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MATLAB is a popular programming language for its simplicity and broad range of tools for topics likesignal processing, statistics, di�erential equations, and of course, matrices. Users can easily add theirown m-�le functions for speci�c applications, further extending MATLAB's usefulness.
However, the MATLAB programming language is parsed { code is interpreted and translated into com-puter operations in realtime { where faster languages like C/C++ are compiled ahead of time into thecomputer's native language. Some advantages to parsing in realtime are greater platform independence,robustness, and easier debugging. (Also note that MATLAB's \eval" function has no C++ equivalent.)The disadvantage of parsing in realtime is signi�cant loss in speed, as well as increased overhead andless low-level control.
To compensate, MATLAB o�ers means to help speed up code. This article discusses these and otherstrategies to improving the speed of MATLAB code.

� The Pro�ler tool
� Array preallocation
� Vectorized computation and logic
� Vectorized referencing

Caution!Before beginning, a few notes of caution in code optimization. This applies not only to MATLAB, butprogramming in general.
� Remember to comment: Optimized code { especially vectorized code { tends to be terse andcryptic. To help others and yourself, remember to comment optimized code.
� Don't optimize code before its time: Before ever optimizing code, consider if it will be worththe e�ort. If the code will soon be revised or extended, it will be rewritten anyway and the timespent optimizing the original is a waste.
� Only optimize where necessary: Make sure the code in consideration is really a speed bottle-neck. If it isn't, optimization only obfuscates the code.
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1 The Pro�ler
Since MATLAB 5.0, a tool called the \pro�ler" helps determine where the bottlenecks are in a program.As an example, consider the following function:. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .function result = example1(Count)
for k = 1:Countresult(k) = sin(k/50);

if result(k) < -0.9result(k) = gammaln(k);endend
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .To analyze the e�ciency this function, �rst enable the pro�ler:
>> profile on
In case the pro�ler was on earlier, clear any old pro�ler data:
>> profile clear
Next, run the program (change the input argument higher or lower so that it takes about a second):
>> example1(5000);
Now enter:
>> profreport('example1')
The pro�ler will generate an HTML report on the function and launch a browser window. Note thatdepending on the system, pro�ler results may be a little di�erent from this example.
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Clicking the blue \example1" link gives more details:

The most time-consuming lines are displayed, along with time, time percentage, and line number. Noticethat the most costly lines are the computations on lines 4 and 7.

2 Array Preallocation
One convenient characteristic of MATLAB's default matrix variables is the ability to dynamically aug-ment rows and columns. For example,
>> a = 2
a = 2
>> a(2,6) = 1
a = 2 0 0 0 0 00 0 0 0 0 1
MATLAB automatically resizes the matrix. Internally, the memory allocated to the matrix must bereallocated with larger size. If a matrix must be resized repeatedly { like within a for loop { the speedcost becomes noticeable. To avoid this problem, \preallocate" the matrix with the zeros command.Consider the following lines (generates approximate cosine and sine waves of period 100):. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
a(1) = 1;b(1) = 0;
for k = 2:8000a(k) = 0.99803 * a(k - 1) - 0.06279 * b(k - 1);b(k) = 0.06279 * a(k - 1) + 0.99803 * b(k - 1);end
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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The pro�ler timed this code to take 0.47 seconds to perform (system dependent). The big bottleneck isresizing a and b within the loop. After running this code, both arrays are row vectors of length 8000,thus to preallocate, both arrays should be created with 8000 elements.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
a = zeros(1,8000); % preallocationb = zeros(1,8000);a(1) = 1;b(1) = 0;
for k = 2:8000a(k) = 0.99803 * a(k - 1) - 0.06279 * b(k - 1);b(k) = 0.06279 * a(k - 1) + 0.99803 * b(k - 1);end
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .With this modi�cation, the code takes only 0.14 seconds (over three times faster). Preallocation is ofteneasy to do, in this case it was only necessary to determine the right preallocation size and add two lines.
What if the preallocation size cannot be determined? In some cases, the �nal array size cannot bedetermined ahead of time. One strategy is to use the upper bound on the array size and cut the excessafter the loop:. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
a = zeros(1,10000); % preallocatecount = 0;
for k = 1:10000v = exp(rand(1)*rand(1));

if v > 0.5 % conditionally add to arraycount = count + 1;a(count) = v;endend
a = a(1:count); % trim the result
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Preallocation improved this particular program from taking on average 0.42 seconds to 0.18 seconds.
Preallocation can also be applied to cell arrays, using the cell command to create the desired size.Using preallocation on a frequently resizing cell array results in an even more signi�cant speed up thanon double arrays.
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3 Vectorization
Vectorization optimization unlocks MATLAB's processing power and can result in signi�cant speed gains.On the downside, there is no step by step list to vectorization. Good vectorization requires knowledgeof MATLAB's available vector functions, strong understanding of the computation to be optimized, andcreativity. It is a skill that must be developed.
3.1 Vectorized Computations
Most standard MATLAB functions are \vectorized," meaning they can operate on an array as if thefunction had been applied individually to every element.
>> sqrt([1,4;9,16])
ans =1 23 4
>> abs([0,1,2,-5,-6,-7])
ans =0 1 2 5 6 7
When some computation must be performed for every element in an array, the computation is vectorizedby performing operations on the array as a whole rather than per element. Consider the followingfunction:. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
function d = minDistance(x,y,z)% Given a set of 3D points specified by column vectors x,y,z, this% function computes the minimum distance to the origin
nPoints = length(x);d = zeros(nPoints,1); % preallocate
for k = 1:nPoints % compute distance for every pointd(k) = sqrt(x(k)^2 + y(k)^2 + z(k)^2);end
d = min(d); % get minimum distance
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .For every point, the distance is computed and stored in d. Then, the minimum distance is found usingthe min function. To vectorize the distance computation, the for loop is replaced with vector operations:
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
function d = minDistance(x,y,z)% Given a set of 3D points specified by column vectors x,y,z, this% function computes the minimum distance to the origin
d = sqrt(x.^2 + y.^2 + z.^2); % compute distance for every pointd = min(d); % get minimum distance
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .The modi�ed code performs the distance computation with vector operations. The x, y and z arrays are�rst squared using the per-element power operator, .^ . There are also similar per-element multiplicationand division operators, .* and ./, respectively. The squared components are added with vector addition.Finally, the square root of the vector sum is computed per element, yielding an array of distances.
The un-vectorized version of the minDistance program takes 0.73 seconds on 50000 points. The vec-torized version takes less than 0.04 seconds, more than 18 times faster. Vectorization is usually a muchmore signi�cant optimization than preallocation. Especially for per element computations on large datasets, vectorization is very e�ective.
Some functions to keep in mind for vectorizing computations:min, max, repmat, meshgrid, sum, cumsum, diff, prod, cumprod, filter
3.2 Vectorized Logic
The previous section only shows how to vectorize pure computation. Quite often, a real world compu-tation involves conditionals. Like computations, MATLAB's logic operators are vectorized:
>> [1,5,3] < [2,2,4]
ans =1 0 1
Two three-element arrays are compared per-element. The output from logic operations are \logical"-typearrays of ones and zeros.
How is this useful? MATLAB has a few powerful functions for operating on logical arrays:

� find: Find indices of nonzero elements.
� any: True if any element of a vector is nonzero.
� all: True if all elements of a vector are nonzero.
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>> find([1,5,3] < [2,2,4])
ans =1 3
>> find(eye(3) == 1)
ans =159
The find function gives back the indices where the vector logic operations return true. In the �rstcommand, 1 < 2 is true, 5 < 2 is false, and 3 < 4 is true, so find returns that the �rst and thirdcomparisons are true. In the second command, find returns the indicies where the identity matrix isequal to one. The indices 1, 5, and 9 correspond to the diagonal of a 3 by 3 matrix { see section 5.1 onindex references for details.
>> any([1,0,0,0])
ans =1
>> all([1,0,0,0])
ans =0
The any and all functions are simple but can be very useful. If any element is true, any returns true.If all elements are true, all returns true. They are extensions to the standard binary \and" and \or"operations.
3.3 Example 1: Removing elements
The situation often arises where array elements must be removed on some per-element condition. Forexample, this code removes all NaN and in�nity elements from an array x:
i = find(isnan(x) | isinf(x)); % find elements in x that are NaN or infinityx(i) = [ ]; % delete the elements
The �rst line uses vector logic and find to �nd the indices of x elements which are NaN or in�nity. Thesecond line deletes the unwanted elements. These two lines can be written equivalently as:
i = find(~isnan(x) & ~isinf(x)); % find elements that are not NaN and not infinityx = x(i); % keep those elements
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This time, the elements of x that are not NaN and not in�nity are found with find { it �nds the elementsthat should be retained. The second line replaces x with x(i), keeping only those elements.
3.4 Example 2: Piecewise functions
It is frequently necessary to compute functions with piecewise de�nitions (for example, spline inter-polants, the Heaviside step function, and Chebyshev polynomials). The sinc function is particularlyinteresting because it is de�ned everywhere but has a removable singularity at zero. To numericallycompute the sinc function, the zero case must be handled separately. The sinc function is de�ned as

sinc(x) = ( sin(x)=x; x 6= 01; x = 0
For x 6= 0, sinc can be computed with y = sin(x)./x. This program uses the find function in combi-nation with vectorized computation to handle the two cases separately:. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
function y = sinc(x)% Computes the sinc function per-element for a set of x values.
y = ones(size(x)); % set y to all ones, sinc(0) = 1i = find(x ~= 0); % find nonzero x valuesy(i) = sin(x(i)) ./ x(i); % compute sinc where x ~= 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.5 Example 3: Drawing images with meshgrid
The meshgrid function takes two input vectors and converts them to matrices by replicating the �rstover the rows and the second over the columns.
>> [x,y] = meshgrid(1:5,1:3)
x = 1 2 3 4 51 2 3 4 51 2 3 4 5
y = 1 1 1 1 12 2 2 2 23 3 3 3 3
The matrices above work like a map for a width 5, height 3 image. For given pixel, the x-location canbe read from x and the y-location from y. This is a little wasteful as x and y simply record the column
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and row positions, but turns out to be very useful. To draw an ellipse, meshgrid with vector logic canconcisely construct the image.% create x and y for a width 150, height 100 image[x,y] = meshgrid(1:150,1:100);
% ellipse with origin (60,50) of size 15 x 40Img = sqrt(((x-60).^2 / 15^2) + ((y-50).^2 / 40^2)) > 1;
% plot the imageimagesc(Img); colormap(copper);axis equal; axis off;
Drawing lines is almost the same, just a change in the formula.
[x,y] = meshgrid(1:150,1:100);
% the line y = x*0.8 + 20Img = (abs((x*0.8 + 20) - y) > 1);
imagesc(Img); colormap(copper);axis equal; axis off;
Polar functions can be drawn by �rst converting x and y variables with the cart2pol function.[x,y] = meshgrid(1:150,1:100);[th,r] = cart2pol(x - 75,y - 50); % convert to polar
% spiral centered at (75,50)Img = sin(r/3 + th);
imagesc(Img); colormap(hot);axis equal; axis off;
Note that one can also use the imread function to read an image from a �le.
3.6 Example 4: Polynomial interpolation
Sometimes it is necessary to perform an operation not just between every pair of elements of twovectors, but between every combination of elements. This example will show how to do this as partof a polynomial �tting algorithm. Given n points x1; x2; x3; : : : xn and n corresponding function valuesy1; y2; y3; : : : yn, the coe�cients c0; c1; c2; : : : cn�1 of the interpolating polynomial of degree n� 1 can befound by solving the matrix equation266664

x1n�1 x1n�2 � � � x12 x1 1x2n�1 x2n�2 � � � x22 x2 1... ...xnn�1 xnn�2 � � � xn2 xn 1

377775
266664

cn�1cn�2...c0

377775 =
266664

yn�1yn�2...y0

377775
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MATLAB can solve such a matrix equation no problem, but the di�cult part is setting it up.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
function c = polyint(x,y)% Given a set of points and function values x and y,% computes the interpolating polynomial.
x = x(:); % make sure x and y are both column vectorsy = y(:);n = length(x); % n = number of points
%%% construct the left-hand side matrix %%%xMatrix = repmat(x, 1, n); % make an n by n matrix with x on every columnpowMatrix = repmat(n-1:-1:0, n, 1); % make another n by n matrix of exponentsA = xMatrix .^ powMatrix; % compute the powers
c = A\y; % solve matrix equation for coefficients
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .The strategy to construct the left-hand side matrix is to �rst make two n by n matrices of bases andexponents and then put them together with the per element power operator, .^ . The repmat function(\replicate matrix") is used to make the base matrix xMatrix and the exponent matrix powMatrix.

xMatrix =
266664

x(1) x(1) � � � x(1)x(2) x(2) � � � x(2)... ...x(n) x(n) � � � x(n)

377775 powMatrix =
266664

n� 1 n� 2 � � � 0n� 1 n� 2 � � � 0... ...n� 1 n� 2 � � � 0

377775
The xMatrix is made by repeating the column vector x over the columns n times. Similarly, powMatrixis a row vector with elements n � 1; n � 2; n � 3; : : : ; 0 repeated down the rows n times. MATLAB 4.0and earlier do not have the repmat function { see section 6.5 for an alternative. The two matrices couldalso have been created using meshgrid:
[powMatrix, xMatrix] = meshgrid(n-1:-1:0, x);
This function is only an example. Use the standard polyfit function for polynomial interpolation. Ithas the generality for performing polynomial least-squares �tting in addition to exact interpolation. Itis also algorithmically more e�cient (though also more complicated), using a Horner-like method toconstruct the left-hand side matrix (see polyfit.m lines 45-48).
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4 Referencing Operations
Although referencing is not often considered an individual operation, referencing in MATLAB is variedand powerful enough to deserve a section of discussion. Good understanding of referencing enables thevectorization of a broader range of programming situations. This section assumes you have experiencewith the MATLAB language.
4.1 Subscripts vs. Indices
Subscripts are the most common way to address elements in a matrix. For example, consider a 10 by10 matrix A. Internally, MATLAB stores the matrix linearly down the columns as a one-dimensional,100-element array of data.

26666664

1 11 21 � � � 81 912 12 22 � � � 82 923 13 23 � � � 83 93... ...10 20 30 � � � 90 100

37777775
An index refers to an element's position in this one-dimensional array. For example, A(83) referencesthe element on row 3, column 9. Using subscripts is much more common, breaking up the reference intoa row and column. The syntax A(3,9) also references the element on row 3, column 9.
Conversion between subscripts and indices can be done with the sub2ind and ind2sub functions. How-ever, because these are m-�le functions rather than fast built-in operations, it is much more e�cient tocompute conversions directly. For a two-dimensional matrix A of size M by N, the conversion betweensubscript (i,j) and index (index):A(i,j) � A(i + (j-1)*M)A(index) � A(rem(index-1,M)+1, floor(index/M)+1)Indexing extends to N-D matrices as well, with indices increasing �rst through the columns, then throughthe rows, through the third dimension, and so on. Subscript notation extends intuitively,A(..., dim4, dim3, row, col).
4.2 Vectorized Subscripts
More often it is useful to work with submatrices rather than individual elements. This is done by usinga vector of indices or subscripts. If A is a two-dimensional matrix, a vector subscript reference has thesyntaxA(rowv, colv)where rowv is a vector of rows with M elements and colv is a vector of columns with N elements. Bothmay be of any length (including the empty matrix) and their elements may be in any order. If either isa matrix, it is reshaped to a column vector. There is no di�erence between using row vectors or columnvectors in vector subscripts.
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On the right-hand side (rhs), a vector subscript reference returns a submatrix of elements of size M by N:
266664

A(rowv(1); colv(1)) A(rowv(1); colv(2)) A(rowv(1); colv(3)) � � � A(rowv(1); colv(N))A(rowv(2); colv(1)) A(rowv(2); colv(2)) A(rowv(2); colv(3)) � � � A(rowv(2); colv(N))... ...A(rowv(M); colv(1)) A(rowv(M); colv(2)) A(rowv(M); colv(3)) � � � A(rowv(M); colv(N))

377775
On the left-hand side (lhs), if the vector subscripted matrix is used as a destination, the rhs result mustbe of size M by N or scalar. If any elements in the destination reference are repeated, for example, thisambiguous assignment of A(1,2) and A(2,2),A([1,2],[2,2]) = [1,2;3,4]" A(1; 2) A(1; 2)A(2; 2) A(2; 2)

# = " 1 23 4
#

the latter value assigned is the resulting value in the repeated elements.>> A = zeros(2); A([1,2],[2,2]) = [1,2;3,4]
A = 0 20 4
Vector subscript references extend intuitively in higher dimensions.
4.3 Vector Indices
Multiple elements can also be referenced with vector indices.A(indexv)where indexv is an array of indices. On the rhs, a vector index reference returns a matrix the same sizeas indexv. If indexv is a row vector, A(indexv) returns a row vector. If indexv is a 3 by 4 matrix,A(indexv) is a 3 by 4 matrix.

A(indexv) =
264 A(indexv(1; 1)) A(indexv(1; 2)) A(indexv(1; 3)) A(indexv(1; 4))A(indexv(2; 1)) A(indexv(2; 2)) A(indexv(2; 3)) A(indexv(2; 4))A(indexv(3; 1)) A(indexv(3; 2)) A(indexv(3; 3)) A(indexv(3; 4))

375
Where vector subscripts are limited to referring to block-shaped submatrices, vector indices refer toindividual elements and can refer to any shape.
If a vector index reference is on the lhs, the rhs must return a matrix of the same size as indexv or ascalar. As with vector subscripts, ambiguous duplicate assignments use the later value assigned.>> A = zeros(2); A([3,4,3,4]) = [1,2,3,4]
A = 0 30 4
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4.4 Reference Wildcards, :
Using the wildcard, :, in a subscript refers to an entire row or column. For example, A(:,1) refersto every row in column one { the entire �rst column. This can be combined with vector subscripts,A([2,4],:) refers to the second and fourth rows.
When the wildcard is used in a vector index, the entire matrix is referenced. On the rhs, this alwaysreturns a column vector.A(:) = column vector of length prod(size(A))This is frequently useful: For example, if a function input must be a row vector, the user's input can bequickly reshaped into row vector with A(:)' (make a column vector and transpose to a row vector).
Because A(:) refers to all elements, A(:) on the lhs assigns all the elements of A, but does not changeits size. For example, A(:) = 8 changes all elements of matrix A to 8.
4.5 Deleting Submatrices with [ ]
Elements in a matrix can be deleted by assigning the empty matrix. For example, A([3,5]) = [ ]deletes the third and �fth element from A. After a deletion using index references, the matrix is reshapedinto a row vector.
It is also possible to use deletion with subscripts, but only when at most one subscript is not thewildcard. A(2,:) = [ ] deletes the second row, resulting in a matrix with one less row. Deletions likeA(2,1) = [ ] or even A(2,1:end) = [ ] are not allowed.

5 Miscellaneous Tricks
5.1 Convert any array into a column vector
It is often useful to force an array to be a column vector, for example, when writing a function expectinga column vector as an input. This simple trick will convert the input array to a column vector if thearray is a row vector, a matrix, an N-d array, or already a column vector.
x = x(:); % convert x to a column vector
Note that by following this operation with a transpose, it is also possible to force an array to be a rowvector.
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5.2 Get the number of elements in an array
The size function gives back a vector of an array's dimensions. Along with prod, the number of elementsin an array is concisely computed with
nElements = prod(size(x)); % compute the number of elements in x
Use ndims(x) or length(size(x)) to get the number of dimensions in an array.
5.3 Bound a value without if statements
If the problem is \value x must be at least a and at most b," the most straightforward way to code thisis with if and elseif statements. Unfortunately, MATLAB if statements are slow. Furthermore, ifit is necessary to bound every value in a set, this must be coded within a for loop or vectorized usingthe find function. This method uses the min and max functions to bound x between lowerBound andupperBound:
x = max(x,lowerBound); % make x >= lowerBoundx = min(x,upperBound); % make x <= upperBound
This will work if x is a scalar or a matrix of any size.
5.4 Find the min/max of a matrix or N-d array
Given a matrix input (with no other inputs), the min and max functions operate along the columns,�nding the extreme element in each column. Usually it is more useful to �nd the extreme element of theentire matrix. It is possible to repeat the min or max function on the column extremes; min(min(A))to �nd the minimum of a two-dimensional matrix A. However, if the location of the extreme element isalso necessary, analyzing the indices output (second output) from multiple min/max calls is cumbersome,especially for N-d arrays. This method uses only one call to min/max (using the convert to column vectortrick) and determines the extreme element's location:
[MinValue, MinIndex] = min(A(:)); % find minimum element in A% the minimum value is MinValue, the index is MinIndexMinSub = ind2sub(size(A), MinIndex); % convert MinIndex to subscripts
The minimum element is A(MinIndex) (index reference) or alternatively A(MinSub(1), MinSub(2), ...)(subscript reference). See section 5.1 to learn more about the di�erence between index and subscriptreferencing. To �nd the maximum value, replace the call to min with max.
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5.5 Repeating/tiling vectors without repmat
As of MATLAB 5.3 (R11), the repmat function is implemented as an m-�le rather than as a built-infunction. Although it is a very fast function, it still incurs the overhead costs that any m-�le carries.Thus it is of no surprise that most standard MATLAB m-�le functions perform repmat inline ratherthan calling it (see meshgrid.m lines 41, 42, 55, ... ; interp1.m lines 225, 240, 322, ... ; interp2.m lines232, 233, 240, ... ; and blanks.m line 13). While repmat has the generality to operate on matrices, itis often only necessary to tile a vector or just a scalar. To repeat a column vector y over the columns ntimes,
A = y(:,ones(1,n)); % equivalent to A = repmat(y,1,n);
To repeat a row vector x over the rows m times,
A = x(ones(1,m),:); % equivalent to A = repmat(x,m,1);
To repeat a scalar s into an m by n matrix,
A = s(ones(m,n)); % equivalent to A = repmat(s,m,n);
or alternatively
A = zeros(m,n); % make A an m by n matrixA(:) = s; % assign s to every element
See section 5.2 on vectorized subscript references for details on how this works. Notice that this methodonly uses the built-in ones function { this is basically how repmat.m performs the tiling itself (see lines46, 52, 53).
5.6 Vectorized use of set on GUI objects
A real-world graphical user interface (GUI) can have dozens of objects for text labels, buttons, sliders,and so forth. These objects must all be meticulously initialized with the uicontrol function with lengthystring arguments. For example, to de�ne three edit boxes with white text background (default is gray)and left text alignment (default is center):
uicontrol('Units', 'normalized', 'Position', [0.1,0.9,0.7,0.05], ...'HorizontalAlignment', 'left', 'Style', 'edit', 'BackgroundColor', [1,1,1]);uicontrol('Units', 'normalized', 'Position', [0.1,0.8,0.7,0.05], ...'HorizontalAlignment', 'left', 'Style', 'edit', 'BackgroundColor', [1,1,1]);uicontrol('Units', 'normalized', 'Position', [0.1,0.7,0.7,0.05], ...'HorizontalAlignment', 'left', 'Style', 'edit', 'BackgroundColor', [1,1,1]);
This code is a lot of text for three edit boxes { notice that the only change between the three objectsis the position parameter. To take advantage of the repeated parameters, a vectorized call to set canreduce the wordiness:
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h(1) = uicontrol('Units', 'normalized', 'Position', [0.1,0.9,0.7,0.05]);h(2) = uicontrol('Units', 'normalized', 'Position', [0.1,0.8,0.7,0.05]);h(3) = uicontrol('Units', 'normalized', 'Position', [0.1,0.7,0.7,0.05]);
set(h, 'HorizontalAlignment', 'left', 'Style', 'edit', 'BackgroundColor', [1,1,1]);
This method has also has the advantage that changing common parameters for multiple objects can bedone with one change rather than changing every object.

6 Going Further
If you have a coding situation which cannot be optimized any further, keep in mind MATLAB's naturallimitations as a parsed language. If the code is either very for loop oriented or requires the top possiblespeed, consider MEX-�les. With an external C or Fortran compiler, it is possible write and compile Cor Fortran functions that interface with MATLAB. See the MathWorks MEX-�les Guidehttp://www.mathworks.com/support/tech-notes/1600/1605.htmlto get started. Writing MEX-�les is quite di�erent from writing m-�les, and takes some e�ort andpatience to learn. However, with a well written MEX-�le, the speed gains over the equivalent m-�leprogram can easily be 10 to 20 times faster.
Hopefully you have found some suggestions relevant to your speci�c projects or at least learned somethingnew in this article. To be a good programmer, never assume your method is best but use the best thatyou know { stay open to other programmers' ideas. Along those lines, this article is only one humbleaddition to the collection of MATLAB programming techniques.
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