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Abstract

Non-integrable perturbations were made to the Heisenberg XXX spin 1
2 chain through the Lax

operators and R matrices. The leading order perturbed Hamiltonian was obtained for general
deformations, and the perturbative parts were split into local and generically non-local terms.
The class of deformations that are integrable in the leading order were found from a deformed
fundamental commutation relation, and the most general local deformation to the Hamiltonian
obtained was found to depend on 14 parameters. The class of deformations contains the rescaled
Lax operator, the inhomogeneous spin chain and the XXZ spin chain. For the simplified case
where a reference state can be used and the R matrix takes a simple form, the eigenstates were
constructed and a set of deformed Bethe ansatz equations were obtained.
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1 Introduction

1.1 Motivation

Integrability is a very powerful concept in theoretical physics. In classical dynamics, while not the
same as exactly solvable, it is a tool that helps make problems much more manageable. Quantum
integrability is much less well defined. Nevertheless, it is still a very useful tool for lattice models
in statistical physics and for quantum field theories.

Another very useful tool in physics is perturbation theory. We start with a problem to which we
know the exact solution, and deviate slightly from it. It is split into a solvable part derived from
the original problem and a perturbation part arising from the changes made. This method allows
us to obtain approximate solutions to different and often more complex problems.

The main idea of this project is to combine these two concepts and make non-integrable pertur-
bations to integrable systems. It might seem pointless to move away from the simple case, but if
we can apply the standard framework for very small deviations from integrability, we can obtain
approximate solutions to a whole new class of problems

This idea is already well established in classical dynamics through the KAM theorem. In a nutshell,
the KAM theorem says that for sufficiently small deviations from integrability and under the right
conditions, the deformed system will remain relatively well behaved. The simplest example of this
is our solar system. It is a 10-body problem (including Pluto) which in theory is definitely not
an integrable system. Yet we have been in stable orbit for 4.5 billion years; the solar system is
somehow quasi-periodic. The main reasons behind this are that the mass of the Sun is much larger
than the mass of the planets and the interactions between the planets is weak. This illustrates
the point beautifully: consider a system that is well behaved, and move away from the ideal case
slightly in order to determine the behaviour of a much more complicated, and often more physically
relevant system.

Currently there is no quantum analogue of the KAM theorem. One possible approach that has
recently been suggested is through quantum quenches [1]. Another approach is to perturb the
system and identify a set of approximately conserved quantities [2], although this method is a
computational one. In this project we aim to make a more systematic approach. It will allow us to
not only find the perturbed Hamiltonian, but also construct the eigenstates. We also hope to be
as general as possible with the perturbations. This project does not hope to formulate a quantum
KAM theorem, but is certainly motivated by the lack of one.
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1.2 Overview

The subject of integrability, especially quantum integrability, is a very advanced one by under-
graduate standards. Learning about it was very challenging and took quite some time, so it is my
intention that this report could be read and understood by an undergraduate student. As such,
a discussion of su(2) and tensor products is provided as they are an important tool for describing
the systems considered in the project (and for notation purposes). A review of Lie algebras is
included in Appendix A. The subject of classical and quantum integrability is then discussed. It
is impossible to discuss everything relating to integrability, so we will only discuss the basic and
relevant concepts, some of the most common systems and the approach used to solve them.

Then we introduce the Heisenberg XXX spin 1
2 chain. We solve this in detail, as it is necessary

for making comparisons later and is the best way to illustrate how the method works. We intro-
duce deformations to the chain and solve the deformed system approximately using the standard
methods, while keeping the deformations as general as possible. Finally, the possibilities for further
research are discussed.

1.3 su(2)

SU(2) is the Lie group of 2× 2 unitary matrices with unit determinant. It is locally equivalent to
the group of rotations in 3 dimensions, SO(3), i.e. their Lie algebras are equivalent. It is important
because its Lie algebra, su(2), is used to describe spin angular momentum in quantum mechanics.
su(2) is described by

[Sa, Sb] = iεabcSc , (1)

where ε123 = 1, and the rest of the terms are determined by skew-symmetry. Sa are the spin
variables and in our (spin 1

2) case, they are represented by the Pauli matrices,

σ1 =
[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
, (2)

where Sa = 1
2σ

a (we set ~ = 1). We will work with the raising and lowering operators,

S± = 1
2 (S1 ± iS2) , (3)

along with S3. Explicitly, S± are given by

S+ =
[
0 1
0 0

]
, S− =

[
0 0
1 0

]
. (4)

Since our system is a lattice of spin 1
2 variables, each site is described by a copy of su(2). The entire

spin chain will be described by the product of these algebras.
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1.4 Tensor Notation

Here we introduce some notions and notation relating to tensor products. The tensor product of
two vector spaces A⊗B is a vector space with tensor products of elements a⊗ b, where a ∈ A and
b ∈ B. Here are a few basic properties of the tensor product,

(a⊗ b)(c⊗ d) = ac⊗ bd

(a⊗ b)−1 = a−1 ⊗ b−1

(a⊗ b)T = aT ⊗ bT
. (5)

For 2× 2 matrices A =
[
a11 a12

a21 a22

]
and B =

[
b11 b12

b21 b22

]
, their tensor product is a 4× 4 matrix,

A⊗B =
[
a11B a12B

a21B a22B

]
=


a11b11 a11b12 a12b11 a12b12

a11b21 a11b22 a12b21 a12b22

a21b11 a21b12 a22b11 a22b12

a21b21 a21b22 a22b21 a22b22

 . (6)

The horizontal and vertical lines are added to show that we can think of the tensor product as 4
2×2 blocks. We will generally omit the zeros in large matrices for the clarity. If A and B are n×n
matrices, then A⊗B will be an n2 × n2 matrix.

Consider the tensor product of spaces V ⊗V and an operator X ∈ End(V ) We will use a subscript
i to denote operators that act non trivially only in the ith space,

X1 ≡ X ⊗ I

X2 ≡ I ⊗X
. (7)

In general, for a tensor product comprised of N vector spaces V ⊗ . . .⊗ V , we have

Xn ≡ I ⊗ . . .⊗ X︸︷︷︸
n

⊗ . . .⊗ I, n ∈ {1, . . . , N} . (8)

As a simple example, let us calculate the matrix representation of the permutation operator,

P = 1
2

(
I ⊗ I +

∑
α

σα ⊗ σα
)

, (9)

which acts on the space C2 ⊗ C2. The Permutation operator acts on elements according to the
following property,

P (a⊗ b) = b⊗ a . (10)
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I ⊗ I is the identity matrix in 4 dimensions, and the products of Pauli matrices are given by

σ1 ⊗ σ1 =
[
0 1
1 0

]
⊗
[
0 1
1 0

]
=


1

1
1

1



σ2 ⊗ σ2 =
[
0 −i
i 0

]
⊗
[
0 −i
i 0

]
=


−1

1
1

−1



σ3 ⊗ σ3 =
[
1 0
0 −1

]
⊗
[
1 0
0 −1

]
=


1
−1

−1
1



, (11)

Thus, the representation of P is a 4× 4 matrix,

P =


1

1
1

1

 . (12)
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2 Integrability

2.1 Classical Integrability

In Hamiltonian dynamics, the concept of Liouville integrability is well defined; a system with
as many conserved quantities as degrees of freedom is an integrable one [3]. Suppose we have a
Hamiltonian system with a 2n-dimensional phase space, Ω, parametrised by the canonical variables,

(q1, . . . , qn, p1, . . . , pn) , (13)

and the Hamiltonian H = H(q1, . . . , qn, p1, . . . , pn) along with the Poisson brackets

{qi, qj} = 0

{pi, pj} = 0 i, j ∈ {1, . . . , n}

{qi, pj} = δij

. (14)

Then the system is Liouville integrable if there exists a set of n independent conserved quantities
(integrals of motion), Fi, such that

Ḟi = 0 i ∈ {1, . . . , n}

{Fi, Fj} = 0 i, j ∈ {1, . . . , n}
, (15)

where the dot denotes differentiation with respect to time. Since all Fi are conserved we must have
{H,Fi} = 0 and thus

H = H({Fi}) . (16)

If a system is integrable and its phase space Ω is compact and connected then it will be diffeo-
morphic to an n-dimensional torus, S1 × · · · × S1. Then one can introduce canonical coordinates
(θ1, . . . , θn, F1, . . . , Fn) where

0 ≤ θi ≤ 2π, i ∈ {1, . . . , n} , (17)

and Fi are integrals of motion. The equations of motion are now equivalent to

Ḟi = 0

θ̇i = ωi(F1, . . . , Fn)
(18)

for each i ∈ {1, . . . , n}, and the system is solvable by quadratures (straightforward integration).
This is where the name ‘integrability’ comes from.

The KAM theorem tells us that if an integrable system is subject to a small perturbation, then the
motion will be confined on some deformed torus and the system will be quasi-periodic [4]. This is
subject to certain other conditions, such as the frequencies, ωi, being sufficiently incommensurate.
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It becomes more difficult to satisfy the KAM theorem as the number of degrees of freedom increases,
since as the dimension of the phase space increases, the volume occupied by the tori decreases.

Suppose that we can find a pair of N ×N matrices (L,M) such that the equations of motion can
be equivalently described by the Lax equation,

d

dt
L = [L,M ] , (19)

where [. , .] is the Lie bracket of some Lie algebra. Then for n < N we can always get integrals of
motion because

Fi = tr(Li) (20)

is conserved;
d

dt
Fi = i tr

(
Li−1 [L,M ]

)
= 0 (21)

due to the linearity of the commutator and cyclicity of the trace. A stronger form of integrability
is when the Lax pair depends on some complex parameter λ, known as the spectral parameter.
Then there is a Lax pair at each value of λ, and the conversed quantities can be obtained by the
expansion of tr(Li).

2.2 Quantum Integrability

Naturally when we go to the quantum picture things become more complicated. There is no con-
crete definition of quantum integrability [5]. Some aspects of classical integrability transfer over
nicely. Instead of requiring a set of conserved functions, we now require a set of commuting opera-
tors, as the Poisson bracket is replaced with the commutator. We also need to find the eigenstates
of the Hamiltonian. One problem is that for quantum field theories, the number of degrees of
freedom becomes infinite, and we require an infinite set of conserved charges. We will study the
integrability of finite lattice models from statistical physics which under certain continuum limits
produce integrable field theories, so we don’t need to worry about the last point.

One of the most important equations for integrable systems is the Yang-Baxter equation [6]. Con-
sider a complex vector space, V , and let R(λ), known as the R matrix, be a function of λ ∈ C.
Then the Yang-Baxter equation, defined on V ⊗3, is

R12(λ− µ)R13(λ)R23(µ) = R23(µ)R13(λ)R12(λ− µ) , (22)

where each R acts non-trivially on two copies of V , the indices indicating which two;

R12(λ) = R(λ)⊗ I , (23)
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etc. We will only consider V = C2. One such solution in this case is

R(λ) = λI + iP =


λ+ i

λ i

i λ

λ+ i

 , (24)

where P is the permutation operator defined in the previous section. It is shown by explicit
computation that this is a solution in the following section, and it is also shown using matrix
representations later on. The Yang-Baxter equation is important because it leads to the objects
which allow a system to be classified as integrable, i.e. it leads to operators, the traces of which
are commuting, and hence a set of conserved charges.

Systems from statistical physics form one of the main areas of interest in the context of integrability,
namely 1d spin chains and 2d lattice models. Of these, probably the most studied is the Heisenberg
XXX spin 1

2 chain, a 1d model of a magnet. Bethe solved the spin chain using what is now known
as the Coordinate Bethe Ansatz (CBA), obtaining explicit eigenstates of the Hamiltonian which
lead to evidence of particle-like excitations, magnons, in the system. In statistical physics, a model
is regarded as exactly solvable if its partition function is known, which leads to the thermodynamic
quantities. The first 2d model that was solved exactly was the Ising model on a square lattice
(around the 1940s). Some 20 years later, the 6-vertex model was solved using a method similar to
the CBA, and these methods were also important in obtaining the solution to the 8-vertex model.
These 2d models will not be discussed in detail, but it is nice to see the link between 2d lattice
models and 1d spin chains; the Ising model corresponds to the XY spin chain, the 6-vertex model
corresponds to the XXZ spin chain and the 8-vertex model corresponds to the XYZ spin chain.
These are all generalisations of the XXX spin chain, which is the focus of this project.

Today a more algebraic treatment, known as the quantum inverse scattering method or Algebraic
Bethe Ansatz (ABA), is used to solve integrable systems. In a sense, this method generalises the
creation-annihilation operator method for solving the quantum harmonic oscillator. The existence
of a number of particle-like excitations in the system is assumed, which determines the eigenstates.
For this to be true we obtain a set of algebraic equations, known as the Bethe ansatz equations
(BAE), which must be satisfied. Solving them is a problem in itself. Obtaining a set of BAE for a
system is roughly how we classify a system as quantum integrable.

In the next section, the ABA is shown in action for the XXX spin 1
2 chain, and the BAE obtained

are solved numerically.
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3 Algebraic Bethe Ansatz

3.1 Heisenberg XXX Spin Chain

The ABA method is a more general version of the original CBA method for solving integrable
systems. In this chapter we will demonstrate the ABA method for one of the most studied inte-
grable models: the Heisenberg isotropic su(2) spin chain [7]. First we must introduce the notion of
quantum spin chains.

A quantum spin chain is a one dimensional array of L atoms, modelled by a lattice of length L

with unit spacing between sites and periodic boundary conditions. The microscopic degrees of
freedom are the quantum mechanical spins associated with each site on the chain. Each site has
an associated Hilbert space, hl, and a spin operator, ~Sl = (S1

l , S
2
l , S

3
l ), on hl, each ~Sl generating a

copy of su(2).

...

L− 1

L
1

2

3

...

Figure 1: The su(2) Heisenberg spin chain.

Since we focus on the spin 1
2 case, each individual Hilbert space will be a copy of C2. The chain is

ultralocal, so the Hilbert space for the entire chain is given by the product of the Hilbert spaces of
the individual sites,

H = h1 ⊗ . . .⊗ hL . (25)

We define the global spin operators on H in accordance with (8); the operator Sαl acts on the entire

8



chain, but only non-trivially on the lth site,

Sαl ≡ I1 ⊗ . . .⊗ Sαl︸︷︷︸
l

⊗ . . .⊗ IL . (26)

The Lie algebra for the entire chain is given by the global relation between spin operators,

[Sαl , Sβm] = iδlmε
αβγSγl , (27)

which is ultralocal since the spin operators at different sites commute. The observables we are
interested in are the total spin,

Sα =
∑
l

Sαl , (28)

and the Hamiltonian,
H = −J

∑
l

~Sl · ~Sl+1 . (29)

The exchange coupling J sets the energy scale of the chain. For J > 0, the energy is minimised
when the spins are aligned; this is the ferromagnetic case. For J < 0, the energy is minimised when
the spins are anti-aligned. We will ignore the overall constant in this consideration, as well as add
a constant term to the Hamiltonian for scaling purposes,

HXXX =
∑
l,α

Sαl S
α
l+1 −

L

4 . (30)

Since each Sαl contributes equally to the Hamiltonian, the Lie algebra is isotropic, and hence we
call this model the XXX spin chain. The XXZ spin chain is a more general model where one of the
operators contributes differently to the other two,

HXXZ =
∑
l,α

(
S1
l S

1
l+1 + S2

l S
2
l+1 + ∆S3

l S
3
l+1

)
− L

4 , (31)

where ∆ is the anisotropy factor. XXZ reduces to XXX in the limit ∆→ 1. An even more general
XYZ spin chain is obtained when all three spin operators contribute differently.

3.1.1 The Commuting Operators

Our goal is to study the integrability of the XXX model (remarkably, the XXZ and XYZ models
are also integrable [8][9]). Our first task is to show that the model is integrable. To do this we must
find an operator that produces a set of commuting charges, the Hamiltonian being one of them.
We will start with the R matrix. As mentioned in the previous section,

Ra1a2(λ) = λIa1a2 + iPa1a2 , (32)

9



is a solution to the Yang-Baxter equation, although not the only one. Subscripts a1 and a2 refer
to spaces V1 and V2, which are both copies of C2, so Ra1a2 acts on V1 ⊗ V2. Now we can introduce
the Lax operator,

Lla(λ) = Rla(λ− i/2) = (λ− i/2)Ila + iPla . (33)

The subscript l refers to the Hilbert space associated with the lth site. The subscript a refers to an
auxiliary vector space V , which we will take to be another copy of C2. It is necessary to introduce
an auxiliary space to connect the quantum spaces as they are all disconnected. This is essentially
the purpose of the Lax operator; it is a connection on our chain, defining parallel transport between
two adjacent sites.

l

a
Lal

Figure 2: Graphical representation of the Lax operator.

Transport between non-adjacent sites can be described by the ordered product of the Lax operators
of the sites and the ones between them. The ordered product of all of the Lax operators defines a
monodromy around the chain,

TLa(λ) = LLa(λ) . . . L1a(λ) . (34)

This is known as the monodromy matrix of the chain. The transfer matrix is obtained by taking
the trace of the monodromy matrix over auxiliary space,

FL(λ) = tra(TLa(λ)) . (35)

The expansion of FL(λ) results in a set of N − 1 commuting operators,

FL(λ) = 2λL +
L−1∑
l=0

Qlλ
l , (36)

10



a

1 2 3 . . . L− 1 L

Figure 3: Graphical representation of the monodromy matrix.

and these Ql form the set of conserved charges to which the Hamiltonian belongs. A component of
the total spin will complete the set of conserved charges; it doesn’t appear in the expansion because
the spin operators are traceless. First we must show that the charges commute, which can be done
by showing that FL commutes with itself for any two values of the spectral parameter.

3.1.2 Fundamental Commutation Relations

In order to show the Hamiltonian belongs to the set of conserved charges we must first establish
the commutation relation for the Lax operators. The products of Lax operators,

Lla1(λ)Lla2(µ), Lla2(µ)Lla1(λ), (37)

act on the product of spaces hl ⊗ V1 ⊗ V2, and the matrix representations will be 16× 16 matrices.
We thus require 16 commutation relations, but these can be condensed into one relation using the
Yang-Baxter equation,

Ra1a2(λ− µ)Lla1(λ)Lla2(µ) = Lla2(µ)Lla1(λ)Ra1a2(λ− µ) . (38)

This is the fundamental commutation relation (FCR) for the Lax operators, and can be verified by
explicit computation. Explicitly we have

[(λ− µ)Ia1a2 + iPa1a2 ] [(λ− i/2)Ila1 + iPla1 ] [(µ− i/2)Ila2 + iPla2 ]

= [(µ− i/2)Ila2 + iPla2 ] [(λ− i/2)Ila1 + iPla1 ] [(λ− µ)Ia1a2 + iPa1a2 ]
, (39)

and we can verify that this is true by comparing terms with the same number of permutation
operators. For the terms without any permutation operators, this is immediate, as it is just the
identity times the same constant in both cases. Note that this product is defined on hl ⊗ V1 ⊗ V2,
and for operators with two indices it is implied that they act non-trivially on the third space, i.e.

Ia1a2 ≡ Ia1a2 ⊗ Il = Ia1 ⊗ Ia2 ⊗ Il . (40)
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The proof is also immediate for the terms with one permutation operator, since they commute with
the identity. Now for the terms with two permutation operators, we have

(λ− µ)Pla1Pla2 + (λ− i/2)Pa1a2Pla2 + (µ− i/2)Pa1a2Pla1

= (λ− µ)Pla2Pla1 + (λ− i/2)Pla2Pa1a2 + (µ− i/2)Pla1Pa1a2

, (41)

and to prove this we must first establish some important properties of P . For a general operator
we can rewrite (10), the main property, as

Ma1a2 = Pla2Mla1Pla2 . (42)

This will also come in useful later. When this is applied to another permutation operator, we obtain
a useful relation between permutation operators with one similar index,

Pla1Pla2 = Pa1a2Pla1 = Pla2Pa1a2 . (43)

This will allow us to manipulate the indices in strings of permutation operators. Finally, permuta-
tion operators are symmetric in their indices,

Pa1a2 = Pa2a1 , (44)

and of course P 2 = I. We use (43) on the terms which contain Pa1a2 to write the relation solely in
terms of Pla1 and Pla2 ,

(λ− µ)Pla1Pla2 + (λ− i/2)Pla2Pla1 + (µ− i/2)Pla1Pla2

= (λ− µ)Pla2Pla1 + (λ− i/2)Pla1Pla2 + (µ− i/2)Pla2Pla1

, (45)

and from this it is clear that the terms are equivalent. Finally, for the terms with three permutation
operators we use

Pa1a2Pla1Pla2 = Pla2Pla1Pa1a2 , (46)

which is easily proven to be true using (43),

Pa1a2Pla1Pla2 = Pla2Pa1a2Pla2

= Pla2Pla2Pa1a2

. (47)

Hence (38) indeed holds. Since this is a special case of the Yang-Baxter equation, we can also
conclude that (24) is a solution to (22). We will call the FCR for Lax operators the RLL relation.
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l

a2 a1

Ra1a2

Lla1

Lla2

l

a2 a1

Ra1a2

Lla1

Lla2

Figure 4: Graphical representation of the RLL relation [10].

Using (38) we can obtain a similar FCR for the monodromy matrices,

Ra1a2(λ− µ)Ta1(λ)Ta2(µ) = Ta2(µ)Ta1(λ)Ra1a2(λ− µ) , (48)

which we will call the RTT relation (the subscript L is dropped as it characteristic of the chain).
This can be shown for L = 2 (two Lax operators), and the general case follows by induction. For
L = 2 we have

Ra1a2L2a1 L1a1L2a2︸ ︷︷ ︸
commute

L1a2 = Ra1a2L2a1L2a2︸ ︷︷ ︸
FCR

L1a1L1a2

= L2a2L2a1 Ra1a2L1a1L1a2︸ ︷︷ ︸
FCR

= L2a2 L2a1L1a2︸ ︷︷ ︸
commute

L1a1Ra1a2

= L2a2L1a2L2a1L1a2L1a1Ra1a2

. (49)

It is easy to see that this trick can be applied iteratively for any L > 2. Thus, we have a similar
FCR for monodromy matrices acting on different auxiliary spaces.

a1

a2

1 2 3 . . . L− 1 L

a2

a1

1 2 3 . . . L− 1 L

Figure 5: Graphical representation of the RTT relation; the train track argument.
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From the RTT relation, it follows that the transfer matrices commute. Since R is invertible, we
can left multiply by R−1 and then take the trace over both auxiliary spaces,

tra1 tra2 (Ta1(λ)Ta2(µ)) = tra1 tra2

(
R−1
a1a2(λ− µ)Ta2(µ)Ta1(λ)Ra1a2(λ− µ)

)
, (50)

and then from the cyclicity of the trace we obtain

[F (λ), F (µ)] = 0 , (51)

where F (λ) is traced over V1, and F (µ) is traced over V2. Since we have just shown that these
operators commute, then if we show that the Hamiltonian belongs to the set of conversed charges
obtained from F (λ), we can conclude that our system is an integrable one.

3.1.3 Rewriting the Hamiltonian

We are now faced with the task of obtaining (30) from the expansion of the transfer matrices. The
point λ = i/2 is important because

Lla(i/2) = iPla , (52)

although this is no surprise since we defined the Lax operator from the R matrix; it corresponds
to R(0). From this we can conveniently expand F (λ) about the point λ = i/2. At this point, T (λ)
is given by

T (i/2) = iLPNa . . . P1a , (53)

and so the trace at the point λ = i/2 is

F (i/2) = iL tra (PLa . . . P1a)

= iL tra (P12 . . . PL−1LPLa)

= iLP12 . . . PL−1L

. (54)

Here the identity (47) is used iteratively to rewrite the string of permutation operators. We only
trace over the last permutation operator and

tra(Pla) = tra

1
2

[
Il 0
0 Il

]
+ 1

2
∑
α

σαl ⊗ σαa︸ ︷︷ ︸
traceless


= Il

. (55)

Now that we have F (i/2) in terms of permutation operators, its inverse is given by

F−1(i/2) = i−LPLL−1 . . . P21 . (56)

We introduce the shift operator, U,

U = i−LF (i/2) = P12 . . . PL−1L , (57)

14



which is unitary, and by (42) can be shown to shift the indices of operators,

U−1MlU = Ml−1 . (58)

This allows us to introduce the (lattice) momentum observable,

U = eiP . (59)

Momentum is the generator of translations and on our spin chain this is taken to mean a shift along
one lattice site. This also belongs to the set of conserved charges generated by F (λ).

The derivative of T (λ) at the point λ = i/2 is given by
d

dλ
T (λ)

∣∣∣∣
λ=i/2

= iL−1∑
l

PLa . . . Pl+1aPl−1a . . . P1a , (60)

where the lth permutation operator is missing. If we take the trace of this we will have the derivative
of F (λ) at the point λ = i/2. Using the same trick as before we get

d

dλ
F (λ)

∣∣∣∣
λ=i/2

= iL−1∑
l

P12 . . . Pl−1l+1 . . . PL−1L , (61)

the Pl−1l+1 term arising because the lth permutation operator was missing. If we multiply (61) by
F−1(i/2) it will simplify things greatly, although it is not immediately obvious. We have

d

dλ
ln(F (λ))

∣∣∣∣
λ=i/2

= i−1∑
l

P12 . . . Pl−1l+1 . . . PL−1LPLL−1 . . . P21

= i−1∑
l

P12 . . . Pl−1l+1Pl+1l . . . P21

= i−1∑
l

P12 . . . Pll+1(Pl−1lPll−1︸ ︷︷ ︸
I

) . . . P21

= i−1∑
l

Pll+1

. (62)

In the second line, we use the commutation rule for the permutation operators to commute the
Pl−1l+1 and Pll+1, creating an extra Pl−1l, which cancels with the one to the right of it. Pll+1

commutes with everything to the left of it, and the strings originally on either side of Pll+1 collapse to
the identity. Recalling that P looks like (9), (62) conveniently looks very similar to the Hamiltonian,
HXXX,

HXXX =
∑
l,α

Sαl S
α
l+1 −

L

4

= 1
2
∑
l

Pll+1 −
L

2

. (63)

By using (62) we can finally write our Hamiltonian as

HXXX = i

2
d

dλ
ln(F (λ))

∣∣∣∣
λ=i/2

− L

2 , (64)

which completes the proof that our system is integrable.
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3.2 Bethe Ansatz Equations

Our next goal is to get the eigenvalues of F (λ) using (48) and some properties of the Lax operators.
This method is like a generalisation of the creation and annihilation operator method for solving
the harmonic oscillator; we make use of a commutation relation such as [a, a†] = 1 and require the
existence of a reference state |Ω〉 such that a |Ω〉 = 0.

First we need to write down the required relations from the RTT relation. Recall that R(λ) is given
by (32) and its matrix representation on V1 ⊗ V2 is

Ra1a2(λ) =


λ+ i

λ i

i λ

λ+ i

 . (65)

We can also write T (λ) in matrix form,

T (λ) =
[
A(λ) B(λ)
C(λ) D(λ)

]
. (66)

Then on H⊗ V1 ⊗ V2, the T in (48) are explicitly given by

Ta1(λ) =


A(λ) B(λ)

A(λ) B(λ)
C(λ) D(λ)

C(λ) D(λ)

 , Ta2(µ) =


A(µ) B(µ)
C(µ) D(µ)

A(µ) B(µ)
C(µ) D(µ)

 . (67)

We can now get some explicit relations for the entries of T from the RTT relation. Entry (1,3) in
(48) gives

(λ− µ+ i)B(λ)A(µ) = iB(µ)A(λ) + (λ− µ)A(µ)B(λ) , (68)

which after rearranging and exchanging (λ↔ µ) gives the first relation in (70). The second relation
comes from entry (2,4),

(λ− µ+ i)B(µ)D(λ) = (λ− µ)B(µ)D(λ) + iB(λ)D(µ) . (69)

Also, we see that B commutes with itself. In summary, we have

[B(λ), B(µ)] = 0

A(λ)B(µ) = f(λ− µ)B(µ)A(λ) + g(λ− µ)B(λ)A(µ)

D(λ)B(µ) = h(λ− µ)B(µ)D(λ) + k(λ− µ)B(λ)D(µ)

, (70)
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where we introduce the notation

f(λ) = λ− i
λ

g(λ) = i

λ

h(λ) = λ+ i

λ
k(λ) = − i

λ

, (71)

to simplify the relations.

To find |Ω〉, we first make the argument that for each quantum space hl there exists some vector
|ωl〉 such that the Lax operator becomes upper triangular in auxiliary space when applied to it,

Lla(λ) |ωl〉 =
[
λ+ i/2 ∗

0 λ− i/2

]
|ωl〉 , (72)

the * referring to irrelevant terms (irrelevant in the context of finding the reference state). This is
simply the basis vector,

|ωl〉 =
[

1
0

]
, (73)

and our reference state is given by

|Ω〉 = |ω1〉 ⊗ . . .⊗ |ωL〉 (74)

in H. Thus,

T (λ) |Ω〉 =
[
αL(λ) ∗

0 δL(λ)

]
|Ω〉 , (75)

where
α(λ) = λ+ i/2 δ(λ) = λ− i/2 . (76)

Now we have

C(λ) |Ω〉 = 0 A(λ) |Ω〉 = αL(λ) |Ω〉 D(λ) |Ω〉 = δL(λ) |Ω〉 , (77)

so |Ω〉 is an eigenstate of both A(λ) and D(λ) and hence it is an eigenstate of F (λ) = tra(T (λ)) =
A(λ) +D(λ).

It remains to find the rest of the eigenstates of F (λ). We make the ansatz that they are of the form

|Φ{λ}〉 = B(λ1) . . . B(λm) |Ω〉 , (78)

for a set of parameters {λ = λ1, . . . , λm}. We can determine them by calculating A |Φ〉 and D |Φ〉,
using (70) and the fact that |Ω〉 is an eigenstate of A and D. Explicitly we have

A |Φ〉 = A(λ)B(λ1) . . . B(λm) |Ω〉

= αL(λ)
(

m∏
k=1

f(λ− λk)
)
|Φ〉

+
∑
k

Mk(λ, {λ})B(λ1) . . . B̂(λk) . . . B(λm)B(λ) |Ω〉

, (79)
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where B̂(λk) means that term is omitted. The first term comes from commuting A(λ) through
each B(λk) using only the first term of the commutation relation. This is the term that we want to
use since it contains |Φ〉. The second term accounts for the 2m − 1 other terms generated from the
commutation relation; they are not in terms of |Φ〉 and the coefficient Mk is rather complicated.
We can calculate the first one, M1, and the rest are obtained by sending λ1 → λk. The second
term obtained from commuting A(λ) with B(λ1) is

g(λ− λ1)B(λ)[A(λ1)B(λ2) . . . B(λm)] |Ω〉 , (80)

and now we need to commute A(λ1) with B(λ2), but the second term resulting from this, which
contains A(λ2), will contribute to M2, so we can ignore it. Repeating this process we get

M1 = αL(λ1)g(λ− λ1)

 m∏
j=2

f(λ1 − λj)

 , (81)

and in general we have

Mk = αL(λk)g(λ− λk)

 m∏
j 6=k

f(λk − λj)

 . (82)

Similarly, for D we have

D |Φ〉 = D(λ)B(λ1) . . . B(λm) |Ω〉

= δL(λ)
(

m∏
k=1

h(λ− λk)
)
|Φ〉

+
∑
k

Nk(λ, {λ})B(λ1) . . . B̂(λk) . . . B(λm)B(λ) |Ω〉

. (83)

The coefficients Nk are determined as they were for Mk,

Nk = δL(λk)k(λ− λk)

 m∏
j 6=k

h(λk − λj)

 . (84)

|Φ〉 will be an eigenstate of F (λ) if the second terms in (79) and (83) vanish. So we will have

F (λ) |Φ〉 = (A+D) |Φ〉 = Λ(λ, {λ}) |Φ〉 , (85)

with eigenvalue

Λ(λ, {λ}) = αL(λ)
(

m∏
k=1

f(λ− λk)
)

+ δL(λ)
(

m∏
k=1

h(λ− λk)
)

, (86)

if the following condition is met for each λk;

αL(λk)

 m∏
j 6=k

f(λk − λj)

 = δL(λk)

 m∏
j 6=k

h(λk − λj)

 , (87)
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where we used
g(λ) = −k(λ) . (88)

By rearranging and using the explicit expressions given in (71) and (76) we finally arrive at(
λk + i/2
λk − i/2

)L
=

m∏
j 6=k

λk − λj + i

λk − λj − i
, (89)

the Bethe Ansatz Equations (BAE). |Φ〉 is known as the Bethe vector and λk are known as the
Bethe roots. (87) is just the residue of Λ, so straight away as a result of (89) the poles in Λ will
cancel and the eigenvalues will be analytic. BAE can also be used to take the large L limit and
calculate thermodynamic quantities of the spin chain. To give more physical meaning to BAE, we
can rewrite it as

eip(λk)L =
m∏
j 6=k

S(λk − λj) , (90)

where
S(λ) = λ+ i

λ− i
(91)

is the two-particle scattering amplitude. The LHS is the phase factor picked up by the kth magnon
as it travels around the chain. The RHS accounts for the interactions between it and the rest of
the magnons. The fact that the scattering amplitude for m magnons is factorised into 2-magnon
scattering amplitudes is a result of the integrability of the model.

We can now find the momentum and energy of our chain. Recalling that the shift operator and
momentum are related to F (i/2), we have

U |Φ〉 = i−LF (i/2) |Φ〉 = i−LΛ(i/2) |Φ〉 =
m∏
k=1

(
λk + i/2
λk − i/2

)
|Φ〉 . (92)

Taking the natural log of both sides, we get

P |Φ〉 =
m∑
j=1

p(λk) |Φ〉 , (93)

where
p(λ) = −i ln

(
λ+ i/2
λ− i/2

)
, (94)

is the momentum eigenvalue. We can relate this to the energy using (64), and by differentiating
with respect to λ we obtain the energy eigenvalue,

HXXX |Φ〉 =
m∑
k=1

ε(λk) |Φ〉 , (95)

where
ε(λ) = −1

2

( 1
λ2 + 1/4

)
. (96)
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This gives a quasiparticle interpretation of our states. Our quasiparticle is the magnon, a quantised
spin wave with energy ε(λ) and lattice momentum p(λ), λ effectively acting as the rapidity. It is
clear to see that B(λ) is the magnon creation operator and C(λ) is the corresponding annihilation
operator. The ansatz that we made is that our states are obtained from m excitations.

Taking the limit λ→∞, it can be shown that[1
2 ~σa + ~S, Ta(λ)

]
= 0 . (97)

From this we have

S+ |Ω〉 = 0

S3 |Ω〉 = L

2 |Ω〉
, (98)

i.e. |Ω〉 is a highest weight state, and hence

S3 |Φ〉 = (L− m

2 ) |Φ〉 . (99)

It can also be shown that if BAE are satisfied then

S+ |Φ〉 = 0 , (100)

and so all |Φ〉 are highest weight states. This implies that there is a limit on the number of magnons
we can have for a chain of fixed length, since the highest weight eigenvalue of S3 is non-negative,

m ≤ L

2 . (101)

The lowest energy eigenstate is obtained when m = L/2 (rounding down when L is odd). For a
more detailed treatment, see [7].
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3.3 Solving BAE Numerically

We can solve (89) numerically for the Bethe roots for chains of finite length and hence find the
energy eigenvalue. The eigenstate with lowest energy is the one where m = L/2 and all of the
Bethe roots are real. The problem is that there are many complex roots (which describe bound
states). When solving equations with Mathematica, if there are complex numbers in the equation
it will search for complex solutions. Therefore we must rewrite BAE in a more ‘real looking’ form
in order to solve for the real Bethe roots [11]. Taking the natural log of (89), we get

L ln
(
λk + i/2
λk − i/2

)
=

m∑
j 6=k

ln
(
λk − λj + i

λk − λj − i

)
+ 2nkπ , (102)

where 0 ≤ nk ≤ N−1 defines the branch of the logarithms. To rewrite this, we can use the identity

1
i

ln
(
λ− ia
λ+ ia

)
= 2 tan−1

(
λ

a

)
, (103)

which will take care of the factors of i that cause Mathematica to search for complex roots. To
prove this identity, consider the equation

λ = a tan(w) = 1
i

(
e2iw − 1
e2iw + 1

)
. (104)

Solving for e2iw and taking the log of both sides gives

w = 1
2i ln

(
λ− ia
λ+ ia

)
, (105)

but since we also have w = tan−1(λ/a), we get

1
2i ln

(
λ− ia
λ+ ia

)
= tan−1

(
λ

a

)
. (106)

Applying this identity to (102) gives

L tan−1(2λk)−
m∑
j 6=k

tan−1(λk − λj) = πAk , (107)

where Ak are quantum numbers that parametrise the λk, which come from the branch of the
logarithms. It can be shown by examining the range of the function

Φ(x) = 1
π

L tan−1(2x)−
m∑
j=1

(x− xj)

 (108)

that Ak takes values separated by integer steps in the range

L− 3m+ 1
2 ≤ Ak ≤

L−m− 1
2 . (109)

This can be done by plotting Φ(x) over a sufficient interval for different values of L and m.
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Figure 6: Plot of the function Φ(x) for L = 7 and m = 3. The asymptotic behaviour is clear and
by repeating this for different values of L and m, the range of Ak can be determined.

We can solve (107) for real Bethe roots using FindRoot in Mathematica, and the energy is obtained
from (96). As an example, the lowest energy for chains of lengths up to L = 200 is calculated.
We see that the numerical solution agrees remarkably well with the energy obtained in the large L
limit [12],

E ' − ln(2)L . (110)

It is nice to see that after a very algebraic method of solving the system that we obtain good
physical results.
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Figure 7: Ground state energy as a function of spin chain length.
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4 Breaking Integrability

4.1 Finding the Perturbed Hamiltonian

In this section we introduce deformations to the spin chain. There are several ways to do this;
by deforming the algebras, monodromy matrices, transfer matrices or by directly deforming the
Hamiltonian. We will deform the Lax operator as it is perhaps the most fundamental object in our
system.

Lla → L̃la = Lla + εMla(λ) , (111)

where Mla ∈ hl ⊗ V and ε is a small parameter so that terms of order ε2 and higher can be
neglected. This deformation is introduced locally at each lattice site, although it may result in
non-local deformations to the Hamiltonian. To see how this affects the system we need to find
the perturbed Hamiltonian. Before we do this, we must find the resulting deformations to the
monodromy and transfer matrices. We define the deformed monodromy matrix in the same way as
before but in terms of the deformed lax operators,

T̃ (λ) = L̃La . . . L̃1a . (112)

By expanding and neglecting terms of order ε2 and higher, an expression for T̃ (λ) in terms of the
original monodromy matrix plus leading order perturbative terms is obtained,

T̃ (λ) = T (λ) + ε
∑
i

LLa . . .Mia . . . L1a +O(ε2) , (113)

where in the sum the ith Lax operator is replaced by Mia. Taking the trace as before gives

F̃ (λ) = F (λ) + ε
∑
i

tra(LLa . . .Mia . . . L1a) +O(ε2) . (114)

The deformed Hamiltonian is written analogously to the original Hamiltonian,

H̃ = i

2
d

dλ
ln(F̃ (λ))

∣∣∣∣
i/2
− N

2 , (115)

and the main goal of this section is to write this in terms of the original Hamiltonian plus the
leading order perturbative term,

H̃ = HXXX + εf(M(λ)) +O(ε2) , (116)

where f(M(λ)) has as simple a form as is possible. We differentiate the monodromy matrix,

d

dλ
T̃ (λ)

∣∣∣∣
λ=i/2

= d

dλ
T̃ (λ)

∣∣∣∣∣
λ=i/2

+ ε
∑
i

d

dλ
[LLa . . .Mia . . . L1a]λ=i/2 +O(ε2) . (117)
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The last term is complicated but we treat it using the methods used in the undeformed case. The
deformation in (117) is given by

∑
i

d

dλ
[LLa . . .Mia . . . L1a]λ=i/2 +O(ε2) =

∑
i

[(
L′La

)
LL−1a . . .Mia . . . L1a + · · ·+

+LLa . . .M ′ia . . . L1a
]
λ=i/2

, (118)

where ′ denotes differentiation with respect to λ. All of the terms in the sum are similar except for
the one that includes M ′ia, so we will deal with it separately to the rest. At the point λ = i/2,∑

i

[
LLa . . .M

′
ia . . . L1a

]
λ=i/2 = iL−1∑

i

PLa . . .M
′
ia(i/2) . . . P1a . (119)

Now taking the trace over auxiliary space and multiplying by F−1(i/2), (119) becomes

i−1∑
i

tra
[
PLa . . . Pi+1aM

′
iaPi−1a . . . P1a

]
PLL−1 . . . P21 , (120)

and the permutation operators will collapse as they did before. We use (42) to rewrite the strings
of permutations on either side of M ′ia,

Pla . . . Pi+1a . . . Pi+1a = Pi+1aPi+1i+2 . . . PL−1L

Pi−1a . . . P1a = P12 . . . Pi−2i−1Pi−1a
. (121)

Now we factor the strings out of the trace to the right and left respectively, leaving only two
permutation operators and M ′ia inside the trace. (120) becomes

i−1∑
i

P12 . . . Pi−2i−1 tra[Pi+1aM
′
iaPi−1a]Pi+1i+2 . . . PL−1LPLL−1 . . . P21

= i−1∑
i

P12 . . . Pi−2i−1 tra[M ′ii+1Pi+1i−1Pi+1a]Pi+1i . . . P21
, (122)

where we used the main property of the permutation operator to manipulate the indices inside the
trace. We can moveM ′ii+1 to the left as it doesn’t share any indices with the permutation operators
to the left of it,

= i−1∑
i

M ′ii+1P12 . . . Pi−2i−1Pi+1i−1Pi+1i . . . P21 . (123)

Now we just need to deal with the string of permutation operators,

P12 . . . Pi−2i−1Pi+1i−1Pi+1i . . . P21 = P12 . . . [Pi−2i−1Pii+1Pii−1]Pii−1 . . . P21

= Pii+1[P12 . . . Pi−2i−1Pi−1i−2 . . . P21]

= Pii+1

, (124)

so finally we can write (119) as

i−1∑
i

tra
[
PLa . . . Pi+1aM

′
iaPi−1a . . . P1a

]
PLL−1 . . . P21 = i−1∑

i

M ′ii+1(i/2)Pii+1 . (125)
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One interesting observation is that this term contains only local interactions.

The remaining terms in (118) still need to be evaluated. Taking into account that L′la(λ) = Il at
any value of λ, we have

(
L′La

)
LL−1a . . .Mia . . . L1a + · · · =

∑
j 6=i

LLa . . . Lj+1aLj−1a . . .Mia . . . L1a , (126)

where the jth Lax operator is omitted in each term in the sum. Now taking the trace over auxiliary
space and multiplying by F−1(i/2) as before we get

i−2∑
j 6=i

tra[PLa . . . Pj+1aPj−1a . . .Mia . . . P1a]PLL−1 . . . P21 , (127)

and similarly this simplifies down to

= i−2Mii+1(i/2)
∑
j 6=i

Pjj+1Pii+1 . (128)

Since P 2
ii+1 = I, we can add and subtract it to rewrite the sum,

i−2Mii+1(i/2)

 ∑
j 6=i

Pjj+1

Pii+1 = i−2Mii+1(i/2)

∑
j

Pjj+1Pii+1 − I

 , (129)

and interestingly, this term contains generically non-local interactions. Finally, we have the de-
formed Hamiltonian,

H̃ = HXXX + ε

2
∑
i

M ′ii+1(i/2)Pii+1 − iMii+1(i/2)

∑
j

Pjj+1Pii+1 − I

+O(ε2) . (130)

What is interesting is that the deformation is split into local and generically non-local terms, the
local terms depending on M ′(i/2) and the non-local terms depending on M(i/2).

Since (130) is for a general deformation M , it is not necessarily integrable. Next we are faced with
the task of finding the deformations that are integrable as well as the ones that are integrable in
the leading order. We can then specify the entirely local and non-local deformations by requiring
that M(i/2) = 0 and M ′(i/2) = 0, respectively. We can also construct the eigenstates, leading to
a set of deformed BAE.
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4.2 FCR in the Deformed Case

We can search deformations that do not break integrability up to a certain order, that is,

[F̃ (λ), F̃ (µ)] = 0 +O(ε2) . (131)

This will also include deformations that are integrable. The simplest way to obtain operators that
commute is to start from the ground up; if the deformed Lax operators satisfy some RLL relation,
then we can show that the matrices also satisfy some RTT relation, and so their traces will commute
(all up to O(ε2) of course). The new RLL relation looks like

Ra1a2(λ− µ) [Lna1(λ) + εMla2(λ)] [Lla2(µ) + εMla2(µ)] =

[Lla2(µ) + εMla2(µ)] [Lla1(λ) + εMla2(λ)]Ra1a2(λ− µ)
. (132)

Expanding this, we get

Ra1a2(λ− µ) [Lla1(λ)Mla2(µ) +Mla2(λ)Lla2(µ)] =

[Mla2(µ)Lla1(λ) + Lla2(µ)Mla2(λ)]Ra1a2(λ− µ) +O(ε2)
, (133)

where the first terms from each side satisfy the original RLL relation (38). We must find theM that
satisfy this relation. Here we sketch the method for obtaining all of the representations required to
solve (133). For full details on solving (133) in Mathematica, see Appendix B.

4.2.1 Explicit Computation

Since the terms in (133) are defined on V1 ⊗ V2 ⊗ hl, we can use matrix representations of the
operators, and the problem reduces to a 23 × 23 = 8 × 8 matrix equation. In theory we have
32 parameters (each deformation has 16 unique entries, and there are two of them depending on
different spectral parameters) and 64 constraints. So our system is overdefined, however there is a
large number of spurious constraints and we will get non-trivial solutions.

Each operator in the equation acts on different products of two of the three spaces in question. Thus,
getting the matrix representations correct requires precise consideration; we need a systematic way
of defining the operators on V1 ⊗ V2 ⊗ hl. Recall that the Yang-Baxter equation takes the form

R12(λ− µ)R13(λ)R23(µ) = R23(µ)R13(λ)R12(λ− µ) , (134)

where we use a simpler notation for the subscripts: R12 ≡ Ra1a2 , etc. In our case, subscripts 1 and
2 refer to the auxiliary spaces and subscript 3 refers to the quantum space. As discussed in the
section on integrability our solution to this is given by

R(λ) = λI + iP . (135)
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R will be given explicitly by (65) as we have seen before, but it must also act trivially in the
quantum space,

R12(λ) ≡ R(λ)⊗ I =


λ+ i

λ i

i λ

λ+ i

⊗
[
1 0
0 1

]

=



λ+ i

λ+ i

λ i

λ i

i λ

i λ

λ+ i

λ+ i



. (136)

Similarly,

R23(λ) ≡ I ⊗R(λ) =
[
1 0
0 1

]
⊗


λ+ i

λ i

i λ

λ+ i



=



λ+ i

λ i

i λ

λ+ i

λ+ i

λ i

i λ

λ+ i



. (137)

The representation of R13(λ) is not so straightforward to get since the space in which it acts trivially
is sandwiched between the other two. We can make use of the fact that

R13(λ) = P23R12(λ)P23 . (138)

Of course, we must first define the Permutation operator correctly,

P23 ≡ I ⊗ P . (139)
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Then we get

R23(λ) = P23R12(λ)P23

=



λ+ i

λ i

λ+ i

λ i

i λ

λ+ i

i λ

λ+ i



, (140)

and finally we have the correct representations of our operators acting on V1⊗ V2⊗ hn. We obtain
the RLL relation by setting

λ→ λ− i/2

µ→ µ− i/2
. (141)

We have previously shown that this relation holds for our spin chain, and we can now also show
that it holds by explicit matrix multiplication. With the help of Mathematica, this is shown to be
true. This is a good sanity check that our matrix representations are correct.

Now that we have a systematic method for obtaining matrix representations on V1 ⊗ V2 ⊗ hl, we
can write the representations of M and proceed to solve (133). Starting with the representation of
M on the space C2 ⊗ C2, let

M(λ) =


a(λ) b(λ) e(λ) f(λ)
c(λ) d(λ) g(λ) h(λ)
i(λ) j(λ) m(λ) n(λ)
k(λ) l(λ) o(λ) p(λ)

 , (142)

where each 4 successive letters are the entries of a 2 × 2 block representing a quantum operator
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which depends on λ. As above, we can easily define M12(λ) and M23(λ),

M12(λ) = M(λ)⊗ I =


a(λ) b(λ) e(λ) f(λ)
c(λ) d(λ) g(λ) h(λ)
i(λ) j(λ) m(λ) n(λ)
k(λ) l(λ) o(λ) p(λ)

⊗
[
1 0
0 1

]

=



a(λ) b(λ) e(λ) f(λ)
a(λ) b(λ) e(λ) f(λ)

c(λ) d(λ) g(λ) h(λ)
c(λ) d(λ) g(λ) h(λ)

i(λ) j(λ) m(λ) n(λ)
i(λ) j(λ) m(λ) n(λ)

k(λ) l(λ) o(λ) p(λ)
k(λ) l(λ) o(λ) p(λ)



, (143)

M23(λ) = I ⊗M(λ) =
[
1 0
0 1

]
⊗


a(λ) b(λ) e(λ) f(λ)
c(λ) d(λ) g(λ) h(λ)
i(λ) j(λ) m(λ) n(λ)
k(λ) l(λ) o(λ) p(λ)



=



a(λ) b(λ) e(λ) f(λ)
c(λ) d(λ) g(λ) h(λ)
i(λ) j(λ) m(λ) n(λ)
k(λ) l(λ) o(λ) p(λ)

a(λ) b(λ) e(λ) f(λ)
c(λ) d(λ) g(λ) h(λ)
i(λ) j(λ) m(λ) n(λ)
k(λ) l(λ) o(λ) p(λ)



. (144)

Again, we use the same trick to obtain M13(λ),

M13(λ) = P23M12(λ)P23

=



a(λ) b(λ) e(λ) f(λ)
c(λ) d(λ) g(λ) h(λ)

a(λ) b(λ) e(λ) f(λ)
c(λ) d(λ) g(λ) h(λ)

i(λ) j(λ) m(λ) n(λ)
k(λ) l(λ) o(λ) p(λ)

i(λ) j(λ) m(λ) n(λ)
k(λ) l(λ) o(λ) p(λ)



, (145)
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and finally we have all of the ingredients to write (133) in matrix form. As mentioned previously,
the system seems grossly overdefined. Remarkably though, (133) allows for deformations that de-
pend on 8 parameters.

Note that M(λ) and M(µ) are of the same form. This is because the deformations in (133) do not
necessarily have to be the same. However, if we introduce the same deformation at each lattice
site, then an RT̃ T̃ relation would immediately follow if (133) is satisfied.

Using Mathematica, the set of M that satisfy (133) are of the form

M(λ) =


g(λ+ i/2) + y(λ+ i/2) + z ib b(λ− i/2) + n(λ+ i/2) 0

ic g(λ− i/2) + y(λ− i/2) + z i(g + x) b(λ+ i/2) + n(λ− i/2)
c(λ− i/2) + o(λ+ i/2) i(g − x) g(λ− i/2)− y(λ− i/2) + z in

0 c(λ+ i/2) + o(λ− i/2) io g(λ+ i/2)− y(λ+ i/2) + z

 , (146)

for 8 complex parameters. Here we made the assumption that M depends linearly on λ. Notice
that this class of deformations contains both the identity matrix and the Lax operator by setting
z = 1 or g = 1 respectively, and then setting the rest of the parameters to zero. This is a good
sanity check since the case where M ∝ L should definitely be integrable. The case where M ∝ I

should also be integrable, although it is less obvious. This will result in inhomogeneous spin chains;
ones with Lax operators of the form

L̃la(λ) = (λ+ θl − i/2) + iP . (147)

The RLL relation for the inhomogeneous spin chain can be shown to hold either by straightforward
calculation or by using the matrix representations, and hence it is also integrable.

In operator form, we can write M(λ) as a 2× 2 matrix,

M(λ) =


i(bS+ + cS−) + (λ(g + y) + z)I i(g + x)S− + λ(b+ n)I

+ i
2(g + y)S3 + i

2(b− n)S3

i(g − x)S+ + λ(c+ o)I i(nS+ + oS−) + (λ(g − y) + z)I
+ i

2(c− o)S3 − i
2(g − y)S3

 , (148)

which highlights the dependence on the generators S± and S3.

Recall that the local terms in (130) depend on M ′(i/2) whereas the non-local terms depend on
M(i/2). If we examine (146), the only way to get M(i/2) = 0 is to set all of the parameters to
zero. It would seem that our class of deformations doesn’t include any purely local ones. This
is not good because we showed previously that it includes the rescaled Lax operator, which does
result in a local deformation. However there is one local term in the generically non-local part of
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the perturbative Hamiltonian. When Mii+1(i/2) ∝ Pii+1, which is the case when M ∝ L, we have
P 2
ii+1 = 1 in the 3rd part of (130), leaving a term that is local. So the local deformation where the

Lax operator is rescaled is included in this class, but unfortunately it is the only one. Therefore
this isn’t the most general deformation we could have made; assuming that M depends linearly on
λ is too restrictive, as is only deforming the Lax operators while keeping R fixed. This motivates
the deformation of both L and R, and increasing the powers of λ in the deformations.

Looking at deformations with M ′(i/2) = 0, we see that they are of the form

M(λ) =


z ib −ib 0
ic z ix ib

−ic −ix z −ib
0 ic −ic z

 , (149)

i.e. they are constant and depend on 4 parameters.

To recap, we have found a class deformations which is linear in λ that give commuting charges in
the linear order. The only local deformation in this class is the rescaled Lax operator. We will
improve on this by also deforming R and by increasing the powers of λ in the deformations. Before
we do this it is worth applying the Bethe ansatz method to our model and constructing a set of
deformed eigenstates.
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4.3 BAE in the Deformed Case

If we write T̃ (λ) in a similar form to (66),

T̃ (λ) =
[
Ã(λ) B̃(λ)
C̃(λ) D̃(λ)

]
, (150)

where the entries are much more complicated in this case. In the previous section we showed that

RT̃ T̃ = T̃ T̃R+O(ε2) , (151)

where the R is the same as before, so we will have similar commutation relations for the entries of
T̃ (λ),

[B̃(λ), B̃(µ)] = 0

Ã(λ)B̃(µ) = f(λ− µ)B̃(µ)Ã(λ) + g(λ− µ)B̃(λ)Ã(µ)

D̃(λ)B̃(µ) = h(λ− µ)B̃(µ)D̃(λ) + k(λ− µ)B̃(λ)D̃(µ)

, (152)

where f , g, h and k are again given by (71). If we also deform R, these commutation relations
become much more complicated. First we must find a reference state, |Ω′〉, such that

C̃ |Ω′〉 = 0 . (153)

We won’t make the assumption that it is the same as the previous reference state, but we will
assume that it can be written in the form

|Ω′〉 = |ω′1〉 ⊗ . . .⊗ |ω′L〉 , (154)

where we take each |ω′l〉 to be a general vector,

|ω′l〉 =
[
ρ
σ

]
. (155)

To satisfy (153), we can look at the action of the bottom left entry of each M(λ) on each |ω′l〉.
From (148) we have[

i(g − x)S+ + λ(c+ o)I + i

2(c− o)S3
] [

ρ
σ

]
=
[

λ(c+ o) + i
2(c− o)ρ

i(g − x)σ + λ(c+ o)− i
2(c− o)σ

]
, (156)

and we want this to vanish for each l and for every value of λ. Since the deformation is the same
at each site on the chain, if it works in this case, it will be true for each l. If we set c = o = 0, then
(153) will actually be satisfied by the reference state |Ω〉 for the undeformed chain. This makes life
easier, but comes at the cost of fixing two parameters. Now we look at the action of the diagonal
entries of M(λ) on our reference state. We have[

ibS+ + (λ(g + y) + z)I + i

2(g + y)S3
]
|ωl〉 = [(g + y)(λ+ i/2) + z] |ωl〉 (157)
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and [
inS+ + (λ(g − y) + z)I − i

2(g − y)S3
]
|ωl〉 = [(g − y)(λ− i/2) + z] |ωl〉 , (158)

since S+ |ωl〉 = 0. Hence we have deformed versions of (77),

C̃(λ) |Ω〉 = 0 Ã(λ) |Ω〉 = α̃L(λ) |Ω〉 D̃(λ) |Ω〉 = δ̃L(λ) |Ω〉 , (159)

where

α̃(λ) = α(λ) + ε [(g + y)α(λ) + z]

δ̃(λ) = δ(λ) + ε [(g − y)δ(λ) + z]
, (160)

for the same reference state |Ω〉. Hence |Ω〉 is an eigenstate of F̃ (λ) with eigenvalue α̃L(λ) + δ̃L(λ).
Since the commutation relations are of the same form as before we proceed to construct the rest of
the eigenstates in a similar fashion, the difference being the different explicit forms of the entries
of T̃ . We make the ansatz that the eigenstates are of the form

|Φ′{λ}〉 = B̃(λ1) . . . B̃(λm) |Ω〉 , (161)

for parameters {λ = λ1 . . . λm}. Then |Φ′〉 is an eigenstate of F̃ (λ) with eigenvalue

Λ̃(λ, {λ}) = α̃L(λ)
(

m∏
k=1

f(λ− λk)
)

+ δ̃L(λ)
(

m∏
k=1

h(λ− λk)
)

(162)

if the following BAE are satisfied,(
λk + i/2 + ε [(g + y)(λk + i/2) + z]
λk − i/2 + ε [(g − y)(λk − i/2) + z]

)L
=

m∏
j 6=k

λk − λj + i

λk − λj − i
. (163)

Only the LHS is deformed, which makes sense because we only deformed L. The RHS is determined
by the entries of R, so deforming R will lead to deformations in the RHS.
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4.4 Deforming the R Matrix

The results of the previous two sections suggest that both L and R should be deformed in order to
obtain the most general deformations possible. We expect this will lead to more local deformations
to the Hamiltonian as well as deformations to the interactions described in the BAE. We introduce
the deformation to R in the same way as before,

Rla → R̃la = Rla + εNla(λ) , (164)

and the calculations from the previous sections must be repeated, accounting for the additional
deformation N(λ). First we need to find deformations that result in commuting transfer matrices
up to linear order. These are determined by a FCR which is similar to (133), although more
complicated,

Na1a2(λ− µ)Lla1(λ)Lla2(µ) +Ra1a2(λ− µ) [Lla1(λ)Mla2(µ) +Mla2(λ)Lla2(µ)] =

Lla2(µ)Lla1(λ)Na1a2(λ− µ) + [Mla2(µ)Lla1(λ) + Lla2(µ)Mla2(λ)]Ra1a2(λ− µ) +O(ε2)
. (165)

This is solved using the methods described in section 4.2.1. This case is considerably more compli-
cated, and so more care is needed when solving with Mathematica. The previous case was simple
enough to be solved using the Solve function, but there are too many variables in this case, and
Mathematica will solve for the constants in terms of λ and µ. To avoid this, we note that each entry
in (165) is a polynomial in λ and µ, and solve each order separately. The Mathematica code used
to solve (165) is included in Appendix B. The solutions obtained are considerably more complicated,

M(λ) =


b+ aλ c+ dλ −c+ i

2d+ q(λ+ i/2) 0
e+ fλ g + hλ j + kλ c+ i

2d+ l(λ− i/2)
−e+ i

2f +m(λ+ i/2) −ia+ 2b− 2g − j + in− kλ g + i
2h+ n(λ− i/2) −c+ dλ+ q(λ+ i/2)− l(λ− i/2)

0 e+ i
2f + o(λ− i/2) −e+ fλ+m(λ+ i/2)− o(λ− i/2) b− a(λ+ i) + (h+ n)(λ+ i/2)

 , (166)

N(λ) =


b− g − i

2(a+ h) + p(λ+ i) dλ −dλ 0
fλ (−a+ h+ p)λ b− g − i

2(a+ h) + ip+ kλ −(d+ q − l)λ
−fλ b− g i2(a+ h) + ip− kλ (a− h+ p)λ (d+ q − l)λ

0 −(f +m− o)λ (f +m− o)λ b− g − i
2(a+ h) + p(λ+ i)

 . (167)

As the deformations get more complicated, we must be careful about how we count the number of
free parameters in them. We will take the number of free parameters to be the number of conditions
required to set the deformations to zero (which is not necessarily the same as sending all of the
constants to zero), plus 1 for the rescaling of the Lax operator and R matrix. In this case, we get
16 free parameters, which is twice as many as before. To count the number of free parameters in
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the local deformations, we apply the conditions required to set M(i/2) = 0 and then we count the
number of conditions required to set M ′(i/2) = 0. Again we add 1 to account for rescaling. There
are 8 free parameters in the local deformations, which is a good improvement on the previous case,

M(λ) = (λ− i/2)


a ic −ic 0
ie ig ij l

−ie −ij ig − 2a −l
0 o −o a

 . (168)

We can do better by increasing the order of the λ dependence. After solving the FCR where
the λ dependence goes up to quadratic order, the deformations obtained were found to depend
on 22 parameters, and the local deformations were found to depend on 14, which is a significant
improvement. When the dependence was increased to cubic, there were 23 parameters and still
14 parameters for the local deformations. When the λ dependence was increased to quartic, the
number of free parameters increased by 1 again, and the number of free parameters in the local
deformations remained at 14. It appears that 14 free parameters in the local deformations is the
best we can do.

The R matrix for the XXZ model is

RXXZ(λ) =


sinh(η(λ+ i))

sinh(ηλ) i sin(η)
i sin(η) sinh(ηλ)

sinh(η(λ+ i))

 , (169)

where ∆ = cosh(η) in (31). Expanding for small η gives

RXXZ(λ)− ηR(λ) ≈ η3

6


(λ+ i)3

λ3 −i
−i λ3

(λ+ i)3

 , (170)

which is contained in the deformations with cubic λ dependence. Hence, the cubic deformations
include the XXZ model, which is a good sanity check. The general form of these deformations is
not presented here, as they become significantly more complicated when the powers of λ increase.
The main point of this illustration is that our methods give sensible results, which is a good sign.
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4.4.1 BAE

We proceed to construct the eigenstates and get a new set of BAE. One problem that arises from
deforming R is that it seriously complicates the commutation relations that we used to obtain
the BAE. To make the problem solvable using the same approach as before we fix some of the
parameters so that R̃ has the same form as R. By setting ĩ = l, h = a, and d, f , k and m to zero,
we get

R̃(λ) =


ã(λ)

b̃(λ) c̃(λ)
c̃(λ) b̃(λ)

ã(λ)

 , (171)

where

ã(λ) = λ+ i+ ε(b− g − ia+ p(λ+ i))

b̃(λ) = λ+ ε(λp)

c̃(λ) = i+ ε(b− g − ia+ ip)

. (172)

This gives us a set of commutation relations that have the same form as before,

[B̃(λ), B̃(µ)] = 0

Ã(λ)B̃(µ) = f̃(λ− µ)B̃(µ)Ã(λ) + g̃(λ− µ)B̃(λ)Ã(µ)

D̃(λ)B̃(µ) = h̃(λ− µ)B̃(µ)D̃(λ) + k̃(λ− µ)B̃(λ)D̃(µ)

, (173)

where Ã, B̃ and D̃ are entries of T̃ , which is not the same as the previous case, and

f̃(λ) = ã(−λ)
b̃(−λ)

g̃(λ) = − c̃(−λ)
b̃(−λ)

h̃(λ) = ã(λ)
b̃(λ)

k̃(λ) = − c̃(λ)
b̃(λ)

. (174)

The rest of the derivation is the same as before. First, we must set e = o = 0 so we can use the
reference state |Ω〉,

C̃(λ) |Ω〉 = 0 . (175)

We also have
Ã(λ) |Ω〉 = α̃L(λ) |Ω〉 D̃(λ) |Ω〉 = δ̃L(λ) |Ω〉 , (176)

where

α̃(λ) = α(λ) + ε [aλ+ b]

δ̃(λ) = δ(λ) + ε

[
g + i

2a+ n(λ− i/2)
] . (177)

If we construct the eigenstates

|Φ′{λ}〉 = B̃(λ1) . . . B̃(λm) |Ω〉 , (178)
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then again |Φ′〉 is an eigenstate of F̃ (λ) with eigenvalue

Λ̃(λ, {λ}) = α̃L(λ)
(

m∏
k=1

f̃(λ− λk)
)

+ δ̃L(λ)
(

m∏
k=1

h̃(λ− λk)
)

(179)

if a new set of BAE are satisfied,(
α̃(λk)
δ̃(λk)

)L
=

m∏
j 6=k

h̃(λk − λj)
f̃(λk − λj)

. (180)

This is given explicitly as

(
λk + i/2 + ε [aλk + b]

λk − i/2 + ε[g + i
2a+ n(λk − i/2)]

)L

=
m∏

j 6=k

λk − λj + i+ ε [b− g − ia+ p(λk − λj + i)]
λk − λj − i− ε [b− g − ia− p(λk − λj − i)]

. (181)

These equations are not as symmetric as the previous ones, but this is expected as the deformations
weren’t written in as symmetric a form. While it appears that these equations include deformations
to the magnon interactions, they can be reduced to a form similar to (163) by clever relabelling of
the parameters. This will not happen with higher powers of λ in the deformations. Let us take
XXZ as an example. The approximate BAE are given by

α̃L(λk)
δ̃L(λk)

=
m∏
j 6=k

6η(λk − λj + i+ εη3(λk − λj + i)3

6η(λk − λj − i+ εη3(λk − λj − i)3 , (182)

where α̃(λ) and δ̃(λ) are also cubic in λ. Their explicit form is irrelevant for this argument; these
equations have deformations to the RHS which can’t be removed by relabelling the parameters.
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5 Discussions and Conclusions

A discussion on integrability in physics was provided, and the algebraic Bethe ansatz method for
solving integrable systems was presented. The general leading order Hamiltonian for deformations
to the Lax operators and R matrices was obtained; the perturbative parts were split into local and
generically non-local parts. The deformed FCR was solved to leading order, and the deformations
that preserve integrability to leading order were thus obtained. The deformations produced sensible
results, as they were found to include the case of rescaling the Lax operator, the inhomogeneous
spin chain, and the XXZ spin chain.

For systems that are integrable to leading order, it was found that just making a linear (in the
spectral parameter) deformation to the Lax operators was too restrictive. When both the Lax
operator and R matrix were deformed linearly, the local deformations were found to depend on
8 free parameters. This was increased to 14 when the dependence on the spectral parameter in
the deformations was increased to quadratic order. This was not improved any further by adding
powers of the spectral parameter to the deformations, up to order 5. We expected that generically,
the most general local deformation could depend on 16 parameters. One possible reason we could
only obtain 14 is that we started from the XXX spin chain, which is highly degenerate. Perhaps
making deformations to a more general model, such as the XYZ spin chain would improve upon
this. A summary of the results obtained for the various types of deformations studied is provided
in the table below.

Deformation λ Dependence Parameters Local
L λ 8 1

L, R λ 16 8
L, R λ2 22 14
L, R λ3 23 14
L, R λ4 24 14
L, R λ5 25 14

Finally, it was shown that for some simple cases, i.e. when the standard reference state can be
used and when the R matrix has the same form as the undeformed one, that the eigenstates of the
deformed system can be constructed, and a set of leading order deformed Bethe ansatz equations
can be obtained. For linear deformations, they can be reduced to a case where only the LHS is
deformed. For higher order deformations, they contained deformations on both sides, i.e. the side
which describes transport around the chain and the side which describes magnon interaction are
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both deformed.

In conclusion, given a small deformation to the Lax operators and R matrices in the XXX spin
chain, the leading order perturbed Hamiltonian can be obtained, and in some simple cases a set
of eigenstates can be constructed, subject to a set of deformed Bethe ansatz equations. It was
hoped in this project that some similar aspects of the KAM theorem could be observed in quantum
systems. While it was not the aim to define a quantum KAM theorem, we made small deformations
to a quantum system and obtained sensible results, which is a step in the right direction.

5.1 Further Research

There are many different directions this project could take in terms of further research. Continuing
along the same track, one could check that other deformations are reproduced, such as the XYZ
spin chain. The deformed BAE could be solved, either numerically or explicitly for a small number
of magnons. It would be interesting to take the thermodynamic limit and investigate if there are
differences in thermodynamic properties between the XXX spin chain and one with non-integrable
perturbations. It may also be interesting to study the relation between spin chains and 2d statis-
tical models when deformations are introduced.

Another interesting aspect worth looking into is introducing different types of deformations to the
chain, perhaps by deforming the monodromy matrices or transfer matrices. The method of defor-
mation treated in this project generally lead to both local and non-local interactions. Deforming
the monodromy matrices may provide another way of introducing long-range interactions to the
chain; they are typically introduced through the Hamiltonian. Spin chains with long-range interac-
tions aren’t typically discussed in this context (see [13], for example), so it could be interesting to
deform the monodromy matrix to introduce long-range interactions, and then obtain a set of BAE.

Of course, it would also be interesting to apply these methods to other models. Perhaps by starting
from a less degenerate model, such as the XYZ spin chain, a more general class of deformations
could be obtained. Other 1d models such as the Hubbard model or the Bose gas (Lieb-Linger
model) could also be studied. If these methods can be successfully applied to other systems, it may
be possible to make a more general and stronger statement about non-integrable perturbations to
quantum integrable models.
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Appendix A: Lie Algebras Review

Lie groups and Lie algebras are essential for describing our systems [14]. Lie groups were first
studied by the Norwegian mathematician Sophus Lie around the end of the 19th century. A Lie
group G is a set with a group structure that is also a smooth manifold (rigorous definitions are
not presented here, nor are the basic definitions i.e. of groups, manifolds, etc.). Informally, it is a
group of continuous symmetries. This is very important since generally the only problems which
are reasonably solvable are the ones with a high degree of symmetry.

Every system which has a set of continuous symmetries has an associated Lie Group. One of the
simplest examples is S2, the unit sphere in 3 dimensions. It is invariant under continuous rotations,
and so the associated Lie group is SO(3), the group of rotations in 3-dimensional space.

The Lie algebra of g of G is equivalent to the tangent space at I, the identity:

g ' TIG . (183)

Suppose we can parametrise group elements sufficiently close to the identity by N real parameters,
αa such that

g(α)|α=0 = I (184)

Then given some g in an infinitesimal neighbourhood of the identity we can express it in terms of
its Taylor expansion. We have

g(α) = I + αa
∂

∂αa
g(α)

∣∣∣∣
α=0

+O(α2) , (185)

where the summation over repeated is implied unless otherwise specified. We usually write this as

g(dα) = I + iαaT a +O(α2) , (186)

where
T a ≡ −i ∂

∂αa
g(α)

∣∣∣∣
α=0

(187)

are the generators of the algebra, and the factor of i is included for convenience since if g is a
unitary matrix, then T a will be hermitian.

We can define a finite transformation, i.e. an element of G far from the identity, by making an
infinite number of infinitesimal transformations:

g(α) = lim
k→∞

(
I + i

αa

k
T a
)k
≡ eiαaTa

. (188)
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This is known as the exponential parametrisation. Since we are working with linear operators, the
group multiplication is not so straightforward. Using (188), we have in general

eiα
aTa

eiβ
bT b 6= ei(α

a+βa)Ta (189)

for two group elements generated by different linear combinations of generators. Since G is closed
under group multiplication we can however, say that

eiα
aTa

eiβ
bT b = eiδ

aTa (190)

for some parameters δa. Since everything is smooth, we can determine δa by expanding both sides
of (190) and equating powers of αa and βa. Taking the natural logarithm of (190) gives

iδaT a = ln

1 + eiα
aTa

eiβ
bT b − 1︸ ︷︷ ︸

x

 . (191)

Expanding x gives

x = iαaT a + iβbT b − αaT aβbT b − 1
2
(
(αaT a)2 + (βbT b)2

)
+ . . . , (192)

and using this in the expansion of (191) we get

iδaT a = x− 1
2x

2 + . . .

= iαaT a + iβbT b − αaT aβbT b

− 1
2(αaT a)2 − 1

2(βbT b)2 + . . .

+ 1
2(αaT a + βbT b)2 + . . .

. (193)

The terms of quadratic order almost cancel, but since T a and T b don’t commute, the cross terms
will remain. We can write (190) in terms of the commutator of T a and T b though;

iδaT a = iαaT a + iβbT b − 1
2
[
αaT a, βbT b

]
+ . . . . (194)

Thus we have [
αaT a, βbT b

]
= −2i(δc − αc − βc)T c + · · · ≡ iγcT c , (195)

and since this must hold for any αa and βb, we have

γc = αaβbfabc , (196)

and hence
[T a, T b] = ifabcT c . (197)

(197) is known as the Lie bracket of the Lie algebra. It is determined uniquely by the structure
constant fabc, which is antisymmetric under exchange of indices. The commutator in (197) is
skew-symmetric and obeys the Jacobi identity.
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Appendix B: Solving the Yang-Baxter Equation with Mathematica

Here we describe the method for solving the Yang-Baxter equation using Mathematica, which was
used to confirm that (24) is a solution and to find the deformed versions of L and R. The case
where both L and R are deformed is presented here, although the other cases use the same method.

First we define the permutation operators and R matrices as described in section 4.2.

In[1]:= P := 1/2 (TensorProduct[IdentityMatrix[2], IdentityMatrix[2]] +

TensorProduct[( {{0, 1},{1, 0}} ), ( {{0, 1},{1, 0}} )] +

TensorProduct[( {{0, -I},{I, 0}} ), ( {{0, -I},{I, 0}} )] +

TensorProduct[( {{1, 0},{0, -1}} ), ( {{1, 0},{0, -1}} )])//ArrayFlatten

P12 := TensorProduct[P, IdentityMatrix[2]]//ArrayFlatten;

P23 := TensorProduct[IdentityMatrix[2], P]//ArrayFlatten;

P13 := P23 . P12 . P23;

R[λλλ_] := λλλ (TensorProduct[IdentityMatrix[2],

IdentityMatrix[2]] // ArrayFlatten) + I P;

R12[λλλ_] := TensorProduct[R[λλλ], IdentityMatrix[2]]//ArrayFlatten;

R23[λλλ_] := TensorProduct[IdentityMatrix[2], R[λλλ]]//ArrayFlatten;

R13[λλλ_] := P23.R12[λλλ].P23;

Now we can define the Lax operators.

In[2]:= L13[λλλ_] := R13[λλλ - I/2];

L23[λλλ_] := R23[λλλ - I/2];

Then we define the deformations to L and R. We assume their dependence on λ to be linear.

In[3]:= A = Table[Symbol["a" <> ToString@i <> ToString@j], {i, 4}, {j, 4}];

B = Table[Symbol["b" <> ToString@i <> ToString@j], {i, 4}, {j, 4}];

m[λλλ_] := λλλ A + B;

m23[λλλ_] := TensorProduct[IdentityMatrix[2], m[λλλ]]//ArrayFlatten;

m12[λλλ_] := TensorProduct[m[λλλ], IdentityMatrix[2]]//ArrayFlatten;

m13[λλλ_] := P23.m12[λλλ].P23;

X = Table[Symbol["c" <> ToString@i <> ToString@j], {i, 4}, {j, 4}];

Y = Table[Symbol["d" <> ToString@i <> ToString@j], {i, 4}, {j, 4}];

n[λλλ_] := λλλ X + Y;

n23[λλλ_] := TensorProduct[IdentityMatrix[2], n[λλλ]]//ArrayFlatten;
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n12[λλλ_] := TensorProduct[n[λλλ], IdentityMatrix[2]]//ArrayFlatten;

n13[λλλ_] := P23.n12[λλλ].P23;

We define the deformed FCR as a function to be solved.

In[4]:= YBE[λλλ_, µµµ_] := n12[λλλ - µµµ].L13[λλλ].L23[µµµ] + R12[λλλ - µµµ].(L13[λλλ].m23[µµµ] +

m13[λλλ].L23[µµµ]) - L23[µµµ].L13[λλλ].n12[λλλ - µµµ] -

(m23[µµµ].L13[λλλ] + L23[µµµ].m13[λλλ]).R12[λλλ - µµµ]

We can proceed to solve for the deformations using the Solve function. This will work in the
simpler cases: for the undeformed case where only L is deformed. The problem arises when both
L and R are deformed. It is a very large system, and Mathematica will assume that the constants
we solve for can depend on λ and µ, leading to some very nonlinear deformations. One way around
this is to note that entry as a polynomial in λ and µ,

YBE(λ, µ) = A+Bλ+ Cµ+Dλµ+ Eλ2 + Fµ2 , (198)

where A, B, C, D, E and F are matrices, and then solve each order sequentially.

In[5]:= Sol1 = Solve[YBE[0, 0] == 0, Join[Flatten[A], Flatten[B], Flatten[X],

Flatten[Y]]];

a1[λλλ_, µµµ_] := YBE[λλλ, µµµ]/.Flatten[Sol1]//Simplify

Sol2 = Solve[(D[a1[λλλ, µµµ], µµµ]/.{λλλ→→→ 0,µµµ→→→ 0}) == 0, Join[Flatten[A],

Flatten[B], Flatten[X], Flatten[Y]]];

b1[λλλ_, µµµ_] := a1[λλλ, µµµ]/.Flatten[Sol2]//Simplify

Sol3 = Solve[(D[b1[λλλ, µµµ], λλλ]/.{λλλ→→→ 0,µµµ→→→ 0}) == 0, Join[Flatten[A],

Flatten[B], Flatten[X], Flatten[Y]]];

c1[λλλ_, µµµ_] := b1[λλλ, µµµ] /. Flatten[Sol3]//Simplify

Sol4 = Solve[(D[c1[λλλ, µµµ], λλλ, µµµ]/.{λλλ→→→ 0,µµµ→→→ 0}) == 0, Join[Flatten[A],

Flatten[B], Flatten[X], Flatten[Y]]];

d1[λλλ_, µµµ_] := c1[λλλ, µµµ]/.Flatten[Sol4]//Simplify

Sol5 = Solve[(D[d1[λλλ, µµµ], {λλλ,2}]/.{λλλ→→→ 0,µµµ→→→ 0}) == 0, Join[Flatten[A],

Flatten[B], Flatten[X], Flatten[Y]]];

e1[λλλ_, µµµ_] := d1[λλλ, µµµ]/.Flatten[Sol5]//Simplify

Sol6 = Solve[(D[e1[λλλ, µµµ], {µµµ,2}]/.{λλλ→→→ 0,µµµ→→→ 0}) == 0, Join[Flatten[A],

Flatten[B], Flatten[X], Flatten[Y]]];

f1[λλλ_, µµµ_] := e1[λλλ, µµµ]/.Flatten[Sol6]//Simplify
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Now we apply these constraints to the deformations.

In[6]:= mm[λλλ_] := m[λλλ]/.Flatten[Sol1]/.Flatten[Sol2]/.Flatten[Sol3]/.Flatten[Sol4]

/.Flatten[Sol5]/.Flatten[Sol6]// Simplify

nn[λλλ_] := n[λλλ]/.Flatten[Sol1]/.Flatten[Sol2]/.Flatten[Sol3]/.Flatten[Sol4]

/.Flatten[Sol5]/.Flatten[Sol6]// Simplify

mm23[λλλ_] := TensorProduct[IdentityMatrix[2], mm[λλλ]]//ArrayFlatten;

mm12[λλλ_] := TensorProduct[m[λλλ], IdentityMatrix[2]]//ArrayFlatten;

mm13[λλλ_] := P23.m12[λλλ].P23;

nn23[λλλ_] := TensorProduct[IdentityMatrix[2], nn[λλλ]]//ArrayFlatten;

nn12[λλλ_] := TensorProduct[q[λλλ], IdentityMatrix[2]]//ArrayFlatten;

nn13[λλλ_] := P23.nn12[λλλ].P23;

We can check that these deformations satisfy the FCR.

In[7]:= X = (q12[λλλ - µµµ].L13[λλλ].L23[µµµ] + R12[λλλ - µµµ].(L13[λλλ].m23[µµµ] + m13[λλλ].L23[µµµ]) -

(L23[µµµ].L13[λλλ].q12[λλλ - µµµ] (m23[µµµ].L13[λλλ] + L23[µµµ].m13[λλλ]).R12[λλλ - µµµ]))

//Simplify;

X === ConstantArray[0, {8, 8}]

Out[7]= True
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