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Abstract

Using the Numerov algorithm, the Schrödinger equation was solved for the square well, harmonic and
linear potentials. The wavefunctions were integrated using the Numerov algorithm, which required an
initial trial energy, so a function was written to determine the eigenstates of the potential, allowing the
numerical solutions to be obtained without any knowledge of the analytic solutions. The uncertainty
relation was verified in the case of the square well and harmonic potentials, and it was observed that for
large eigenstates, the harmonic potential behaves like the square well potential. The matrix Numerov
algorithm was then used to solve the Schrödinger equation in a much more elegant manner.

1 Introduction and Theory

The aim of this experiment was to find numerical solutions to the Schrödinger equation. It was numerically
solved for potentials for which the analytic solutions are well-known (infinite square well and harmonic poten-
tials) in order to investigate the efficiency of the solutions. The wavefunctions were found and normalised,
the eigenstates were determined and the uncertainty relation was verified. Finally, the ’matrix Numerov
method’ was used as a more elegent method of solving the Schrödinger equation for linear and harmonic
potentials.

1.1 The Schrödinger Equation

The Schrödinger equation is a second order differential equation used in quantum mechanics to determine
the wavefunctions and eigenstates of a system. It is typically of the form(

− ~2

2m

d2

dx2
+ V (x)

)
Ψn (x) = EnΨn (x) , (1)

where Ψn (x) are the wavefunctions, En are the eigenstates and V (x) is some potential. For simplicity, the
particle will be contained in an infinite well, obtained by the boundary conditions: V (0) = V (L) = ∞,
where L is the length of the well. It is difficult (but not impossible![3]) to solve (1) for an arbitrary potential.
The most well known analytic solutions to (1) are in the cases of the square well and hamronic potentials.
They shall be used in this experiment, as the known analytic solutions can provide useful insight to the
validity of the numerical solutions.

It is convinient to work with a dimensionless form of (1) in order to avoid working with factors of ~. It can
be re-written as

d2

dx̃2
Ψ (x̃) + γ2 (ε− ν (x̃)) Ψ (x̃) = 0, (2)

where x̃ = x
L is a dimensionless distance which ranges from 0 to 1, ε = E

V0
and ν (x̃) = V (x̃)

V0
are the

dimensionless eigenstates and potential, where V0 is the depth of the well, and γ2 = 2mL2V0

~2 is a dimensionless
factor which accounts for the constants in the equation.
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1.2 The Numerov Algorithm

Since (2) is of the form
d2

dx2
Ψ (x) + k2 (x) Ψ (x) = 0, (3)

where k2 (x) = γ2 (ε− ν (x̃)) in this case, it can be integrated using the Numerov algorithm. By defining x̃
with a discrete set of N points, separated by a distance l = 1

N−1 , (2) can be written in discrete form:

d2

dx̃2
Ψn + k2

nΨn = 0, (4)

where Ψn ≡ Ψ (x̃n), x̃n being the nth point, etc. The integration scheme is given by

Ψn+1 =
2
(
1− 5

12 l
2k2
n

)
Ψn −

(
1 + 1

12 l
2k2
n−1

)
Ψn−1

1 + 1
12 l

2k2
n+1

. (5)

This algorithm is obtained using Taylor expansions and the central difference method. While it could be
solved using Runge-Kutta, this method takes advantage of the fact that (2) is linear in Ψ and contains only
its second derivative.

1.3 The Matrix Numerov Method[2]

By substituting the values for k2
n into (5), it can be written as

− 1

γ2

(
Ψn−1 − 2Ψn + Ψn+1

l2

)
+
νn−1Ψn−1 + 10νnΨn + νn+1Ψn+1

12
= ε

(
Ψn−1 + 10Ψn + Ψn+1

12

)
. (6)

This can be written in matrix form by defining the following:

Ψ =

Ψ1

...
ΨN

 (7)

A =
1

l2
(I−1 − 2I0 + I1) (8)

B =
1

12
(I−1 + 10I0 + I1) (9)

ν =

ν1 · · · 0
...

. . .
...

0 · · · νN

 (10)

where Im is a matrix with ones on the mth diagonal and zeros elsewhere. Thus, (5) becomes(
− 1

γ2
B−1A+ ν

)
Ψ = εΨ. (11)

The operator on the left hand side clearly resembles the Hamiltonian operator (the first term being the
kinetic energy operator). Therefore, the eigenvalues of this matrix will give the energies of the system.
Implementing the boundary conditions Ψ0 = ΨN+1 = 0 corresponds to taking N ×N submatrices of A and
B.
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2 Method

• Solutions to the dimensionless Schrödinger equation were obtained by solving the differential equation.
A general solution to the differential equation was obtained and then normalisation and boundary
conditions were implemented to find the normalised wavefunctions for the square well potential. The
eigenstates were also determined in terms of the constant factor, γ2.

• The Numerov algorithm was then implemented to find numerical solutions to the dimensionless Schrödinger
equation. The first value of the wavefunction was taken to be 0 due to the boundary conditions, and
the second was taken to be a small number close to 0. The algorithm was then implemented to find
the remaining values of the wavefunction at the different points on the array. This was achieved using
a function which takes the trial energy, ε, and number of points, N , and returns the wavefunction, Ψ.

• The function which generates Ψ is only accurate when a trial energy close to the analytic eigenstates
are used, which makes it redundant unless the eigenstates can be numerically approximated. The
efficiency of the function can be seen by observing how far from 0 the wavefunction is at the last point.
The fact that it should be 0 on the boundary was used to determine the eigenstate. This was achieved
using a simple function: The value of ΨN at a trial energy, ε, was compared to the value of ΨN at an
updated trial energy, ∆ε. If there is a sign difference between the two wavefunctions, then the trial
energy was changed by too great an amount, and it is then updated by −∆ε

2 . This process is repeated
until ΨN is sufficiently close to 0, and the eigenstate is returned.

• The wavefunctions and eigenstates were determined numerically for the square well potential, but
the wavefunctions were unnormalised. The wavefunctions are determined up to a constant, and this

constant is fixed by demanding that
∫ 1

0
|Ψ|2dx = 1. The integration is preformed numerically using

Simpson’s rule, and the function was updated to return the normalised wavefunctions.

• The uncertainty relation, ∆x̃∆p̃ ≥ 1
2 in the dimensionless units, was verified for the first 10 eigenstates.

The first two moments of |Ψn|2 were calculated and the uncertainty in position was obtained using

∆x̃ =

√〈
x2
〉
−
〈
x
〉2

. The uncertainty in momentum was obtained similarly. In stationary states where

the wavefunction is real,
〈
p
〉

= 0 and the uncertainty reduces to ∆p̃ =
√〈

p̃2
〉
.

• The Schrödinger equation was then solved for a harmonic potential. The code which was previously
used to solve the for the square well potential was used after a few small updates. The values of k2

n

are no longer constant, so they were stored in an array, and the function for finding the wavefunction
was updated accordingly. The method of picking the trial energies in the for loop for finding the
eigenstates was also updated, as the analytic solution for the previous case was no longer applicable.
The energy difference between two eigenstates was plotted on a log-log scale for the first 20 eigenstates,
and behaviour for higher states was investigated.

• The matrix numerov method was then used to solve the harmonic oscillator and the linear potential.
Some maximum energy, εm, was chosen, the turning points, x0 of the potential were determined (the
points where ν = εm); from this and some suitable region, ∆x, outside the classically allowed region,
the number of points, N , in the array was determined. The Hamiltonian matrix was obtained using
(11), and its eigenstates were obtained. The numerical answers were then compared to the analytic
answers.

3



3 Results and Analysis

3.1 Analytic Solution to the Square Well

The analytic solution to the equation
Ψ′′ + k2Ψ = 0, (12)

where k2 = γ2 (ε− ν), is required. From the form of (12), it is clear that the solution will be of complex
exponential form, so it is reasonable to make the ansatz

Ψ (x̃) = A sin (kx̃) +B cos (kx̃) (13)

for the wavefunction, Ψ. The constants can be fixed by implementing the boundary conditions and normal-
isation. The boundary conditions can be implemented by demanding that Ψ (0) = Ψ (L) = 0. Thus, (13)
reduces to

Ψn (x̃) = A sin (nπx̃), (14)

and A can be determined by normalisation:∫ 1

0

|Ψn (x̃) |2dx̃ = 1, (15)

which yields A =
√

2. So the analytic solution to the Schrödinger equation for the square well potential is

Ψn (x̃) =
√

2 sin (nπx̃), (16)

ε =
n2π2

γ2
− 1, (17)

since k = nπ.

3.2 Numerical Solution to the Square Well

A function was written to numerically obtain the wavefunctions for the square well potential. For a given
trial energy and number of points, it iteratively updates the entries in the wavefunction array, given the
first two. The function and the parameters used can be seen below. This function was used to numerically

Figure 1: The function to numerically find the wavefunctions for the square well potential.

approximate the first wavefunction. A trial energy was entered, and the resulting wavefunction is shown
below.
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Figure 2: The numerical approximation to the first wavefunction for the square well potential. In this case
the trial energy used was ε = −0.9, and N = 1000.

It is clear that the boundary conditions are not fulfilled as the wavefunction does not return to 0 at the last
point, meaning that the trial energy used was inaccurate. By trial and error, the trial energy can be adjusted
until the end point is sufficiently close to 0 and a more accurate approximation to the wavefunction can be
obtained. This defeats the purpose of numerically approximating the wavefunction however, as knowledge of
the analytic solutions is required to do so efficiently. This motivates a function to determine the eigenstates
numerically, as it would allow the wavefunctions to be obtained with minimal trial and error / knowledge of
the analytic solutions. The function to approximate the eigenstates is shown below.
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Figure 3: The function to determine the eigenstates for the square well potential.

This function starts with a trial energy and computes Ψn−1, then computes Ψn−1 for an updated energy,
ε + ∆ε. if there is a sign change in sign between Ψn−1 in the two cases, then ε was updated by too great
an amount, and the change in energy is updated to −∆ε

2 . This process is repeated until ∆ε is sufficiently
close to 0 in order to obtain the desired accuracy in the energy, and the resulting energy is returned. It can
be useful to use an accuracte trial energy for this function but it is not necessary. Since the energy must
be greater than the depth of the potential well (ε > −1 in this case), the initial energy can be chosen to be
close to that value, and accurate approximations to the eigenstates will be obtained without any knowledge
of the analytic expression.

εn Exact Numerical
ε1 -0.95065197799 -0.95065197799
ε2 -0.80260791197 -0.80260791198
ε3 -0.55586780195 -0.55586780196
ε4 -0.21043164791 -0.21043164799
ε5 0.233700550136 0.233700549822
ε6 0.776528792196 0.776528791257
ε7 1.418053078270 1.418053075900
ε8 2.158273408350 2.158273403080
ε9 2.997189782440 2.997189771750
ε10 3.934802200540 3.934802180430

Table 1: The numerical energies compared with the exact energies

The first 10 obtained eigenstates are shown and compared with the analytic values. All of the eigenstates
are correct to within 6 digit precision, although it can be seen that the first few are correct to within up to
10 digit precision. Now that the eigenstates can be accurately determined numerically, the wavefunctions
can also be accurately determined. The above eigenstates were used to find the first 10 wavefunctions, and
the result is shown below.
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Figure 4: The first 10 wavefunctions for the square well potential.

The wavefunctions are still unnormalised. They can be normalised using a simple function, as shown below.
The first normalised wavefunction was compared with the analytic solution.

Figure 5: A simple function to normalise the wavefunctions. Simpsons rule is used to integrate the square
of the wavefunctions, and the constant is fixed from this.

7



Figure 6: The numerical approximation to the first wavefunction for the square well potential agrees very
well with the analytic wavefunction when normalised.

3.3 Verifying the Uncertainty Relation

The uncertainty relation was verified for the first 10 eigenstates. The uncertainty in position was obtained

using ∆x̃ =

√〈
x2
〉
−
〈
x
〉2

, where 〈
xn
〉

=

∫ 1

0

x̃2|Ψ (x̃) |2dx̃. (18)

The integrations were preformed using Simpson’s rule. The uncertainty in momentum (p̃ = L
~ p, in dimen-

sionless units) is given by

∆p̃ =

√
−
∫ 1

0

Ψ
d2Ψ

dx̃2
dx̃. (19)

Since the momentum operator is given by p̃ = −i ddx̃ in this case, the moments of p̃ are given by
〈
p̃n
〉

=

in
∫ 1

0
ΨΨ(n)dx̃. In the case of stationary states with real wavefunctions,

〈
p̃
〉

= 0, since

〈
p̃
〉

= −i
∫ 1

0

ΨΨ′dx̃ = − i
2

Ψ′′|10 =
i

2

(
k2 (1) Ψ (1)− k2 (0) Ψ (0)

)
= 0. (20)

Therefore, the uncertainty in momentum is given by (19). Since this involves the second derivative of the
wavefunction, an algorithm must be implemented to numerically integrate it. This is obtained using

Ψ′′n =
Ψn+1 − 2Ψn + Ψn−1

l2
, (21)

and ∆p̃ is numerically obtained. The product ∆x̃∆p̃ was obtained for each eigenstate and the uncertainty
relation was verified in each case. Shown below are the results for the first 10 eigenstates; it is clear that the
uncertainty relation applies in every case.
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εn ∆x̃∆p̃
ε1 0.5672937190
ε2 1.6686168229
ε3 2.6245676131
ε4 3.5544340002
ε5 4.4745014751
ε6 5.3897838408
ε7 6.3023592156
ε8 7.2132478307
ε9 8.1230097144
ε10 9.0319777713

Table 2: ∆x̃∆p̃ for the first 10 eigenstates of the square well potential.

3.4 Harmonic Potential

The potential was changed to the harmonic potential: ν (x̃) = 8 (x̃− 0.5)
2 − 1, the eigenstates were found

and the uncertainty relation was investigated in this case. The same functions as before were used to solve
the harmonic potential; the only difference in this case being that k2

n is not constant for all values of n
anymore. k2

n was defined as an array and the Numerov algorithm was updated accordingly.

εn Numerical ∆x̃∆p̃
ε1 -0.91064672344 0.49949720596
ε2 -0.73194016302 1.49848606872
ε3 -0.55323345914 2.49746455399
ε4 -0.37452503905 3.49644145205
ε5 -0.01699188364 5.49500155884
ε6 0.162223039646 6.49659293585
ε7 0.342853802917 7.50430688371
ε8 0.527253859604 8.52240698733
ε9 0.719356608827 9.54560761988
ε10 0.923857716342 10.5541671970

Table 3: The numerical energies and the uncertainty relations for the harmonic potential.

The uncertainty relation is satisfied except for the first eigenstate, athough it is correct to within 1% error.
This error could be due to errors made when integrating and differentiating the wavefunctions, as well as
rounding errors made by the computer. A plot of εn vs. n shows that the eigenvalues are approximately
linear. This is a good sign, as the eigenvalues for the harmonic oscillator are linear in n: En = ~ω

(
n+ 1

2

)
.
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Figure 7: The eigenvalues εn as a function of n for the harmonic oscillator.

The energy difference between successive eigenstates was obtained for the first 20 eigenstates and is
plotted on a log-log scale. It is clear that for smaller eigenstates, the log of the energy difference is 0,
implying that εn varies linearly with n, which agrees with the theory. For the larger eigenstates, there
appears to be an n2 dependence, which suggests that for larger energies, the harmonic potential behaves like
the finite square well potential.

Figure 8: The energy difference, ∆εn = εn − εn−1 for the first 20 eigenstates of the harmonic potential.
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3.5 Using the Matrix Numerov Method

The matrix numerov method was used to solve the harmonic oscillator, ν (x̃) = 1
2 x̃

2, and the linear potential,
ν (x̃) = |x̃|. Mathematica was used to solve these potentials due to its ability to easily manipulate large
matrices. The potential was defined as a diagonal matrix, and the kinetic energy matrix was determined
using (11). The number of points in the array was determined using the turning points, x0, of the potential,
ν, and the chosen maximum energy, εm. A suitable distance, ∆x̃, outside the classically allowed region also
contributed to the number of points to increase the accuracy of the method. Making the ansatz

Ψ = A exp

(
i

~

∫ √
2m (ε− ν)dx̃

)
(22)

for the wave function, and making a linear approximation about the turning point yields

Ψ = A exp

(
−1

~

∫ √
2mν′ (x̃0) (x̃− x̃0)dx̃

)
. (23)

Integrating gives

Ψ = A exp

(
− 2

3~
√

2mν′ (x̃0)∆x̃3/2

)
, (24)

where ∆x̃ = (x̃− x̃0). This ansatz describes exponential decay outside of the classically allowed region, so a
good approximation for ∆x̃ can be made using the condition ∆x̃� 1. This gives

∆x̃ =

(
3~√

8mν′ (x̃0)

)2/3

. (25)

The Mathematica code used to solve the harmonic oscillator is shown below. The numerical eigenstates
compare very well with the exact eigenstates (εn = n + 1

2 , in dimensionless units), and it is clear that this
method is extremely effective in solving the Schrödinger equation for a given potential.

The code was then used to solve the linear potential, for which an analytic solution also exists. The analytic
solution to the linear potential is given in terms of the Airy function, Ai (x̃). Defining ai as the set of all
zeros of the Airy function and a′i as the set of all zeros of its derivative, then the expressions for the allowed
even and odd energies, respectively, are given by:

En =

−a
′
(n+1)/2

(
~2

2m

)1/3

n odd

−an/2
(

~2

2m

)1/3

n even
(26)

The eigenstates of the linear potential were obtained numerically and compared to the analytic values. The
n = 20 wavefunction was also obtained numerically and compared with the analytic wavefunction.
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Figure 9: A simple piece of Mathematica code to implement the matrix Numerov method. εm is some
maximum energy and hence the minimum deBroglie wavelength is λ = ~√

2mεm
. The spacing between the

successive points will be accurate if taken to be about one point per radian: d = λ
2π . The ∆x term accounts for

a sufficient distance outside of the classically allowed region. It is obtained by making a linear approximation
to the WKB approximation of the wavefunction.
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εn Exact Numerical
ε1 0.8086165 0.8085306
ε2 1.8557570 1.8557570
ε3 2.5780961 2.5780691
ε4 3.2446076 3.2446075
ε5 3.8257152 3.8256970
ε6 4.3816712 4.3816711
ε7 4.8918202 4.8918058
ε8 5.3866137 5.3866135
ε9 5.8513009 5.8512887
ε10 6.3052630 6.3052626

Table 4: The numerical energies compared with the exact energies for the linear potential.
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Figure 10: The n = 20 wavefunction for the linear potential. The dots are the numerical solution and the
curve is the analytic solution.
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4 Discussion and Conclusions

The Schrödinger equation was successfully solved for the square well potential. The numerical wavefunctions
and eigenstates both compared very well with the analytic solutions. The wavefunctions were successfully,
which allowed the uncertainty relation to be investigated. It was satisfied for all eigenstates except for one,
where there was a 1% error due to numerical inaccuracies. The eigenstates of the harmonic potential were
obtained, and they appeared to vary linearly with n, which is a good indicator that they are accurate. From
the log-log plot of the energy differences for the harmonic potential, it was observed that for the larger
eigenstates, the harmonic potential behaves similarly to the square well potential.

The matrix Numerov algorithm was successfully used to solve the harmonic oscillator and the linear potential.
This method is very accurate and efficient. The accuracy of the method could be improved by increasing
the maximum energy (and hence the number of points, N), although this is achieved at the cost of longer
running times. One possible way to improve the accuracy of the Numerov algorithm in general is to introduce
variable step sizes[1], which would reduce the number of evaluations required when compared to the standard
method.
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