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Slide 5 −→
Equilibrium separation of atoms is given by:

Req = 21/6σ≈ 1.12σ.

Repulsive exponent must be greater than 6 to produce potential well, and is taken as 12 mainly

for simplicity.

The attractive term describes induced dipole-dipole interaction.

Dipole electric field: E ≈−dV

dr
≈ 1

r 3 . Induced dipole p ∝αE , where α is polarisability.

Induced dipole-dipole potential Vp ≈ pE ≈ E 2 ≈ 1

6
.

−→ slide 6
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Slide 6 −→
Lattice sum involves only one atom per unit cell:

UB = 1

2

∑
j ̸=1

VLJ(Ri j )

(VLJ is the Lennard-Jones potential)

In counting, nearest neighbours (nns) dominate because potentials have a very short range

(powers of −6 and −12); next nns and others make only small contributions.

For fcc structure there are 12 nns:

UB =−2ϵ

[
14.45

(
σ

R0

)6

−12.13

(
σ

R0

)12]
,

where R0 is found from minimum energy requirement:

dU

dR
= 0 ⇒ R0 = 1.09σ.

The cohesive energy is the ground-state internal energy of the solid, and knowing its functional

form allows other properties of the solid to be determined.

The LJ potential is an empirical potential: ab initio quantum mechanical energy calculations

can determine the potential from first principles.

Cohesion in ionic crystals

Electron transfer between atoms creates ionic crystals when:

• 1 atom has small ionisation potential, e.g. groups I, II, giving a CATION.

• 1 atom has large electron affinity, e.g. groups VI, VII, giving an ANION.

The ion formed has highly spherical charge distribution, so we can treat the Coulomb potential

as a point charge at the centre of mass of the ion.

All Coulomb interactions between point charges have to be summed, with ion core repulsion

taken into account. This is complicated, since the Coulomb potential is long-range.

The Coulomb interaction potential is:

VC (r12) = e2

4πϵ0

q1q2

r12
, where qi are integer charges.

For ionic solids, there is also a Pauli repulsion potential:

VR (r12) =λexp

(−r12

ρ

)
where λ and ρ are constants determined by experiment.
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The bulk modulus B is given by:

B =−V
dP

dV
=V

(
d 2U

dV 2

)
T,V =V0

where U =VC +VR .

The total potential of one ion i in the lattice is:

Ui =
∑

j

′
V (ri j ), where V (ri j ) =VC (ri j )+VR (ri j ) and

∑
j

′ ≡
∑
j ̸=i

which can be simplified by scaling to nearest-neighbour distance, ri j = Rnnai j :

Ui (Rnn) = z exp

(−Rnn

ρ

)
+ e2

4πϵ0

∑
j

′ qi q j

Rnnai j

where z is the number of nearest neighbours.

For a stable structure, an ion of one sign generally has nearest neighbours of the opposite sign:

e2

4πϵ

∑
j

′ qi q j

Rnnai j
=−e2|qi ||q j |

4πϵ0Rnn

∑
j

′ ±1

ai j
=−e2|q+||q−|

4πϵ0Rnn
A

where the± refers to ions of same/opposite charge, and A is called the Madelung constant, which

is positive and depends only on the structure.

These summations are difficult.

−→ slide 7
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Properties

Slide 15 −→
Phase must repeat in space every 2π:

k · r ′ = k · r +2π=⇒ |k|[|r ′
⊥|− |r⊥|

]= 2π.

Neighbouring planes of equal phase are separated by wavelength:

|r ′
⊥|− |r⊥| =λ⇒|k|λ= 2π⇒ k = 2π

λ
.

For plane waves in crystalline solids, the physical properties must have the same periodicity as

the lattice. A plane wave whose period matches that of the lattice must have the same amplitude

at r and r +R:

exp[i k · (r +R)] = exp[i k · r ]

=⇒ exp[i k ·R] = 1.

But exp[iG ·R] = 1, and G ·R = 2πn. So k =G , the wavevector is a reciprocal lattice vector.

−→ slide 16
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Brillouin zones

Slide 17 −→
In real space, the Wigner–Seitz cell is the atom-centred unit cell of minimum volume. In recip-

rocal space, the WS cell is called the first Brillouin zone.

BZs are formed from perpendicular bisectors (planes) of the G vectors: the first BZ is formed

from the nearest reciprocal lattice points, the second from the next-to-nearest (subtracting first

BZ), etc.

All BZs have the same volume.

Points and lines of high symmetry in a BZ are labelled, because experiments and theory usually

exploit symmetry in order to simplify measurement and interpretation of results.

The centre of the zone – the point of highest symmetry – is the gamma point: Γ(0,0,0).

−→ slide 18
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Atom dynamics in crystals

Slide 21 −→
At length scales much larger than atomic dimensions, solids behave as continuous media. Their

properties may be anisotropic due to the underlying crystal symmetry, but this is treated phe-

nomenologically – the properties are measured in different macroscopic directions of the crystal.

Sound propagation is a good example, because v = f λ; v ∼ 5000 ms-1, f ∼ 10,000 Hz =⇒ λ ∼
0.5 m.

A sound (acoustic) wave is just an elastic wave propagating through a medium where a time-

dependent stress, σ, produces a strain e via the elastic stiffness, c:

σi =
6∑

j=1
ci j e j i = 1, . . . ,6 and ci j = c j i .

With no crystal symmetry, we have 21 independent components, but any symmetry reduces this

number dramatically, e.g. cubic crystals only have 3 independent components:

c11(= c22 = c33), c12(= c13 = c14), c44(= c55 = c66).

−→ slide 22
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Slide 22 −→
Solids are more complicated because they support shear stresses and have more than one non-

zero value of c: displacements can occur which are not aligned with the stress.

For an isotropic solid, there are two independent values of c: B and µ (the shear modulus),

allowing both a longitudinal and two transverse waves (polarisation unit vectors ê (7) orthogonal

to one another) to propagate.

vlong =

√√√√B + 4
3µ

ρ
, vtrans =

√
µ

ρ
. (12)

⇒ vlong > vtrans.

For anisotropic solids, the simpe division into longitudinal and transverse waves may not be

possible, e.g. k may not be parallel to ê where a longitudinal wave is expected.

Thus, in general, we have plane waves propagating through the solid as a consequence of the

solid possessing restoring forces (quantified by the moduli) that respond to the displacement.

Debye heat capacity: We can progress further with the continuum model by recognising that

the solid is finite and has boundaries, so the wave equation has boundary conditions that restrict

the allowed values of k.

−→ slide 23
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Slide 24 −→
We now know that for an isotropic solid, we have one longitudinal and two transverse waves:

D(ω)dω= V

(2πv)3 4πω2 dω= V

(2π)3

(
1

v3
long

+ 2

v3
trans

)
4πω2 dω.

⇒ D(ω)dω= 3V

(2πv0)3 4πω2 dω, (13)

the Debye density of vibrational states (∼ω2), where v0 is the weighted, non-dispersing average.

We introduce atoms at this stage, because we know that this oscillating system has 3N−6 degrees

of vibrational freedom, and thus can only have this number of modes (≈ 3N for real systems):

this means that there is a maximum frequency ωD :

3N =
ωD∫
0

D(ω)dω= 3V

(2πv0)3

ωD∫
0

4πω2 dω

3N = 4πω3
0V

(2πv0)3 ⇒ωD = v0

(
6π2N

V

)1
3

. (14)

ωD is called the Debye frequency.
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Debye heat capacity

Einstein assumed that each atom in the solid oscillates at a single frequency ωE , characteristic

of the solid:

CV =
(
∂U

∂T

)
N ,V

= 3N k

(
θE

T

)2 exp(θE /T

[exp(θE /T )−1]2
,

where θE = ħωE
k is called the Einstein characteristic temperature.

Debye model: the thermal average value of X is:

〈X 〉 =
∫

D(ϵ) f (ϵ,T,µ)X dϵ

with:

f phonon(ϵ) = [exp(ϵ/kT )−1]−1

(a phonon is a quantised vibration.)

U = 〈E〉 = 3V

(2πv0)3

ωD∫
0

ħω4πω2

exp(ħω/kT )−1
dω

Using x =ħω/kT , we have:

U = 3V (kT )4

2ħ3π2v3
0

xD∫
0

x3

exp(x)−1
d x

But:

ω0 = v0

(
6π2N

V

)1/3

⇒ v3
0 =ω3

0
V

6π2N
= (xD kT )3

ħ3

V

6π2N
so

U = 9N kT

x3
0

xD∫
0

x3

exp(x)−1
d x (15)

(neglecting zero-point energy).

In general, this integral must be evaluated numerically (because of upper limit), but some par-

ticular cases can be treated analytically.

1. Low temperature behaviour:

kt ≪ħω, so x ≫ 1 ⇒ xD →∞ at upper limit; standard integral = π4

15 .

We define a Debye temperature: kθD =ħωD , and xD = ωD
T .

U (t ) = 3π4N kT 4

5ω3
D

and CV (T ) = ∂U

∂T
= 12π4N k

5

(
T

θD

)3

(16)

So CV ∼ T 3 for non-metallic solids at low temperatures, in agreement with experiment.

Note:

As xD = ωD
T , a high Debye temperature means a wide temperature range over which (16) is ap-

plicable.
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High θD comes from strong bonds and light atoms:

θD = ħωmax

k
, ω∼

√
k ′

m
.

For elements, highest is diamond at 2230 K, lowest is caesium at 38 K.

2. High temperature behaviour:

kt ≫ħω⇒ x ≪ 1.
xD∫

0

x3 d x

exp(x)−1
=

xD∫
0

x3 d x

x + x2

2! + . . .
=

xD∫
0

x2 d x

1+ x
2! + . . .

= 1

3
x3

0 .

From (15),

U = 9N kT

x3
D

x3
D

3
= 3N kT.

⇒CV = ∂U

∂T
= 3N k = 3R,

the Dulong–Petit law.

3. Between these limits,

numerical methods are used.

Note that plotting the reduced variable T
θD

results in a universal curve to within about 15%.

−→ slide 25.
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The 1D atomic chain

Slide 27 −→
Periodic boundary conditions – ‘Born–Von Karman conditions’ – for a periodic array of N atoms,

separated by a, of total length L = N a:

u(r ) = u(r +L) (17)

(imagine the first and last atom ‘linked’ in some way.)

The solutions become running waves with an integer number of wavelengths fitting into L:

kr
i = 0,±ni

2π

L
, . . . ,

Nπ

L
(i = x, y, z) (18)

The separation of the k values is twice that of the standing waves, but there are twice as many

allowed values, so the density of states is the same.

Running wave solutions are useful because net transfer of energy occurs.

−→ slide 18
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The 1D chain

Slide 30 −→
Springs have return forces analogous to interactomic potential (bottom of well is parabolic for

small displacements) – look at longitudinal motion.

The masses are analogous to ion cores – apply F = m d 2x
d t 2 to each mass. The model reveals essen-

tial physics of atom dynamics of 3D solids.

For nth atom:

at equilibrium, x0
n = na

when displaced, xn = na +un

(
⇒ ∂

∂x = ∂
∂u

)
If the interactomic potential is ϕ(a), and only nearest-neighbour interactions matter, total po-

tential energy U = Nϕ(a).

Use Taylor expansion, summing over all atoms:

U (x) = Nϕ(a)+
∑

mÊ1

1

m!

∂mϕ

∂um

N∑
n=1

(un −un+1)m (22)

a is equilibrium separation −→ 0 net force on atom:(
∂ϕ

∂u

)
u=0

= 0.

Dominant term is quadratic, and if we neglect higher terms we have the harmonic approxima-

tion, a simple spring; but also small atomic displacements. From (22),

Uharm = 1

2
K

N∑
n=1

(un −un+1)2, with K =
(
∂2ϕ

∂u2

)
u=0

.

Net force on the nth atom is Fn = K (un+1 −un)−K (un −un−1) = K (un+1 −2un +un−1).

Equation of motion for nth atom is:

m
∂2un

∂t 2 = K (un+1 −2un +un−1)

(
=−∂uharm

∂un

)
(23)

−→ slide 31
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Slide 31 −→
We know the most general solution for this periodic system is a Bloch wave (20):

un(x0
n , t ) = A exp

[
i (kx0

n −ωk t )
]

,

where A = u0
k (r ) = u0

k (r +a), the unit cell function.

For discrete values of k corresponding to running waves with periodic boundary conditions,

using x0
n = na, we have un = A exp[i (kna −ωk t )] and ũn =−ω2

k A exp[i (kna −ωk t )].

Substituting into equation of motion and cancelling:

−mω2
k = K

[
exp(i ka)−2+exp(−i ka)

]= 2K [cos(ka)−1]

⇒ωk = 2
√

K
m

∣∣sin
(1

2 ka
)∣∣ (24)

There is a maximum cutoff value ωmax
k = 2

√
K
m for k = nπ

a , n =±1,±3, . . .

The frequency is not proportional to k, as in elastic medium, but has a periodic sinusoidal be-

haviour. The periodicity is that of the reciprocal lattice: 2π
a .

−→ slide 32
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Phase velocity and group velocity

Slide 33 −→
The velocity of points of constant phase in a wave is called the phase velocity, vϕ.

ϕ(x, t ) = kx −ωt , and
dϕ

d t
= ∂ϕ

∂x

d x

d t
+ ∂ϕ

∂t
= k

d x

d t
−ω

Constant phase: dϕ
d t = 0 ⇒ k d x

d t −ω= 0, and:

d x

d t
= vϕ = ω

k
. (25)

Since vϕ = f (k), waves of different frequency have different phase velocities:

• A pulse or wave packet can be represented as a Fourier sum of sinusoidal components

• The wave packet will travel at the group velocity, but will broaden due to the dispersion

of phase velocities of sinusoidal components, e.g.

u1 = cos(kx −ωt ) and u2 = cos([k +2∆k]x − [ω−2∆ω]t )

u1 +u2 = 2cos([k +∆k]x − [ω+∆ω]t ) ·cos([∆k]x − [∆ω]t )︸ ︷︷ ︸
“beat amplitude”

−→ slide 34
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Slide 34 −→
The phase and group velocities of the vibrational waves are then:

vϕ = ω

k
= 2

k

√
K

m
sin

(1
2 ka

)
vg = dω

dk
= a

√
K

m
cos

(1
2 ka

)
It is clear that the group velocity is zero at the BZ boundaries, ±π

a , since gradient is zero; so we

have standing waves there – the interference between waves travelling in opposite directions

after Bragg reflection from the periodic array of atoms:

nλ= 2d sinθ⇒ n

(
2π

k

)
= 2a ⇒ k = n

(π
a

)
with 2θ = 180◦

Note: this is a generic result for waves in a solid – applied to electrons in Section VI.

In the long wavelength limit (zone centre), ka ≪ 1, and we expect to regain the continuum

model:

vϕ = ω

k
= 2

k

√
K

m

(1
2 ka

)= a

√
K

m
= vg (no dispersion.)

−→ slide 35
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Three-dimensional crystals

Slide 40 −→
The main additional contributions come from transverse (shear) modes.

Transverse acoustic (TA) modes will generally have different frequencies to LA modes, because

of their different velocities (section V1).

Modulus and branches for N unit cells each containing p atoms.

• 3pN degrees of vibrational freedom (ignore 6).

• Each branch has N modes, −→ 3p branches.

• There can only be one LA and two TA branches −→ 3(p −1) optic branches.

• There are p−1 LO and 2(p−q) TO branches (only one LO, but two orthogonal TO displace-

ments.)

Calculation of the vibrational behaviour of 3D crystals starts by calculating the interatomic po-

tential using the Born–Oppenheimer approximation and varying the interatomic separation –

matrix methods are needed and symmetry relations are used to simplify the problem.

Theory is compared with experimental results from, most commonly, inelastic neutron scatter-

ing studies along high-symmetry directions of the BZ.

−→ slide 41
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Phonons and crystal momentum

Slide 43 −→
We have used quantum theory to derive the Bloch theorem, but otherwise classical mechanics

has been used.

The energy (∝ amplitude2) of a classical normal mode can take any value.

The quantum oscillator has certain allowed energy eigenvalues, characterised by an integer

n(k, p), where p is the branch index:

ϵ(k, p) = [
n(k, p)+ 1

2

]ħωk (p) (31)

The quantised oscillation is called a phonon, and n is the number of phonons excited in the

system.

The solid has energy even with no phonons excited: the zero-point energy:∑
p

1
2ħωk (p).

The total vibrational energy of the solid is:

E =
∑
k,p

ϵ(k, p).

Phonons are spin-zero, and are not conserved; so they act like photons and have the same dis-

tribution function.

−→ slide 44
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The free electron gas

Slide 46 −→
From our basic iron core and valence electron model, the simplest assumption is that the va-

lence electrons form a gas that is free to move throughout the volume of the solid, experiencing

a constant potential everywhere except at the surface of the solid, where a potential barrier pre-

vents escape.

The Drude model treats these electrons as point particles using classical statistics and, although

some useful results are obtained (see later), Fermi–Dirac statistics are needed.

We return to the 3D square well particle-in-a-box problem.

The electron wavefunction is:

ψ(r ) = A exp(i k · r )

Note: a plane wave. The nodes at surfaces implies standing waves:

ψ(r ) =
√

8

L3 sin
(
n1

πx

L

)
sin

(
n2

πy

L

)
sin

(
n3

πz

L

)
where ni are nonzero positive quantum numbers.

Note: vibrations in elastic solid – similar result from antinodes at surface.

In k-space, we have:

ki = ni
π

L
, and ϵ(k) = ħ2k2

2me
.

From the Pauli exclusion principle, each allowed k-state can contain two electrons of opposite

spin (no magnetic field), and we can work out the DOS, Fermi energy, etc., at 0 K.

−→ slide 47
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Slide 50 −→

ϵF = ħ2k2
F

2me
= ħ2

2me

(
3π2N

V

)3/2

.

For metals, ϵF > 2.5 eV and kT ∼2 0.025 eV at room temperature. This implies that µRT ≈ ϵF and

the Fermi surface is quite sharp.

The Fermi wavevector is:

kF =
(

3π2N

V

)1/3

−→ slide 51
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Slide 54 −→
Solutions of the Schrödinger equation in the weak perodic potential of lattice are Bloch func-

tions:

ψk (r ) = exp(i k · r )uk (r ) and uk (r +R) = uk (r ). (20)

We make progress by using the symmetry of the system to expand the Schrödinger equation as

a Fourier series in k-space (plane wave expansion of potential and wavefunction)

Recall complex Fourier series:

f (x) =
∞∑

n=−∞
Cn exp(i 2πnx/a),

where a is the period of f .

V (r ) =
∞∑

h=−∞

∞∑
k=−∞

∞∑
l=−∞

Vhkl exp(iGhkl · r ) =
∑
G

VG exp(iG · r )

(period is R) and:

VG = 1

Ω

∫
unit cell

dr V (r )exp(−iG · r ).

All physically distinct values lie within a unit cell.

Schrödinger equation:

− ħ2

2me
∇2ψ(r )+V ψ(r ) = ϵψ(r ), and V (r +R) =V (r ).

Now we expand:

V (r ) =∑
G

VG exp(iG · r ) and ψk (r ) =∑
k

Ck exp(i k · r )

giving: ∑
k

ħ2k2

2me
Ck exp(i k · r )+

∑
k ′,G

CkVG exp
(
i (k ′+ g ) · r

)= ϵ
∑
k

Ck exp(i k · r )

Choosing k = k ′−G , ∑
k

exp(i k · r )

[(ħ2k2

2me
−ϵ

)
Ck +

∑
G

VGCk−G

]
= 0.

Thus, for all k, (ħ2k2

2me
−ϵ

)
Ck +

∑
G

VGCk−G = 0. (37)
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Note that expansion coefficients in (37) differ only by G , as a result of periodicity.

Using the expansions we can easily show that:

uk (r ) =
∑
G

Ck−G exp(−iG · r ), ψk+G (r ) =ψk (r ), ϵ(k +G) = ϵ(k) (38)

We can now carry over the results on BZs from section V4, as the structure and arguments are

the same, with ω becoming ϵ. The ϵ vs. k plots are called the band structure.

The simplest energy band structure is that of the empty lattice, where the ion core potential

tends to zero, and thus the Fourier coefficients of the potential tend to zero. In the limit, this

should be the free electron gas parabola in k-space.

From (37), [ħ2k2

2me
−ϵ

]
Ck = 0, and uk (r ) = 1.

ϵ= ħ2k2

2me
and ψk (r ) = exp(i k · r )

−→ slide 55
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Slide 55 −→
We now introduce a weak pseudopotential and take first term in potential: this is the NFE model.

We expect differences at the 1st BZ boundaries; where k =±G/2. (37) becomes:[ħ2(G/2)2

2me
−ϵ

]
CG/2 +VGC−G/2 = 0[ħ2(G/2)2

2me
−ϵ

]
C−G/2 +V−GCG/2 = 0.

⇒
∣∣∣∣∣
ħ2(G/2)2

2me
−ϵ VG

V−G
ħ2(G/2)2

2me
−ϵ

∣∣∣∣∣= 0.

ϵ± = ħ2(G/2)2

2me
∓|VG |, ϵgap = 2|VG |, C−G/2

CG/2
=±1 (39)

Note: V (r ) is real, so VG exp[−iG · r ]+V−G exp[iG · r ] is real,

⇒ (
VG exp[−iG · r ]

)∗ =V−G exp[iG · r ]

⇒V ∗
G =V−G

−→ slide 56
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Beyond NFE model

Slide 68 −→
The NFE model is appropriate for the following types of solids:

• insulators with wide band gaps, since wide band gap ⇒ strong lattice potential.

• transition metals, lanthamides and actinides where d- and f -electrons which are more

tightly bound to the ion core are important.

• covalent solids with directional bonds formed from the combination (and hybridisation)

of directed atomic orbitals.

Theory may start from atomic orbitals and examine the interaction of neighbouring atoms – the

tight-bonding or linear combination of atomic orbitals (LCAO) approach; this closely resem-

bles the simple picture of interactions leading to band formation (Fig. 2) and is widely used for

molecules.

The independent-electron picture is also limited in that e-e interactions are important. The

approximation works reasonably well because of screening, and because the electron and its

exchange-correlation hole, taken together, behave roughly as independent quasi-particles.

The simplest approach to screening is the Thomas–Fermi model, which produces a screened

Coulomb potential that falls exponentially with distance from nucleus.

−→ slide 69
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Electron-phonon scattering and umklapp processes

Slide 77 −→
Only longitudinal phonons couple with electrons (via Ve−ph ∝ n ·q where q = phonon vector).

LA phonons are the most important because they have lower energies.

The temperature dependence of e-ph relaxation time τph, has different regimes:

• T ≫ θD , no. of phonons per mole:

〈n(ωq ,T )〉 = f ph(ωq ,T ) ≈ kT

hωq

So e-ph collision rate ∝ T , and

τe−ph ∝ T −1 (when T ≫ θD ) (51)

• At low T , the energy requirement that hωq É kT means that electrons scatter to and from

states very close to the Fermi surface, and also ωq = vq so the allowed surface area in

k-space ∝ q2 ∝ T 2. In addition, scattering rate ∝Ve−ph ∝ q .

⇒ e-ph collision rate ∝ T 3, and τe−ph ∝ T −3 (when T ≪ θD ) (52)

−→ slide 78
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Lattice contribution to thermal conductivity of insulators

Slide 82 −→
We know that insulators conduct heat much less well than metals, so we expect that the lattice

contribution to the thermal conductivity of metallic solids to be small.

From (54), if we follow Debye and use the velocity of sound (5010 ms-1 for Cu, as compared

to ∼ 105ms-1 for electrons as classical particles), we get a value of κ which is ∼ 500× smaller,

assuming the relaxation time is comparable. This is a bad estimate of κ.

To go further, we adapt (54) for phonons, where we introduce the group velocity and sum over

phonon branch p and wavevector k:

κ= 1

3V

∑
k,p

CV (k, p)v2
g (k, p)τk,p (55)

where cV is the mode heat capacity of phonon k in branch p.

Recalling section V4, near the BZ centre (i.e. small k, long wavelength), the group velocity can be

replaced by the phase velocity, i.e. the velocity of sound.

The temperature dependence of the thermal conductivity is then determined by the behaviour

of the heat capacity and the relaxation time.

−→ slide 83
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Slide 84 −→
Modify the Drude expression to account for Fermi–Dirac statistics and Fermi surface, from (54):

κ= CV

3V
v2 ⇒ κ= CV

3V
v2

Fτ (56)

because only electrons very close to the Fermi energy contribute to transport (assuming Fermi

surface is spherical).

Applying this approach to Wiedemann–Franz expression:

CV = π2N k2T

2ϵF
(36); σ= nc e2τ

me
(45); v2

F = 2ϵF

me
.

⇒ κ

σT
= π2

3

(
k

e

)2

= 2.433×10−8 WΩK−2,

better agreement than Drude model, which has 3
2 from (55).

The Drude CV = 3
2 N k is too large by 0.3(ϵF /kT ) but this is compensated by a squared classical

velocity which is too small by 0.67× same factor; hence the very good agreement which Drude

obtained.

−→ slide 85
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