

be an indeterminate form?
(b) If lim_{x→a} g(x) = 0, must lim_{x→a} [f(x)/g(x)] be an indeterminate form? Give some examples to support your answer.

59–62 Evaluate the given limit.
59. \(\lim_{x \to +\infty} (e^x - x^2) \)
60. \(\lim_{x \to 1} \frac{\ln x}{\sqrt{x^2 - 1}} \)

61. \(\lim_{x \to 0} \frac{x^2 e^x}{\sin^2 3x} \)
62. \(\lim_{x \to 0} \frac{a^x - 1}{x} \), \(a > 0 \)

63–64 Find: (a) the intervals on which \(f \) is increasing, (b) the intervals on which \(f \) is decreasing, (c) the open intervals on which \(f \) is concave up, (d) the open intervals on which \(f \) is concave down, and (e) the \(x \)-coordinates of all inflection points.

65. \(f(x) = 1/e^x \)
66. \(f(x) = \tan^{-1} x^2 \)

65–66 Use any method to find the relative extrema of the function \(f \).

67. \(f(x) = \ln(1 + x^2) \)
68. \(f(x) = x^2 e^x \)

67–68 In each part, find the absolute minimum \(m \) and the absolute maximum \(M \) of \(f \) on the given interval (if they exist), and state where the absolute extrema occur.

69. \(f(x) = e^{x^2/2} \); \(0, +\infty \)

70. \(f(x) = x^2 \); \(0, +\infty \)

71–74 Evaluate the integrals.

71. \(\int (x^{-2} - 5e^x) \, dx \)
72. \(\int \left[\frac{3}{4x} - \sec^2 x \right] \, dx \)

73. \(\int \left[\frac{1}{1 + x^2} + \frac{2}{\sqrt{1 - x^2}} \right] \, dx \)
74. \(\int \left[\frac{12}{x \sqrt{x^2 + 1}} + \frac{1}{1 + x^2} \right] \, dx \)

75–76 Use a calculating utility to find the left endpoint, right endpoint, and midpoint approximations to the area under the curve \(y = f(x) \) over the stated interval using \(n = 10 \) subintervals.

77. Interpret the expression as a definite integral over \([0, 1]\), and then evaluate the limit by evaluating the integral.

\[\lim_{\Delta x \to 0} \sum_{k=1}^{n} f(x_k) \Delta x \]

78. Find the limit

\[\lim_{n \to +\infty} \frac{e^{1/n} + e^{2/n} + e^{3/n} + \cdots + e^{n/n}}{n} \]

by interpreting it as a limit of Riemann sums in which the interval \([0, 1]\) is divided into \(n \) subintervals of equal length.

79–80 Find the area under the curve \(y = f(x) \) over the stated interval.

79. \(f(x) = e^{x^2}; \ [1, 3] \)
80. \(f(x) = \frac{1}{x}; \ [1, e^3] \)

81. Solve the initial-value problems.

(a) \(\frac{dy}{dx} = \cos x - 5e^x \), \(y(0) = 0 \)

(b) \(\frac{dy}{dx} = x e^x \), \(y(0) = 0 \)

82–64 Evaluate the integrals by making an appropriate substitution.

82. \(\int e^x \, dx \)
83. \(\int_0^1 \frac{dx}{x \ln x} \)

84. \(\int_0^{2\sqrt{3}} \frac{1}{4 + 9x^2} \, dx \)

85. Find the volume of the solid whose base is the region bounded between the curves \(y = \sqrt{x} \) and \(y = 1/\sqrt{x} \) for \(1 \leq x \leq 4 \) and whose cross sections taken perpendicular to the \(x \)-axis are squares.

86. Find the average value of \(f(x) = e^x + e^{-x} \) over the interval \([\ln 1/2, \ln 2]\).

87. In each part, prove the identity.

(a) \(\cosh 3x = 4 \cosh^3 x - 3 \cosh x \)

(b) \(\cosh \frac{1}{2} x = \sqrt{\frac{1}{2} (\cosh x + 1)} \)

(c) \(\sinh \frac{1}{2} x = \pm \sqrt{\frac{1}{2} (\cosh x - 1)} \)

88. Show that for any constant \(a \), the function \(y = \sinh(ax) \) satisfies the equation \(y'' = a^2 y \).