- 1. (a) Define function, and inverse function.
 - (b) Use the definition of a limit to calculate $\lim_{x\to 2} 2x^3 + 3x^2 2$.
 - (c) Define $\lim_{x\to a^+} f(x) = L$.
 - (d) Prove that limits are unique.
- 2. (a) Derive the formula for the linear approximation to f(x), and use it to find $\sqrt{47}$ to two decimal places.
 - (b) Find $\frac{dy}{dx}$ if

i.
$$y = \frac{\sin x \ln x \cos x}{x^2}.$$

ii.
$$x^2y^3 + \sin(x^2y) = \exp(xy^3)$$

iii.
$$y = \tan^{-1} x$$
.

- (c) Find where the function $x \exp x$ is increasing, decreasing, concave up, concave down, has local extrema, and points of inflection. Draw a rough sketch of the function.
- 3. (a) State The Generalised Mean Value Theorem. State the Extreme Value Theorem.
 - (b) Solve the following

i.
$$x\frac{dy}{dx} = y^2 + 1$$
, $y(1) = 0$.

ii.
$$\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 3y = 0$$

iii.
$$\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 3y = x + \sin x$$

(c) Find the area of the largest rectangle that can be inscribed in a circle of radius r

- (a) How is the Riemann Integral $\int_a^b f(x)dx$ defined?
 - (b) Integrate the following.

i.
$$\int \frac{1}{\sqrt{4-x^2}} dx$$

ii.
$$\int x \ln x dx$$

iii.
$$\int \sin^2 x \cos^3 x dx$$

iii.
$$\int \sin^2 x \cos^3 x dx$$
 iv. $\int \frac{3x^3 - x^2 + 6x - 4}{(x^2 + 1)(x^2 + 2)}$

- (a) Find the length of the curve $y = \int_1^x \sqrt{\sqrt{t} 1} dt$ from x=1 to x=16.
 - (b) Find the area enclosed between $y = x^2$ and the line y = x + 4...
 - (c) The bounded region between y=x, x=2 and above the x-axis is rotated about the line x=3. Find the volume first using washers and then using cylindrical shells.
- (a) Define $\sum_{n=1}^{\infty} a_n = L$.
 - (b) Do the following series converge or diverge? Give reasons.

i.
$$\sum_{n=1}^{\infty} \frac{\ln n}{n}$$

ii.
$$\sum_{n=1}^{\infty} \frac{\sin 4n}{4^n}$$

- (c) Find the Taylor Series for $f(x) = \exp(x)$ about x = 0. How would you determine where this series converges to $\exp x$?
- (d) What is the integral test?