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Abstract

Solutions to various versions of the Ising model were obtained using the Metropolis algorithm. The
2D square lattice was initially considered. After successfully using the Metropolis algorithm to update
the system, the average energy per spin, average magnetisation per spin, specific heat capacity and
magnetic susceptibility were plotted as functions of temperature in order to gain information about the
system. The ground state energy was determined to be −2J, as expexted, and the Curie temperature
was determined to be TC = 2.6 ± 0.1J/kB in this case, which compares well with the accepted value of
TC = 2.269J/kB, and the ground state energy was determined to be −2J. The triangular lattice was
then investigated; the ground state energy was determined to be −3J, and the Curie temperature was
determined to be TC = 4.2 ± 0.1J/kB. For the 1D system, a phase transition was initially observed, but
this was due to a low value of J used in computations; when a larger value of J was used, there was
no phase transition, which agrees with the theory. The 3D system was investigated and also determined
to be ferromagnetic, with a larger Curie temperature of TC = 4.4 ± 0.1J/kB, and a ground state energy
of −3J. Finally, the methods developed in the previous parts of the project were used to investigate a
simplified 2D model of NiO. The ground state was determined to be −36.75± 0.01meV, and the ordered
state of the system was determined to be antiferromagnetic.

1 Introduction and Theory

1.1 The Ising Model

The Ising model is a model used in statistical mechanics, typically to simulate magnetic systems. It consists
of a lattice with a discrete value σj (∈ {−1, 1}, in the case of this project) assigned to each point, representing
the spin at the site (down or up). The Hamiltonian of a system with a given configuration of spins is given
by

H = −
∑
〈 i,j 〉

Jijσiσj −B
∑
j

σj , (1)

where the first sum is over the interacting spin pairs and the second is over the entire lattice, Jij is the
exchange energy between the spins and B is an external magnetic field. If Jij is positive, the neighbouring
spins will tend to align; the material is ferromagnetic. If it is negative, they will tend to oppose each
other; the material is antiferromagnetic. In the absence of an external magnetic field, B = 0, and so the
Hamiltonian reduces to

H = −
∑
〈 i,j 〉

Jijσiσj . (2)

Ferromagnetism occurs in some magnetic materials below the Curie temperature, TC . Electron spins of
atoms in microscopic regions (domains) are aligned. The magnetic field is strong in the domain, but since
in the material the domains will be randomly ordered with respect to one another, it will usually be un-
magnetised. In the presence of an applied magnetic field, the domains may line up with each other, causing
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the material to become magnetised. If the applied field is removed, the domains remain aligned, meaning
ferromagnetic materials can exhibit spontaneous magnetisation (remanence): a net magnetic moment in the
absence of an external magnetic field. Above the Curie temperature, the thermal motion is sufficient to
disrupt the alignment, and the material becomes paramagnetic.

A number of simplifcations are made to the Ising model in this project. It is assumed that the exchange
energy term is constant in all cases and is positive: Jij ≡ J > 0. The 2-D Ising model is initially considered
for a square lattice, which can be easily represented by an N ×N matrix. It is also assumed that the nearest
neighbour interactions are dominant and that longer range interactions are neglected in the Hamiltonian.
These simplifications allow the Ising model to be easily implemented numerically, and the exact solution
to this model was developed by Onsager in 1944[4], meaning the validity of the results can determined by
comparing them to the exact solutions.

This simplified 2-D Ising model is implemented using the Metropolis algorithm: a modified Monte Carlo
method. A standard Monte Carlo method would involve picking a number of states at random and making
measurements, then weighting them by their Boltzmann factor, although this would require a large number
of measurements to be significantly accurate and would be very expensive computation-wise. The Metropolis
algorithm picks the states based on their Boltzmann factors and they are weighted equally.

1.2 Calculating Observables

Once the system has been simulated, the aim is to investigate its properties by calculating various observables
and determine whether or not it undergoes a phase transition. This can be done by calculating several
observables and investigating their properties; in particular, how they depend on the temperature of the
system. The average energy per spin is determined by

〈E 〉 =

〈 ∑
〈 i,j 〉

Hij

〉
=

1

2

〈∑
i,j

Hij

〉
, (3)

the 1
2 accounting for the fact that every pair is counted twice in the sum. If the system is ferromagnetic, then

the expected value of 〈E 〉 for the 2D square lattice would be −2J when the spins are all aligned. 〈E 〉 should
be a continuous function of temperature, with a point of inflection at TC , and should approach 0 after this
point, signifying that a phase change has ocurred and the material has become disordered and paramagnetic.

The average magnetisation per unit spin is given by

〈M 〉 =
1

N2

∑
(i,j)

σij . (4)

Calculating M can allow the time taken for the system to reach equilibrium to be determined for a given
system size. By plotting the average magnetisation per spin after each implementation of the Metropolis
algorithm against the number of iterations, the average magnetisation should be seen to approach a con-
stant value signifying that equilibrium has been achieved, and the minimum number of iterations required
to achieve is thus determined, which will help to increase the efficiency of the algorithm. The magnetisation
can also be used to show that a phase transition has occurred in the material and approximate the Curie
temperature, TC . By plotting the average magnetisation after equilibrium has been reached against a series
of values of temperature, a phase transition should be observed at TC . The magnetisation should be 1 or -1
initially as it is ferromagnetic, but after TC it should be zero, since it becomes paramagnetic.
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The specific heat capacity, CV , is given by

CV =
∂ 〈E 〉
∂T

= − β
T

∂ 〈E 〉
∂β

=
β

T

∂2 ln (Z)

∂β2

=
β

T

(〈
E2
〉
− 〈E 〉2

)
,

where β = (kBT )
−1

is the inverse energy and Z is the partition function. Similarly, the magnetic suscepti-
bility is given by

χ =
∂ 〈M 〉
∂H

= β
(〈
M2

〉
− 〈M 〉2

)
;〈

E2
〉

and
〈
M2

〉
can be computed in a similar fashion to (3) and (4). Since CV and χ are second derivatives

of the free energy, when plotted against temperature they should exhibit a discontinuity at TC , which would
indicate that the phase transition that has occured is of second order.

1.3 Triangular Lattice

After a few adjustments, the Metropolis algorithm can be applied to a 2D triangular lattice. A triangular
lattice is similar to a square lattice, the main difference being that every second row of points is horizontally
offset, causing three neighbouring points to form an equilateral triangle. As a result, each point has six
nearest neighbours, forming a regular hexagon. Since each lattice site has two extra nearest neighbours, the
ground state energy is expected to be 〈E 〉 = −3J using the same logic as in the case of the 2D square lattice.

1.4 Other Dimensions

There is no phase transition for the 1D Ising model with nearest neighbour interactions. This is a result
of the fact that 1D systems with short range interactions cannot have a phase transition, which is known
as van Hove’s theorem[6]. One of the most famous arguments for this was made by Landau[3]: Consider
a 1D lattice with N sites, each site either having spin “up” or spin “down”, and that energy is minimised
when all of the sites are in the same state. Assume that a boundary separates a region of “up” spins from
“down” spins, and costs an energy ε. The energy for having n such boundaries is E = nε, and the entropy is
S = n ln

(
n
N − 1

)
, due to the number of ways to place the n boundaries among the N sites. The free energy

is then given by

F = E − TS = nε− nT ln
( n
N
− 1
)
. (5)

Therefore F is minimised in the limit n→ L, i.e. it is energetically more favourable to add another domain.
So more and more boundaries will be added and there can therefore be no phase transition. This argument
only works for a non-zero temperature, and thus numerically a phase change may be observed for low enough
values of J , but should not be observed when using larger values.

The 3D Ising model may not be particularly enlightening, physically, but the comparision between it and the
2D Ising model could prove interesting, and it should prove to be an interesting exercise in programming.
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2 Method

2.1 The Metropolis Algorithm

The Metropolis algorithm was implemented as follows:

• An N × N matrix is used to represent a 2-D square lattice; every entry of the matrix represents a
lattice site and has entry ±1, representing the spin of the particle at that site. A random matrix is
initially used so that the initial configuration of spins is randomised.

• For this system we should have N →∞, meaning very large N , but this is very expensive computation-
wise. One way to increase the accuracy of the results without increasing the size of the matrix is
to use periodic boundary conditions. This is easily achieved by using modulo operator: taking the
neighbouring sites to be ((i+ 1) mod (N) , j), etc., instead of ((i+ 1) , j), etc.

• A lattice site is selected at random and ∆E is calculated. If ∆E ≤ 0, the change is favourable and
the spin is flipped. If ∆E > 0, then the spin is flipped only if exp (−∆E/kBT ) > x, where x is a
random number on the interval [0, 1] (i.e. the particle has enough energy to flip its spin). This process
is repeated for every site in the lattice, selecting the sites at random.

• A new matrix is returned, which represents the updated state of the system.

A flow-chart for this algorithm is provided below.

The number of iterations of this process required to achieve equilibrium for a given system size was deter-
mined as follows: the process was repeated iteratively and the average magnetisation per spin was recorded
in each case. A plot of the average magnetisation per spin vs the number of iterations was produced, and the
magnetisation was seen to approach a constant value. From this a sufficient number of iterations required
to reach equilibrium for a given system size was determined.

In terms of programming, the code was written as a module consisting of a class containing a series of simple
functions so that it could be read and updated easily. The functions were used to: define a random matrix,
calculate Hij for a lattice site, calculate ∆E for a lattice site, flip the spin of a lattice site and sweep through
the lattice, picking sites at random. The main part of the code is included in the appendix.
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Start

Input:

Size, Temp, Shape

Generate random

matrix, entries ±1

∆E < 0?
or

rand < exp (−∆E/T )?

Flip Spin Don’t Flip Spin

Return Matrix

Collect Data:

Energy, Magnetisation,

Specific Heat, Susceptibility

Stop

Iterate Randomly Over Matrix

Yes No

Figure 1: A flow-chart for one sweep of the Metropolis algorithm.
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2.2 Calculating Observables

After the system is successfully updated, the various observables need to be calculated. Functions were
defined as part of the main class to determine the average energy per spin, average magnetisation per spin,
specific heat capacity and magnetic susceptibility of the system. The algorithm was used to bring the system
to equilibrium over a temperature range, and these observables were recorded and plotted as a function of
temperature.

Due to the random nature of the system, the plots contain large fluctuations after just one iteration, and
an average of a large number of simulations was required to produce acceptable results. The process was
repeated 2000 times and and an average was taken, however this method was very expensive, computation-
wise. To reduce computation time, program was run simultaneously on multiple computers.

2.3 Triangular Lattice

In terms of programming, a triangular lattice would be difficult to work with, and it is therefore reasonable
to look for a way to represent one by a square matrix. The following bijection can be used to relate a square
and triangular lattice: shift every second row horizontally so that it is aligned with the rows above and below
it, the nearest neighbours now being the points horizontally above and below the lattice site (as before), as
well two of the closest diagonal points. Therefore the triangular lattice can be easily represented by adding
two extra nearest neighbours to the existing represenation of the square lattice.

Figure 2: The triangular lattice (left), and the square matrix (right) which represents it in the code.

2.4 Other Dimensions

To preform an analysis of the Ising model in different dimensions, it was efficient to write one main module
which worked for any spatial dimension. The main class was thus written for a 3D lattice, which could then
be reduced to 2D or 1D lattices as required.

2.5 Example: A 2D model of NiO

The methods developed in the preceeding parts of the project were employed to simulate a simplified model
of NiO. The material was described by a 2D square lattice having nearest and second nearest neighbour
interactions with interaction energies of J1 = 2.3meV and J2 = −21meV, respectively. As the oxygen atoms
have no magnetic moment, only the nickel atoms were considered. The system was represented by a matrix
with zeros at every second entry (the oxygen atoms) and ±1 at every other entry (the nickel atoms with
either spin “up” or “down”). Since the dominant interaction energy term is J2 < 0, the system should
in theory be antiferromagnetic. The expected ground state energy for the system is −42meV. When the
system is completely misaligned, two of the nearest neighbours will have spin “up” and two will have spin
“down”, meaning their contributions to the energy will cancel. The contribution then comes from the four
second nearest neighbours, giving −84meV, and dividing by two to account for double counting, the average
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energy per spin should be −42meV. The main class from before was modified to account for second nearest
neighbour interations with different interaction energies and used to investigate the simplified 2D NiO model.

3 Results and Analysis

The metropolis algorithm was successfully used to sweep through a matrix and update the spins appropri-
ately. An example is shown below.

0 200 400 600 800

0

200

400

600

800

Initial Configuration

0 200 400 600 800

0

200

400

600

800

Updated Configuration

Figure 3: The initially randomised system (left) compared with the updated system (right). This system
was represented by a 1000 × 1000 matrix at a temperature of T = 1J/kB, and the updated state shown is
the result of 100 iterations of the Metropolis algorithm.

This system should be ferromagnetic (since T = 1J/kB < TC), and this is clear from the updated system,
as the spins are beginning to form domains. By inspection it is also evident that the periodic boundary
conditions were correctly implemented. This result raises two issues: this system is not yet in equilibrium, so
the required number of iterations of the Metropolis algorithm for a given system size needs to be determined.
Also the matrix used in the above example was very large, and resulted in long computation times. In order
to keep the computation times as short as possible, a matrix of smaller dimensions should be used. This will
affect some aspects of the results (steepness and height of the curves), but the value of TC and the numerical
accuracy of the results should remain accuracte, to a degree. Also since the system appears to align at low
temperatures, when taking measurements over a range of temperatures, an initially aligned matrix can be
used when starting with a low temperature, which should slightly reduce the fluctuations in the resulting
plots.

The Metropolis algorithm was applied to a random matrix a large number of times, and the average mag-
netisation per spin of the system was recorded for each step. A plot of magnetisation vs number of steps
showed that after a certain number of steps, the magnetisation was approximately constant. An example is
shown below.

From the plot it can be seen that a 100 × 100 matrix requires approximately 500 sweeps before it reaches
equilibrium. In the proceeding parts of the project, a smaller matrix is used, as the results require a large
number of simulations to be averaged, and a 100× 100 matrix is not feasible for this; a 10× 10 matrix only
requires approximately 25 sweeps to reach equilibrium, and therefore much shorter computation times.
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Figure 4: The magnetisation at each sweep of the Metropolis algorithm. From the plot it is clear that for a
100× 100 matrix, approximately 500 sweeps are required to bring the system to equilibrium.

The observables for the 2D square lattice were then calculated. The program was run on multiple computers
simultaneously using ssh to reduce the computation time. To prevent each computer from overwriting the
data produced by the previous one, the time at which the process completed was included in the file name.
The files were appropriately renamed using the rename feature in the terminal, so they could be averaged
easily. Shown are the average magnetisation per spin, average energy per spin, specific heat capacity and
magnetic susceptibility of the 2D square lattice, all plotted as a function of temperature.

As can be seen in the plot of magnetisation vs temperature, the magnetisation suddenly drops at TC ≈
2.6 ± 0.1J/kB, which compares well with the theoretical value[2], and indicates that a phase transition has
occured. The energy is a continuous function of temperature, as expected. As the temperature approaches 0,
the energy approaches a ground state energy of −2J, which agrees with theory. In both the specific heat and
magnetic susceptibility plots, a discontinuity is seen to occur around TC , indicating that the phase transition
is indeed of second order. Thus it can be concluded that the 2D square lattice of collinear spins is indeed a
ferromagnetic system.
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Figure 5: The measured observables for the 2D 10 × 10 square lattice. The Metropolis algorithm was
implemented a sufficient amount of times to reach equilibrium, and the data was collected. This process
was repeated 2000 times and average values were taken to reduce fluctuations in the plots. To save time,
the program was run simultaneously on multiple machines and the process was repeated a smaller number
of times, then the data was collected and averaged. The data was then formatted. The plots shown were
formatted using Xmgrace.

The 2D triangular lattice system was then investigated. Since the only difference between square and
triangular lattices is 2 extra nearest neighbours, it was easy to write the main class in such a way that
the shape of the lattice could be specified when defining an object of the class. A plot of average energy
per spin vs temperature for the triangular lattice is shown below, and the plots of the other observables vs
temperature are included in the appendix. From the plot it can be seen that the ground state energy for
the 2D triangular lattice is −3J, as expected. The Curie temperature was determined to be 4.2 ± 0.1J/kB,
which is larger than the value of TC found for the 2D square lattice. From the plots it is clear that the 2D
triangular lattice is also a ferromagnetic system.
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Figure 6: A plot of average energy per spin vs temperature for the 2D triangular lattice.

For the 1D lattice, a plot of average magnetisation per spin vs temperature appeared to exhibit a phase
transition at a very low temperature, but this was in the case of J = 1. The plot was made at a larger value
of J , and as expected, no phase transition was observed, agreeing with the theory that 1D systems with
short range interactions cannot exhibit phase transitions.
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Figure 7: The plot on the left is of average magnetisation vs temperature for J = 1, and a phase transition
appears to occur at a low temperature. The plot on the right is of average magnetisation vs temperature for
J = 20 and the magnetisation remains constant, indicating that there is no phase transition, as expected.
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“The model was suggested to Ising by his thesis adviser, Lenz. Ising solved the one-dimensional model, ...
and on the basis of the fact that the one-dimensional model had no phase transition, he asserted there was
no phase transition in any dimension. ... It is ironic that on the basis of an elementary and erroneous
conclusion, Ising’s name has become among the most commonly mentioned in the theoretical physics

literature. But history had its revenge. Ising’s name, which is correctly pronounced ”E-zing”, is almost
universally mispronounced as ”I-zing”!”

-Barry Simon [5]

The plots of the observables vs temperature for the 3D lattice are included in the appendix. The ground
state energy as well as the value of TC = 4.6± 0.1J/kB are both larger than those of the 2D square lattice,
which is expected, since the number of nearest neighbours is larger for the 3D lattice. From the plots it is
clear that the 3D lattice is also a ferromagnetic system.

The average energy was plotted as a function of temperature for NiO, and from this the ground state was
determined to be −36.75 ± 0.01meV. The plot of average magnetisation vs temperature shows that the
average magnetisation per spin is approximately 0 for all temperatures, indicating that the system is not
ferromagnetic. By examining the system at different temperatures, it is clear that it is disordered at higher
temperatures, and the spins become misaligned for lower temperatures, indicating that the system transitions
from a paramagnetic state to an ordered antiferromagnetic state.

Figure 8: Plots of average energy (left) and average magnetisation (right) vs temperature for the 2D square
lattice NiO model. The average energy appears to approach −36.75±0.01meV as the temperature approaches
0, and the average magnetisation is approximately 0 for all temperature measurements.
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Figure 9: Plots of for high and low temperatures. The grey entries represent the oxygen atoms, and the
black and white entries represent the spin “up” and “down” nickel atoms. At T = 100, 000J/kB (left), the
system is seen to be disordered (paramagnetic), and at At T = 10−10J/kB (right), the spins are misaligned,
indicating that the system is antiferromagnetic.

4 Discussion and Conclusions

The Metropolis algorithm was used to successfully update a system. The number of sweeps required to reach
equilibrium for a given system size was then determined, and from this it was apparent that larger systems
would be impractical to use when calculating observables due to the large number of sweeps required to
bring them to equilibrium. Smaller systems were used for quicker computation times but at the cost of some
numerical accuracy, although hopefully not too much due to periodic boundary conditions.

The 2D square lattice of collinear spins was determined to be a ferromagnetic system, as the plot of average
magnetisation vs temperature showed a phase transition at TC = 2.6 ± 1J/kB, which agrees well with the
theory. The accuracy of the obtained value for TC could be improved upon by using a larger system size, a
smaller temperature step, or by averaging over a larger number of simulations, all of which would come at
the cost of much longer computation times. The discontinuities in the plots of specific heat and magnetic
susceptibility indicate that the phase transition is of second order. The ground state energy for this system
was determined to be −2J. The 2D triangular lattice system was then investigated. The ground state energy
was determined to be −3J, as expected, and the Curie temperature was determiend to be 4.2 ± 0.1J/kB,
which is larger than the value obtained for the 2D square lattice.

The 1D system appeared to exhibit a phase transition at a very low temperature, although this may have
been due to the low value of J used during computation. A plot with a larger value (J = 20) shows that
there is indeed no phase transition, which agrees with the theory. The 3D system was also determined to be
ferromagnetic. The value of the Curie temperature for this system was determined to be TC = 4.6±0.1J/kB,
which is larger than in the 2D cases. The ground state energy was determined to be −3J, as expected.
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The results for the various systems are summarised in the table below.

System Ground State (J) TC (J/kB)
Square -2 2.6± 0.1

Triangular -3 4.2± 0.1
1D -1 -
3D -3 4.6± 0.1

A model of NiO was successfully developed and investigated. The ground state was determined to be
−36.75 ± 0.01meV, which is close to the the expected value of −42meV. Once again, a larger system
size, a smaller temperature step and a larger number of averaged simulations would have given a more
accurate result. Unfortunately no useful information was obtained from the plot of average magnetisation
vs temperature, other than the fact that it was approximately zero for all temperature measurements.
Examinations of the system at different temperatures did show that the system undergoes a phase transition
from a paramagnetic state to an antiferromagnetic state, as expected. However, the plots of specific heat and
magnetic susceptibility unfortunately did not indicate what the Néel temperature was. Perhaps by using a
larger temperature range and by determining the point of inflection on the average energy vs temperature
plot, the Néel temperature could have been determined.
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