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Abstract

24 random configurations of single phase quaternary NbMoTaW were simulated using

DFT and a number of thermodynamic and mechanical quantities were calculated. The

average lattice constant was determined to be a = 3.161 Å with a standard deviation

of 0.232 Å, which agrees with experiment. The bulk modulus was determined to be

283.268 GPa with a standard deviation of 0.983 GPa, comparing well to the bulk

moduli of the individual elements. The low Gibbs free energy of formation at room

temperature suggests that single phase BCC is the one that forms at equilibrium,

which is indeed the case in experiment. The bonds in the different configurations were

analysed. The configurations with lower energy have a higher number of bonds between

different types of atoms, suggesting that mixing contributes to the stability. Finally, a

discussion of the accuracy and validity of our simulation and calculations is provided.
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1 Introduction and Theory

A high-entropy alloy (HEA) is a material composed of 5-13 metals in approximately equal

proportions, although this is not strict definition; in some cases they can contain less than

5 constituent components. The use of conventional alloys can be traced back through his-

tory. By adding a trace amount of an additional element to a metal, its usefulness can be

drastically improved. The most notable example is steel, which is formed by adding trace

amounts of carbon to iron, giving it a high tensile strength and a low cost. HEAs have be-

come popular in recent years, after a paper by Yeh was published in 2004. He coined the term

“high-entropy alloy” by suggesting that the high configurational entropy leads to the stability

of the solid solution phase [1]. In the last decade, research into HEAs has grown significantly.

In this project we will create a simple model of single phase NbMoTaW, which was first

synthesized in 2010 [2]. We will calculate the Gibbs free energy in order to demonstrate its

stability, and bulk modulus in order to demonstrate its mechanical properties. We choose

NbMoTaW for a number of reasons: firstly, four elements is the ideal number for a simple

model, as it allows us to use a relatively small unit cell while still having equal proportions

of each element. Secondly, all of its constituent components have similar atomic radii and

lattice constant, and they are all BCC phase materials. Finally, none of the elements are

magnetic, so we do not have to consider effects from magnetism.

Assuming we have a mixed quaternary solution, we can generate a number of random con-

figurations of NbMoTaW and investigate the effects of mixing on the material. One way to

do this is to generate a number of random simulations of the HEA, then perform an analysis

of the bonds by investigating the different bonds in each simulation.

1.1 Configurational Entropy

There are several possible contributions to the entropy of a HEA: configurational, electronic,

magnetic and phonon contributions. We will focus on the configurational entropy as the

electronic and phonon contributions are small corrections to the entropy, and our alloy has

no magnetic elements.

The phase with the lowest Gibbs free energy of formation will be the one that forms at

1



equilibrium1:

∆G = ∆H − T∆S , (1)

for some constant temperature T . In our case we take ∆S = ∆Smix. From this it is clear that

a high configurational entropy will contribute to the stability of the HEAs. From statistical

mechanics we have, for each atom,

T∆Smix = −kBT
∑
i

xi ln (xi) , (2)

where kB is the Boltzmann constant, and xi is the fraction of atoms in the alloy [3]. From (2)

it is clear that the entropy is maximised if the elements occur in equal proportions. Taking

xi = 1/4 for each i we get

T∆Smix = kBT ln (4) , (3)

which is approximately 35 meV at room temperature. It is clear that this contribution will

increase for a HEA with a larger number of components or for one at a higher temperature.

1.2 Mechanical Properties

There are many useful mechanical properties that can be measured for a solid, such as its

hardness and toughness. The hardness of a material is a measure of how resistant it is to

a permanent deformation when a compressive force is applied. The toughness of a mate-

rial is its ability to absorb energy and deform without fracturing. While both of these are

typical quantities that are measured in experiment and strong indicators of the usefulness

of a material, they are very difficult to calculate theoretically. We will instead measure the

bulk modulus as it can be calculated easily by applying isotropic compression and expansion.

The bulk modulus is defined as the compressibility of a material,

B = −V0
∂P

∂V

∣∣∣∣
V0

= V0
∂2E

∂V 2

∣∣∣∣∣
V0

, (4)

where V0 is the equilibrium volume [4]. We can thus apply a small isotropic compression and

expansion to our material, measure the resulting change in energy and use (4) to determine

the bulk modulus. The bulk moduli of the individual elements are first calculated in order

to compare to the bulk modulus of the HEA.

1In this project, by ‘lower’ energy we mean ‘more negative’ energy.
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2 Method

2.1 Calculations

The Density Functional Theory (DFT) package, FHI-aims, was used to simulate the mate-

rials. The type of calculation can be specified using the control file and the geometry of the

materials can be manipulated using the geometry file. We first tested our methods on the

individual elements of our HEA, as they require a shorter computation time. The results

were useful for comparing our HEA to later, and it was the most convinient way to ensure

that our method of calculation was correct.

The geometries of the four components, Niobium, Molybdenum, Tantalum and Tungsten,

were obtained from [5], and geometry relaxations were performed on each to ensure that the

optimal configuration for each material was obtained. In order to obtain the bulk modulus,

a series of calculations was performed for each material with the unit cells stretched and

compressed. Assuming that the relaxed configurations correspond to equilibrium, the unit

cell was compressed and expanded by values in an interval of ±1% of the equilibrium volume.

The change in energy due to compression and expansion of the unit cell can now be plotted,

and fitting this data can give the bulk modulus and equilibrium lattice constant.

There are several ways to fit the data and obtain the bulk modulus and lattice constant.

The simplest method is to fit the data with a polynomial; the minimum of the polynomial

will give the lattice constant and (4) will give the bulk modulus. For a quadratic fit, the

bulk modulus is simply determined by the quadratic coefficient. A higher order fit, such as

quartic, can be used to obtain more accurate results [6].

One way to obtain even more accurate results for the bulk modulus is to fit the data to a

Murnaghan equation of state (EOS):

E(V ) = E0 +B0V0

[
1

B′0(B
′
0 − 1)

(
V

V0

)1−B′
0

+
1

B′0

V

V0
− 1

B′0 − 1

]
, (5)

where E0 is the energy at equilibrium, V0 is the equilibrium volume, B0 is the bulk modulus,

and B′0 is the pressure derivative of the bulk modulus.

The binding energy of the HEA is required for the enthalpic contribution to (1). This is

obtained by subtracting from the total DFT energy of the alloy the energies of the constituent
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atoms in their natural (BCC) phase. To get the binding energy per atom we divide by the

number of atoms in the unit cell:

EBind =
EBulk −

∑
i niεi

N
, (6)

where Ebulk is the total DFT energy of the HEA, N is the total number of atoms in the unit

cell, ni and εi are the number and energy of atoms of type i in the unit cell.

2.2 Simulating the HEAs

It has been suggested that results of a 4-component equiatomic alloy begins to converge with

a cell as small as 24 atoms [7]. However, we use a 16-atom cell in the interest of shorter

computation times and geometric simplicity. A 16-atom cell is easily obtained by using a

2 × 2 × 2 BCC supercell, each subcell being cubic with a 2-atom basis. The size of the

subcells is taken to be the average of the lattice constants of the constituent materials, but

we can determine the correct lattice constant by calculating the EOS; the equilibrium lattice

constant of the HEA will correspond to the minimum of this curve. For a mixed solution,

the configurations of the atoms should be random, but this is difficult to achieve using DFT.

The best approach is to permute the atoms randomly within the unit cell, and then the

periodic boundary conditions will create a pseudo-random solution. This approach becomes

more accurate as the size of the unit cell increases.

24 random configurations of NbMoTaW were generated. The methods described above were

used to obtain the EOS for each of the random samples. By plotting (1) as a function of

volume, all of the desired quantities were determined: Gibbs free energy of formation (at

room temperature), bulk modulus, and equilibrium lattice constant.
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3 Results and Analysis

The equations of state were successfully obtained for the four individual materials: Niobium,

Molybdenum, Tantalum and Tungsten. A cubic lattice with a 2-atom basis was used for each

as they are all BCC materials. The calculations at compressed and expanded volumes were

performed using a PBE functional and an 8×8×8 k-grid, and each data point took roughly

30 minutes of computation time. A Murnaghan fit was used to obtain the EOS and hence

determine the bulk moduli and lattice constant of the materials. An example is shown below.

Note that the energy difference is larger when the unit cell is compressed rather than when

it is expanded. This isn’t surprising as the bonds should break as the atomic separation

increases, and the energy should diverge as it decreases; our EOS is effectively the well of an

interaction potential.
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Figure 1: EOS of BCC Molybdenum. The end points on the plot correspond to a change in lattice

constant of ±1%. The zero energy on this scale corresponds to the energy at the equilibrium

volume.

The bulk moduli and lattice constants were calculated and compared to similar PBE calcu-

lations using the DFT package, GPAW: https://wiki.fysik.dtu.dk/gpaw/setups/bulk_

tests.html. Our results do not completely agree with these calculations: the lattice con-

stants are slightly underestimated, and the bulk moduli are about 20% too large.
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Element a (Å) aGPAW (Å) B (GPa) BGPAW (GPa)

Nb 3.214 3.315 230.1 178.8

Mo 3.093 3.168 321.9 269.4

Ta 3.244 3.333 228.40 200.0

W 3.132 3.203 343.7 303.4

Table 1: Results for the bulk moduli of the individual materials compared to the values calculated

using a PBE functional in GPAW

This is either due to a difference in calculation method and settings, or differences between

the two different DFT packages. In any case, the calculation method and settings are con-

sistent for both the bulk and HEA calculations, meaning comparisons between the results

will still be valid.

The equations of state were then successfully obtained for 24 random configurations of

NbMoTaW. The same settings were used as before but a 4 × 4 × 4 k-grid was used since

there are 16 atoms in the unit cell. The binding energy was obtained using (6), and then

35 meV was subtracted from each curve to obtain the Gibbs free energy. Each data point

took roughly 10 hours of computation time. The low values of ∆G illustrates the stability

of the HEA, suggesting that single phase BCC is the equilibrium phase of the material.

The average lattice constant of the HEA was determined to be a = 3.161 Å with a standard

deviation of 0.232 Å, which agrees with experiment [2]. The average bulk modulus was

determined to be B = 283.268 GPa, which compares well with the bulk moduli of the con-

stituent materials. The standard deviation is 0.983 GPa, indicating that the configuration

of the HEA does not significantly affect the bulk modulus.

Although the bulk modulus is unaffected, there is a difference of about 30 meV in the binding

energy from the lowest to the highest configurations, indicating that the binding energy of

the HEA depends strongly on the configuration of the atoms. To investigate this further, an

analysis of the bonds in the different random configurations was performed.
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Figure 2: Dependence of Gibbs free energy on unit cell volume for the 24 configurations of

NbMoTaW.

The bonds were analysed from the geometries of the 24 alloys. This was done by calculat-

ing the bond matrix for each configuration: taking only nearest neighbour interactions into

account, each possible type of bond is represented by a matrix element, where each row and

column represents a different element. A bond between two nearest neighbours contributes

1 to that matrix element, but we only contribute one half for each bond to avoid double

counting. A bond between an atom in the unit cell and a periodic image of an atom in

the unit cell contributes only 1
2
, as it contributes evenly to both unit cells. The nearest

neighbour bonds of each atom in the unit cell were identified, and the bond matrix was then

constructed. As an example, the bond matrices of the configurations with the lowest and

highest binding energies, respectively are:

M2 =


0 8 2 6
8 0 6 2
2 6 3 5
6 2 5 3

 , M7 =


4 4 4 4
4 3 4 5
4 4 4 4
4 5 4 3

 (7)
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For every bond matrix, the entries of every row and column adds up to 16, and the sum of

all entries is 64 in each case, as expected.

One observation is that the configurations with lower energy have a larger number of bonds

between atoms of different type whereas the ones with higher energy have a more evenly

spread bond matrix, which is shown from the plot below of the trace of the bond matrices

in order of binding energy from lowest to highest. This suggests that the more mixed the

solution is, the more stable it becomes. This would agree with the conclusions from experi-

ment, where the exceptional microhardness of NbMoTaW is attributed to a solid-solution-like

strengthening mechanism [2].
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Figure 3: The trace of the bond matrices for the random configurations of the HEA in order of

lowest binding energy to highest. The first point corresponds to the alloy with lowest energy (alloy

2) whereas the last point corresponds to the alloy with highest energy (alloy 7).

A full table of results for all of the alloys including the lattice constants, bulk moduli, bond

matrices and their traces is given in Appendix A.
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4 Discussion and Conclusions

A brief summary of the DFT settings used in the project is provided below:

• DFT Functional: The PBE functional, developed by Perdew, Burke and Ernzerhof

[8], belongs to the class of generalised gradient approximation (GGA) functionals for

exchange-correlation energy. It is a parameter free functional and is known for its

applicability and accuracy for a wide range of systems. The PBE functional was used

for all of the calculations in this project.

• k-grid size: DFT calculations are performed on a numerical grid in k-space, called

the k-grid, and a finer grid can lead to more accuracte calculations at the cost of a

longer computation times. An analysis of the convergence of binding energy and bulk

modulus of Molybdenum with grid size was performed to determine a suitable grid size

and is included in Appendix B. The binding energy converges to 0 from k = 8, making

it a suitable grid size to use for the 2-atom cell calculations. We then use k = 4 for

the HEA calculations for consistency, since the number of atoms times the number of

k-points is the same in each case.

• Basis Set: We used the ‘tight’ basis set provided by FHI-aims. There is a ‘really-tight’

basis set but it results in a much longer computation time and is only suggested for

tests of convergence.

There are many sources of inconsistency in DFT calculations and so it is important to be

consistent with the settings of the calculation when comparing simulations of materials.

Since most of our energies are above 106 eV, it is very difficult to be accurate even to order

1 eV. However since we are interested in energy differences, we rely on cancellation of errors

to get reasonable binding energies of the order 100 meV.

The lattice constants of the bulk materials were slightly smaller than those obtained in the

similar PBE calculations. The bulk moduli have errors of around 20%, which could have re-

sulted from the smaller lattice constants obtained in our case. After checking our method of

calculation, we are condfident that it agrees with the methods used in the relevant literature

[6]. Thus, the error can either be attributed to differences between the aims DFT package

and the the GPAW package, or an unseen error in calculation. One possible way to reduce

the error would be to use a smaller isotropic compression and expansion; while 1% seems

small, it is actually a considerable amount to isotropically compress or expand the unit cell
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by. In any case, the bulk modulus calculation is consistent for the bulk materials and the

HEA.

The lattice constant of NbMoTaW was determined to be a = 3.161 Å with a standard devi-

ation of 0.232 Å. The lattice constant determined from experiment is a = 3.213 Å, so our

result agrees with this to within 2%.

The low ∆G for our model of NbMoTaW indicates that single phase BCC is the equilib-

rium phase for the quaternary alloy, which is the phase observed when it was constructed

experimentally [2]. The bulk modulus was determined to be 283.268 GPa with a standard

deviation of 0.983 GPa. There have been no such calculations in the literature to compare

to, but this compares well to the bulk moduli of the individual materials; it is sligthly higher

than those of the individual materials, but not much higher, which is reasonable.

An analysis of the bonds in the random configurations showed that the binding energy is

lower in the configurations with more bonds between different types of atoms. One expla-

nation is that the HEA is more stable in a more mixed solution phase, which agrees with

experiment. The results of the bond analysis could be improved upon by taking the second

nearest neighbour interactions into account, since in the BCC case, the distance from an

atom to its second nearest neighbours is only slightly larger than the distance to its first

nearest neighbours.

A 16 atom unit cell may be too small to approximate random configurations of a HEA,

which is evident from the similarity of the bond matrices. The larger the unit cell, the larger

the number of possible configurations there are, which would result in more mixed solutions.

This comes at the cost of a much longer computation time. A 64 atom BCC 4 × 4 × 4

supercell would be the next possible for NbMoTaW, although the computation time that

would be required is not feasable.

We have seen that NbMoTaW forms in a single phase BCC solution, successfully calculated

the lattice constant using DFT, and demonstrated that the mechanical properties compare

well to those of the individual components. We are satisfied with the results obtained in the

project, but conclude that a much more detailed and sophisticated investigation into HEAs

is required to obtain more accurate results.
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Appendix A: Table of Results

Alloy a (Å) B (GPa) ∆G (meV) Bond Matrix Tr(M)

2 3.16206 284.598 -143.7


0 8 2 6
8 0 6 2
2 6 3 5
6 2 5 3

 6

10 3.16091 284.736 -142.1


4 4 4 4
4 0 8 4
4 8 0 4
4 4 4 4

 8

11 3.16125 283.627 -141.0


3 6 3 4
6 0 6 4
3 6 3 4
4 4 4 4

 10

4 3.16152 282.702 -133.0


4 4 4 4
4 3 6 3
4 6 0 6
4 3 6 3

 10

12 3.16080 283.244 -131.9


4 4 4 4
4 3 5 4
4 5 3 4
4 4 4 4

 14

13 3.16116 285.031 -131.0


4 4 4 4
4 3 5 4
4 5 3 4
4 4 4 4

 14

21 3.16101 284.27 -125.8


3 5 4 4
5 3 4 4
4 4 4 4
4 4 4 4

 14
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Alloy a (Å) B (GPa) ∆G (meV) Bond Matrix Tr(M)

24 3.16143 283.878 -125.5


3 4 4 5
4 4 4 4
4 4 4 4
5 4 4 3

 14

19 3.16185 283.555 -125.2


3 4 4 5
4 4 4 4
4 4 4 4
5 4 4 3

 14

17 3.16126 283.907 -125.1


4 4 4 4
4 3 4 5
4 4 4 4
4 5 4 3

 14

15 3.16088 282.501 -123.9


4 4 4 4
4 4 4 4
4 4 3 5
4 4 5 3

 14

18 3.16117 281.710 -123.4


4 4 4 4
4 3 5 4
4 5 3 4
4 4 4 4

 14

1 3.16134 282.332 -123.3


4 4 4 4
4 3 5 4
4 5 3 4
4 4 4 4

 14

14 3.16176 282.577 -121.7


3 4 4 5
4 4 4 4
4 4 4 4
5 4 4 3

 14

3 3.16055 282.871 -120.8


3 3 5 5
3 3 5 5
5 5 3 3
5 5 3 3

 12
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Alloy a (Å) B (GPa) ∆G (meV) Bond Matrix Tr(M)

6 3.16075 282.845 -120.2


3 5 4 4
5 3 4 4
4 4 4 4
4 4 4 4

 14

22 3.16082 282.845 -119.9


3 5 5 3
5 3 3 5
5 3 3 5
3 5 5 3

 12

9 3.16156 283.552 -119.4


4 4 4 4
4 4 4 4
4 4 4 4
4 4 4 4

 16

8 3.16138 284545 -119.3


4 4 4 4
4 3 4 5
4 4 4 4
4 5 4 3

 14

20 3.16217 282.774 -119.1


3 4 3 5
4 4 4 4
4 4 4 4
5 4 4 3

 14

23 3.16147 283.654 -116.8


0 4 6 6
4 4 4 4
6 4 3 3
6 4 3 3

 10

16 3.16118 281.414 -116.7


3 4 4 5
4 4 4 4
4 4 4 4
5 4 4 3

 14

7 3.16144 282.098 -114.9


4 4 4 4
4 3 4 5
4 4 4 4
4 5 4 3

 14
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Appendix B: Analysis of k-grid Size
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Figure 4: Measure of binding energy of bulk BCC Molybdenum as a function of k-grid size. The
binding energy roughly converges at k = 8.
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Figure 5: Measure of modulus of bulk BCC Molybdenum as a function of k-grid size. The bulk
modulus fluctuates about B = 340 GPa, but doesn’t appear to converge.
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