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1 Natural units

We will use natural units: /2 = ¢ = 1. This means that [p] = [m] = [T]™! = [L]"! = [E] =
MeV. To convert from standard units to natural units, remember that /ic = 200 MeV fm.

For example, to convert from seconds to natural units:

1073¢s

c
_3fm

7=103¢s=

c
N 3fic 1

T ¢ 200 MeV
7=15x10">MeV !

If 7 is the lifetime of a strongly decaying particle, the decay width " = % =~ 70 MeV.

2 Klein-Gordon equation

2.1 Derivation
In non-relativistic quantum mechanics, the Schrodinger equation is based on an energy:

0
E=—, E—i—, — —iV
2m ot P

We keep this recipe, but use the relativistic energy:
E=+\/p*+m?
We rewrite this to avoid the square root:

E? :p2+m2.



and note that:

So we have: )

0
—5 790 0=V Mo 1)
or, noting that the d’Alembertian operator [J=0,,0" = (;3—:2 -Vv?

O+ m*)p(x,1) =0,

the Klein—-Gordon equation.

2.2 Example

We will test the equation on the plane wave solution:
(P(x, t) — Ne—iEt+ip'X — Ne—ipx’
since px = pyxt =p°x°-p-x=Et-p-x.
We calculate derivatives:
a“e—"l’x = au(—ipx)e_i”x = —ipue_ipx.
auaue—ipx — De—ipx — (_ipu)(_l-p#)e—ipx — _pze—ipx
Note that p? = p,pH = E? — p?, so:

O+ m?)Ne 'PX = N(-p? + m?)e™'P*
= (—E? +p? + m?) NeiP*
_6_4
=0, as expected. v’

3 Probability current

3.1 Derivation

Recall that we used E = ++/p? + m?, meaning that for any p there are two solutions, E < 0
and E > 0.

We use the K-G equation for ¢, and its complex conjugate ¢*:

ip* (040" + m*)p—ih(8,0" + m*)p* =0,

0 0



and rewrite the LHS:

0=m?i (p*p—pp*) +ip* 8,0 P — ipd, 0" p*
0
= 10, (" 0Hp — pot'p*) —i(3,p™) (0 p) + i (0 p) (™)
0

=0, |i(p*Hp—poF )
=0,uj".
j* can be expressed as (p, j), where p is probability density and j is probability current:

P
p=1@ ot ¢ at)
j=—i(@"Vp -V

0, j* = 0 can be written in 3D as the continuity equation:

dp
—+V-j=0.
ar V)

3.2 Example

We evaluate p for the plane wave ¢ = Ne™'P*:

p = i|N*(e'PX(—iE)e” 'P¥ — e IPXjEelPY)
= |N%i(-2iE)
= 2E|N|?

If E < 0 this gives a negative probability density. This is a problem!

4 Dirac equation

4.1 Derivation

The K-G equation is second-order in space and time (because of []). Dirac tried to ob-
tain an equation which was first-order. The equation he proposed was:

0
i—y=(ia-V+my,

Frid ( Bm)y
where a1, a2, a3 and f are to be determined. This is the Dirac equation.
In order to find & and f we require:

* the relativistic energy-momentum equation



* Lorentz covariance of the equation (discussed later)

We also want ¢ to satisfy the K-G equation. We square both sides of the Dirac equation:

2
(z%) Y=(-ia-V+pm)(—ia-V+Lm)y.

and carefully expand, bearing in mind that &; and § are not necessarily scalar:

62 2 2

0y oy
2
Tor VT T4 ox 1)2 sz(a A R

+ B2 mPy — imZ(aiﬁ+ﬁai)%,
i x!

i,j=1,2,3.

In order for this to match the K-G equation, the RHS must equal —V?y + m?y. And for
this, we have the requirements:

Laj=1, i=123.
2. B2=1.

3. a,-aj+ajal-:0, l#]

4. a;f+pPa; =0, i=1,2,3.

4.2 Dirac spinors

Requirements 3 and 4 mean that a; and  cannot be scalars, so they must be matri-
ces. Furthermore, we require that they are Hermitian in order for the Hamiltonian to be
Hermitian.

A tempting choice for «; is the Pauli spin matrices o ;, since we know that they satisfy
requirements 1 and 3. However no nonzero f exists which anticommutes with o; for
requirement 4.

Take requirement 4:

a;f+pa;=0
= a; =—paif
tr(a;) = —tr(Ba;p)
= —tr(fa)
=—tr(a;),

so tr(a;) = 0. By a similar argument, tr(f) =

So a; and B are Hermitian matrices with square 1 and trace 0. This tells us that they
have:

* real eigenvalues

e eigenvalues = +1



e equal number of +1 and —1 eigenvalues = even dimension.

There is no set of 2 x 2 matrices which satisfy these conditions, so we try 4 x 4. One

0| o; To| O
a; = y ﬁ: y
g;| 0 01]-T

where o; are the Pauli spin matrices and 1, is the 2 x 2 identity matrix.

possible choice is:

This choice is not unique. We can construct a; = Ua; U ~land g’ = UBU ! such that:
(@)?=UaU 'UaU™
=Ua*U™!
=uU!
=1,
and similarly for f'. We want (a’l.)T = aj, so:
whlalu' =4,
W H U =a,
soUt = Ul ie Uis unitary.

Hence v is a column vector with four components, called a Dirac spinor:

U4

v=|"2, v =wivivivi.
Vs

Vs

4.3 Probability current

Consider again the Dirac equation:
0y =(—ia-V+pmy (1)

Pre-multiply (1) by v
viiow=yl(—ia-V+pmuy. )

Take the complex conjugate of (1):

oy =ylia-V+pm)
=>-i@wHy=y'ia-V+Bmy, 3)

where the ~ means that the V operates to the left, i.e. on ¢ here.

Subtracting (3) from (2) gives:

i0,w'y) =—iyN(@-V+a Vg )



Define: A

p=yly= (;wf;wa =Y lygl*>0.
This means no more negative probability densities!
Defining j* = ¢ ey allows (4) to be written:

op
—+V-j=0,
ar V)

or in four-vector form, d,, j# = 0, where j* = (p,j) as before.

4.4 Non-relativistic correspondence

Take an electron at rest: p = 0, so:

.0y
i— =0m
This has four solutions:
1 0
1 imt 0 2 —imt 1 ses
Y o=e ol Yy =e 0 (positive energy)
0 0
0 0
3 imt 0 4 —imt 0 :
yr=e | Yyi=e 0 (negative energy)
0 1

We will focus on the positive energy solutions, and work out the connections to Pauli
theory in non-relativistic QM by introducing an EM potential:

pt— pt—eAt,  AF=(¢,A)

Substitute this into the Dirac equation:
(i0;—edp)y = (- (—iV —eA) + fm)y. (5)
Introduce the kinetic momentum operator ;t = —iV — €A, and let:
¢
X
10

where ¢ and j are 2-component objects. Now rewrite (5) using e = (2 ¢), f=(J %) and

R R
X o-TY X —X

T =—-iV-—eA




Remember we are looking at the nonrelativistic limit, so all energies <« m. We are con-
sidering only the positive energy solutions, so we can write:

= [)

By assumption, ¢ and y are slowly oscillating functions, so (6) gives:

e

Since 10:xll, llepx|l < I2mxll,

- T-2my=0< _or
X= X= 2m<P
——

O(v/c)

so yx are the small components of the 4-spinor relative to ¢. Insert this expression for y
into (7) and the top line gives:

(o-x)?
2m

i0rp = ( + e(p) ®. 8)

We want to simplify (o - 7).

(o-a)(o-b)=0;a;0;b
=a;broio
=aibr ikl + i€ik07)
=a-bl,+io€ea;by

=a-blh+io-(axb)
So (o -m)%=(0-m)-(0-7) =% +io- (7 x x). Note that 7t x 7 # 0, since 7 is an operator.

(7 x 7); = [(—iV—eA) x (—iV—eA)],
:eijk(_ivj - eAj)(—in— eAk)
=€ijkl(—Vij+ ieAij+ ierAk+ ieAij +62AjAk)

Since -V ;Vy, eZAjA;C and (ieA;Vy +ieA; V) are symmetric in j < k they vanish when
summed over j and k due to the antisymmetric ¢; jx;, leaving:

(kxm)i=ie€;jr(VjAg)
ie(V XA)l'
ieBi

2

= (0-m)* =1 —eo-B.

Using this expression in (8) gives the non-relativistic Pauli equation:

i0;p = —(—iV—eA)Z_io_ B+ep
= 2m 2m @



The equation contains a term which reflects the electron magnetic moment p:

The electron g-factor has been found experimentally to be ~ 2.0023. This deviation from
2 can be explained by QFT.

5 Covariance of Dirac equation

5.1 Lorentz group

Lorentz transformations are denoted by x* — x'* = A#, x". The Lorentz group consists
of those A under which the 4D scalar product,

xX-y= xﬂyu = xOyO -X'y= x,“g“vyv,
is invariant. We will use g = diag(1,-1,-1,-1).

What is the implication of invariance?

My, = A xV gy
= A”vag/.tpApUya
=x"y7 A"y gupAP o]

In order for this to equal x* y,, we require [A*, g,,, A" ;] = gvo. This can be written:
(AT)V,u gypApa = 8vo,
(where AT is the transpose of A), or, in matrix form,
ANgh=g. )

The Lorentz group is hence made up of all A which satisfy (9).

5.2 Observations

¢ Look atdetA:

det(ATgA) = detg
detATdetA=1
= detA =41,

since A has only real entries.



e Lookat g°:
(ATgA)OO :gOO: 1
= AMOngAp() =1
Expand the sum, noting that g, = 0 for a # f:

A%goo A% + Alogri Ao+ A%ogaa Ao+ A30g3sA3p =1
= (A%)2 - (A19)? =A% - A3 =1.

This means that (A%)? = 1, i.e. either A% =1 or A% < 1.

The two properties det A = +1 and A% > 1 or < —1 define four disconnected compo-
nents of the Lorentz group:

detA | signA | contains
b +1 +1 A=1
L' -1 +1 A=I
L +1 -1 A=1I
LY -1 -1 A=1,

I, is the parity transformation (x°,x) — (x°,—x), I, is the time reversal transformation
(x%,x) — (—x°x) and I; = Iso I;.

LL are called ‘orthochronous’ transformations since they do not change the sign of x°,
i.e. the direction of time. Usually only LL is discussed, since the others can be obtained
using I; and I;.

5.3 Transforming wavefunctions
We want to find the connection between a wavefunction as seen by observers O and O,
where x'* = A#, xV. How is an equation for 1’ related to an equation for ?
Consider the Klein—-Gordon equation:

0: (0,0 +m*)p(x)=0.

. 2 —

0': (8,0"+m)¢'(x)=0.

Note that m? is Lorentz invariant.

We use the Ansatz:

¢'(x) = F(NP)
= f(NPA X))

It turns out that 6;16’“ = 0,0, so we have:
0,0 + m*) ' (x') = (0,0" + m®) fF(NP(A™ x').

f(A) =11isasolution, so ¢ is a scalar field.



6 Gamma matrices

6.1 Definition

Define y° = S and y* = Bay, k = 1,2,3. This gives the property:

Yiy + Yyt =iyt vty =281 (10)
Verify:
e u=v=0:
e u=0v==k:
0.k , k. 0_
Yy +y'y = BPar+Parp
=ay+pPag)
:ak—ak:O:ZgOk \/
s u=v=k:
YerE+y*y* =2Baipay
=2(—arp)pak
= —2aif ax
=-2a2=-2=-2g" v
s u=kv=k#l:

Yy +yly* = BarBa; + Baifar
=-frara; - BPajay

= —(ak(xl +alak) =0 =2gkl v

6.2 Properties

ay and B are Hermitian. y° = 8 so obviously (y°)" = y°, and (y9)? = g% =1.

Since y* = pak,
0N =alp’ = af = —par=—",

i.e. yX are anti-Hermitian. (y%)? = BaBay = —ﬁzai =-1.
A useful form is:

Hooifp=0
wt_ ) 7Y 1y _ 0.0
") —{ b =k }—YYY- (11)

10



6.3 Explicit representation

Using our earlier choice of a and 3 gives:
(1 o [0 o
=lo <) T lior 0
7 Back to the Dirac equation

7.1 Alternate expression

We want to rewrite the Dirac equation in terms of y matrices.
(i 9 +ia-V ,Bm) =0
ot ¥=
(i B 9 +ifa-V m) =0
ot ¥=

(iy°00 +iy-V-m)y =0
(iyH0u—m)y =0.

This can be written in Feynman slash notation as (i — m)y = 0 where B = y*B,,.

7.2 Adjoint Dirac equation

.OwT_ oS
i~ =y'(ia-V+pm)

-

0 -
:w*(i&+ia-v+ﬁm)=0

wTﬁz(i%+ia-§+ﬂm) =0

Now define y = '8 = ¢/y°. So:

a(ﬁi% + iﬁa-hﬁzm) =0
W(y0i50+ iy-§+m) =0
Yy o, +m) =0
w(id+m)=0,

the adjoint Dirac equation.

11



8 Lorentz transformations

8.1 Formulation

Again we have observers O and O’ where x'* = A*, x". The Dirac equations for the ob-

servers read:

iy, —my'(x) =0 and (iy*d,—m)y(x)=0.

Use the Ansatz:
v'(x) = SNy (x) = S(A)W(A_lx')

S(A) must have an inverse to get from O’ back to O, so:

wx) =Sy (1) = S(A) Ly (Ax)
Y(x) =S Hy' ).

This means that S(A)™! = S(A™1). Also S(A1Az) = S(A1)S(Az), so S(A) defines a repre-

sentation of the Lorentz group.

(ig - myx) =0
SN GEF—m)SA™H SNy (x) =0
——
v'(x)
= (iSWY*S(A™Ha, —m)y'(x) =0

Note that:
P 0o ox" o
H7oxm ™~ axH axv
——
Ay

=0,=A",0,,

allowing (12) to be written:

(iS(MY*S(N)TTAY 0, - m)y' (x) = 0.

In order for this to match the Dirac equation, we need:

SWY*SWN TN =7,
ie. AV =S yVsW,

this is the condition on S which gives a covariant Dirac equation.

We find S(A) first for an infinitesimal Lorentz transformation A € LL. Write:

ANy= gvu +Aw' = (1+Aw)" .

12

(12)

(13)



(9) gives (dropping terms of O(Aw?) and greater):
Agh=g
> (1+A0) gl+Aw) =g
g+Awlg+ghw+00Aw?) =g
Ao g+gAw=0
Awt'y g + vuAwt ;=0
Awpy +Awyp =0
Awpy = —Awyp,
i.e. Awyy is antisymmetric under p < v. Since it is a 4 x 4 matrix, this means there are 6

independent parameters. These represent the 6 generators of a Lorentz transformation:
3 rotations and 3 Lorentz boosts.

Now write:
S(A) =1- Lo wAw™ + O(Aw?) (14)
S =1+ Lo Awt + 0(M0?),
0 uv is an unknown coefficient matrix. We can assume o, = -0, since any symmetric
part would not contribute when contracted with Aw*". Insert these into (13):
1+ Aw)" " = (1+ Lo )y (1+ topvAw™)
Y +Aw’ oyt =y + ﬁAwP‘T 0paY =Y 0p0)
Aw” yy* = ﬁ'AwP‘T [000,Y"]-
Post-multiply by vy, to give:
Aw yy!yy = iAwPU (oY Yv—""0psYv) (15)
What is y¥y,?
Y= 8wy Y = guu 28" = vy
=2gvu8 " = gvur"y”
YVYV = 2gvv - YVYV
Y'yv=8"=4 (16)
Claim: 05 = £[y,,70)-

This means that y¥ o Yy in (15) will contain a term ¥y, y5Yv.

Y YoYo¥v=""Yp(28pv—YvYs) by (10)
=2Y"Yp8ov =Y VpYvYo
=2YoYo =Y (280v = Yv¥p)Yo
=2YoYp =27 8vYo +Y YvYpYo
=2YoYp=2YpYo +4YpYo
=2YoYp +2YpYo

Y YpYoYv =480

13



Y'YpYoYv is hence symmetric in p < 0. The term y"0 5y, must vanish because of our
definition of 0. Combining this fact with (16) allows (15) to be written:

Ao yuyy = AP 40 4.

Note that Y,y = 3 [YuwYv] +3{ywyv} and that the latter term does not contribute when
contracted with the antisymmetric Aw®?, so:

A3 [y yv] = =380 [vp,70]
= _%Awﬂv [Yuva] = _%Awpo [YerU]-

Hence our claim is justified.

8.2 Lorentz boost
For an infinitesimal Lorentz transformation we can write:
6
Ao’y =Y A (1),
n=1
where I, are the generators of the Lorentz transformation. For example:

0 -100
: irection: IV, = | =1 000
* boost in x-direction: IV, = ( 0 0 00)

0 000
0

* rotation around z-axis: 1", = (8

0

For a boost in the x-direction, write Aw", = AwI", and set Aw = %. This gives:

x"V =AYt
= lim (g+%0) " (8+ K1) w8+ R ™ ayx™
— (ewl)vu le

——
AV

Since I3 = I, note that
I ifnisodd,

I? if niseven.

I"=

Using this in the expansion for e®! gives:

o0 n

w
=1+ ) —T1"
n=1 M
00 2n 00 2n-1
=1+1° +1Y ——
=en!  Zen-1)!

=1+ Iz(coshw— 1) + Isinhw.

14



Writing this as a matrix:

coshw —-sinhw 0 0

I —sinhw coshw 0 0
ew — AV# —

0 0 1 0

0 0 0 1

w is the rapidity. coshw =y = ,sinhw =y p and tanhw = B. So:

1
VP

x Yy -yB 0 0)(x
S -y oy o of]x!
| o 0 1 offx?
x'3 0 0o o 1/{x®

We want to find S for general w, based on (14) which applies for an infinitesimal Aw.

. N
1w
S= lim (H_ZNUMVINV)

N—oo

=exp (—iwayvﬂ“’), (17)

where MY = g"PI¥ , as usual.

S=exp(—Lw(oo I’ +010I')
=6Xp(—ﬁw(001 —019)
i
2
Since (igg;)? = 1, we can write:

iogy ifmisodd,
(ioo)" =
1 if n is even.

So, finally:
({3
v'(x') =exp (—5 1001) ¥(x)

w . . w
= (cosh 5 iog1 sinh 5) Y(x)

091 can be expanded:

—iog = _i%(YOYI —Y170)
=3(2yor1) = yon1.

This gives:
It w . w
Y (x)= (COSh 5 +voY1sinh 5) P(x).

15



8.3 Rotation

For a rotation around the z-axis, I ;2 =-1, 1;1 =1, and all other entries are 0. Using a
rotation angle of @ we obtain an analogous equation to (17):

=cos 5 —io2sing
. i . 0
Since 012 = 5[y1,Y2] = iy1y2 = (%3 03),
(pl(xl) — e%aay,()b(x)_
So a 47 rotation is needed to get back to ¢. This is an important property of spinors.

So for a rotation,
_i v
S(A) =e 17w,
where w*V is real with "V = —w"*.

t_

ol =CGlywr) =-Lylyil

Recall (11): ()ﬂ“)Jr = yoy“yo. This allows us to write:

T _
va =Yo0 wYo-
In other words,

Oy =

" ow ifu,v=123
—ouy ifp=00rv=0

This means:
SHA) =yoS(M)Tye, and S(A)T =705 1A,

since for any A:

¢ L= bu
(YoAY0)" =Y0AY0Yo AYo...=YoA" Y0,
~———
=1

A A
= eV = ype’yy.

8.4 Probability current

Recall the probability current:
=y yaw
= W'y, vTy'r*y)
= @Y v, vr*w
=yyty,

16



remember v* = Bay, B =", ¥ =vyTy,. So:
JHE =y ()P (x)
— wT (x,)YOY‘ul///(x,)
— ot T 40,1
v (x) SN yyTS(My(x)
=y0S71 (M)

=y (Y’ STHAYHSA) ()
—_—

=) =AkyY

So:
JH) = AR Y (x),

i.e. j# is a Lorentz vector field.

8.5 General bilinear form

What about a general bilinear form v (x) Ay (x) with an arbitrary 4 x 4 matrix A?
Observation:
Y (@) = SNy ) =¥ () =y xS HA)
=7 (X)Ay' (xX) — p(x)SHA) AS(A)w(x).

Any 4 x 4 matrix A can be expanded in a basis set of 16 matrices; one particular choice is
provided by the y matrices. Define:

ys =7 =iy’r'y*y’.

This has properties {y5,7/“} =0, ()f{’)2 =1and y; =7s.

This allows us to define 16 matrices:

rs=1 1)
T, =y (4)
Tl =ou =Llyuyy] 6)
T =ysyu 4)
" =ys. (1)

These have properties:
e I%2=+1,fora=1,...,16.
e For any I'* # TS there is a I'” such that {I'4,T'?} = 0.
o trI'%=0forI'*# T, since:
tr[T4TPT?] = tr[r? 19r? | = —tr[reréro).
——

—_Tbra

17



e Forany T4, I'?, a+# b, thereisaI®# IS such that [4r? = nl¢withn=+1, +i.
For example, if [* =y5y; =I'!, and Yl =0g = Fgl, rr? = iysyy = il"g‘.

e {I'“ are linearly independent:

16
Y Aal*=0=>2,=0 Va.

a=1
This means that any 4 x 4 matrix A can be written as a linear combination of I'“s.
How do ¥ (x)['%“w(x), a=1,...,16 transform?
o TS
e INTS N T -1
v Oy () =yp(x)S (DS ((x)
=y (x)y ),
I'S represent a scalar field.
* For I“,LV, a vector field, see j* in Sec. 8.4.
o TPy () sy (x) =9 (0 S~HA)YsS(A)y (x).
For a proper Lorentz transformation,

i

S = e_Zvaw“V, Y50 uv = OpvYs
= Y°S(A) = S(A)Y®

So,

Y Yy () =0T M SWY Y (x)
=y Y’y (),
just like a scalar field!
In general, E'(x’ )ysy' (x') = det Ay (x)ysy(x). TP represents a pseudoscalar field.
. E/(x’ Y3 yHy! (x) = (det A)AH, i (x)yy w(x). T4 represents an axial vector field.

. W'(x’ Yoty (x) = AH pNY o0 Poy (x). r’ represents an antisymmetric tensor field.

8.6 Parity symmetry

We want to find S(P), where P*, = diag(1,—1,-1,-1), the parity transformation. Since
det P = —1, P is not a proper Lorentz transformation. We know that:

S~LP)yyHS(P) = PH,y".

Take u=0:
SHP)Y's(P) = y* = y0s(P) = s(P)y°.

18



u=k:
ST P S(P) = —yF = y*s(P) = —S(P)y*.

These two conditions give:
S(P) =e'?y’,

where ¢ is an arbitrary phase factor. For convenience we set ¢ = 0.
We can now see how vy5 transforms under P:
¥ () ysy' () =0 S HP)ysS(P)y (x)
=y 0yysy w0
=y (Y’ =y )y (x)

==y @)Y’y ysy (%)
= -y (X)ysy(x)

Here a factor of —1 appears. In general the factor is det P.

9 Lagrangian density for free fields

All field equations (e.g. Maxwell, Klein—-Gordon, Dirac, Yang—Mills, etc.) can be obtained
from a minimum action principle, where the action is:

S= f d*x<
% is the Lagrangian density, commonly called simply the Lagrangian.

We make the assumption that £ depends only on ¢(x) and augb(x), and not on any
higher derivatives. ¢(x) can be any field component, e.g. Ag(x), ¥ (x), etc.

We vary the field: ¢p(x) — ¢p(x) +€6¢p(x), and require that §S[¢p] =

5S[¢] “f—es[¢+65¢]‘€:0
— f d*x L (Pp(x) + €0 (x),0,(x) +€0,5¢p(x))

0L
d*x [—5 — 0,0
f a¢>< yOPLI* a(éuqb( ) OHoP

Jous

=[50
op(x) ”a(aucp( )

02 0% _
0p(x)  Ho0up(x)

the field equation, or equation of motion for the field ¢.

8S[pl =0=>

’
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9.1 Real scalar field

For a real scalar field ¢(x),
L(x) = §(0u0(0)(0"¢(0) — ym*(p())°

ai—_mz()b(x) o) —
op(x) T Ha0,9(x)

So the equation of motion reads: (—m? —9,0")¢p(x) = 0, or (O + m*)Pp(x) = 0, i.e. the
Klein—-Gordon equation.

= 0,0"p(x)

9.2 Complex scalar field

For a complex scalar field ®(x),

L(x) = (0,0 (1) (0" D(x)) - M*D* ()P (x)

0%
0D (x)

0«

— _12d* =
=-m-®"(x), a“a(auqxx))

= 0,010* (x) = 0" (x)

So the equation of motion reads ((J+ m?)®* (x) = 0. Similarly, (O + m?)®(x) = 0. Since ®
and ®* can be treated as independent, one complex scalar field is equivalent to two real
scalar fields.

® can be defined in terms of real scalar fields ¢; and @2:

D(x) = = (1 (%) + ip2(x))

= 0" (x) = = (p1(x) — ig2(x))

1
V2
1
V2
This gives the properties:
(0,D%) (0" D) = %(ay%)(aﬂ(ﬂﬂ + %(6ﬂtp2)(6“(p2)
O*D = 31° + 2.

9.3 Spin-] field

L(x) =y (x)(id - my(x)

4
= Y Vo (id 5~ mSapyp0)
b=

a 1

So for each a,d

4
= Z (lﬁﬁ - maaﬁ)Wﬁ(x)
=1

p
= (ig — my (x).
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30 4 ()

These give the equation of motion:

(ig —m)y(x) =0.

In addition,

0L o
dypm
0,22 ___p i_ () iy"
FoGupp) i s
=0 (w(0)ir")
= (W(x)iy”)ﬁéﬂ

= GWify

These give the equation of motion:

V() (i + m) = 0.

9.4 Abelian vector field

L =—1Fn " + j AR,
where Fjy (x) =0y Ay (x) — 0y Ay (X).

0L vy o 0L _
oA T a6, A,0)

_apFPU

So the equation of motion is
0,FP7 = j°.

9.5 Summary

* The Lagrangian density must behave like a scalar field under proper Lorentz trans-
formations; d*x’ = |det A|d*x = d*x; so the action S = fd4x$(x) is invariant un-
derAelL,.

* The equations of motion obtained from ¢S = 0 are covariant; they take the same
form for all observers.

* For the standard model, we need the Lagrangians of spin-0 bosons (scalar fields,
real or complex), spin-% fermions (Dirac eqn.), spin-1 bosons (abelian vector fields)
and non-abelian vector fields (W*, Z, gluons)
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10 More on the Dirac equation

10.1 Free-particle solutions

(ig — m)y(x) =0.
This has free particle solutions given by:
v(x) = u(p)e P~
where u(p) is a 4-component fixed spinor. Since aue-ip = —ipue‘ipx, we have:
0=(if — mu(p)e”'P* = (f - m)u(p)e P~
= (f—m)u(p) =0.

To distinguish positive and negative energy solutions, go back to H = a« - p + fm, with
p=-iV.
Hu(p)=(a-p+m)u(p) = Eu(p)

where E is the energy eigenvalue.

When p = 0 this gives:

m 0 0 0
0o m O 0
Hu=pmu= u=Eu
0 0 -m O
0 o0 0 -m
This has two solutions with E = m and two with E = —m.
When p #0,
Hu:(m (r~p)(uA -F Uua
g-p —m up Uup

Note that this is a 4 x 4 matrix multiplying a 4-component column vector; u4 and up are
2-component spinors.

og-pup=(E—m)uy
og-pus=(E+m)up
10.2 Constructing a basis
We can construct a basis for solutions with E > 0:

1 0
) _ 9. ) _ @ _

u(s)_ g'pP (5
==
E+m

22



SoforE>0,and s=1,2:

(s)
(s) _ X
u=N| 4
(—”’%“’)

E+m

For solutions with E < 0:

(s) _
uBs —X(S)
0’.
= ul) = P
E-m
— TP
|E|+m
SoforE<0,and s=1,2:
—op ,(s)
4+ = [ EEmA
X(S)

Solutions are orthogonal: UM Ors

10.3 Helicity

Within each pair of solutions, one distinguishes spin (up vs. down) by the helicity oper-

1_ . 1(a-p 0 )
X P=7 R
2 0 o-p

ator:

where p = pl*

Since [Z-p, H] =0, helicity is a good quantum number.

2 -A -A
(lz-f)) _1((e-p)a-p) AO -1
2 4 0 (0-p)(o-p)

So %Z -Pp has eigenvalues i%, the possible helicities of the particle.

10.4 Interpretation of negative energy solutions

So far, we have attempted to obtain a relativistic wave equation with 1-particle wave-
functions and a probability interpretation as in non-relatvistic quantum mechanics.

With the Klein—-Gordon equation we defined the probability current:

JH =i o p—po"dp™) = (p.j),
and the free-particle solution ¢ = Ne 'P* gave j* = 2p*|N|> = p  E. For E < 0 this
gave p < 0 and so the Klein-Gordon equation was abandoned.
With the Dirac equation,

F=vrty =,

so p = yy'w = w'y%y%y = yTy > 0. There are no more negative probability densities,
but there are still negative energy solutions!
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Energy Dirac’s solution was to use the Pauli exclusion principle

>

and assume that all negative energy states are filled with
electrons; the “Dirac sea”.

When an electron with negative energy —FE is excited to a
state with energy E’ > 0, the result is:

0 * an electron with charge —e, E' > 0

-m ¢ the absence of an electron with charge —e and en-
L O— ergy —E <0.

—— Interpret the latter as the presence of an antiparticle with

ottt |

<

charge +e and energy E > 0.

Figure 1: Pair production
& P The net result is hence the creation of a pair e (E') +e™ (E)

with E + E' > 2m. Dirac predicted the existence of the
positron in this way in 1932; it is an acceptable (if out-
dated) theory of spin—% particles.

In 1934 Pauli and Weisskopf revived the Klein—-Gordon equation by reinterpreting the
probability current as charge current density:

jH=—ie(@ 0 p—porep),

so having p < 0 is not a problem.

11 Feynman-Stueckelberg interpretation

11.1 Motivation

Dirac’s interpretation of negative energies works only for fermions. What about bosons?

The Feynman-Stueckelberg interpretation treats a negative energy solution propagating
backwards in time as identical to a positive energy solution going forwards in time.

11.2 Example

Consider the scattering of a n* particle and n~ antiparticle by a potential V:

Both time orderings seen in Fig. 2 must be taken into account. In each case the initial
and final situation is identical. The second case, shown in Fig. 2b, can be interpreted as
shown in Fig. 3, as the creation of a n* 1~ pair by one potential, and the absorption of a
7t 1 pair by the other potential.
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(@) (b)

Figure 3: The Feynman-Stueckelberg interpretation of Fig. 2b

11.3 Currents

Consider the electromagnetic current for a positive-energy n*:
jkm(@™) = +e x (prob. current for n*)
=2|NJ*pH
= 2|NI*(E, p)
The current for a n~ with negative energy is:
Jem() = —ex 2INI*p#
= —2¢INI*(E,p)
= e2|NI*(=E,-p)

_ o+
_]em(T[ ) pﬂ—»—pﬂ

Consider a system A with pi and charge g4 and the emission of a n~ with E > 0. This
can be represented in either of two ways shown in Fig. 4.

pa and g4 change as:
plhy = Pl —pt ) = ph+ (pi).

qA—>qA—(—e):qA+e.

The emission (absorption) of an antiparticle of 4-momentum p* is physically equivalent
to the absorption (emission) of a particle with 4-momentum — p*.
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T -
E>0 -E<0

vy a

(@) (b)

Figure 4: Two representations of the system A

12 Electrodynamics of spin-0 particles

We consider 1t and K particles as elementary particles and interacting only electromag-
netically (although this is highly unrealistic).

Recall time-dependent non-relativistic scattering theory, and the Schrédinger equation
for a free particle:

HO(;bn = En(/)n;

where {¢, $1, ...} form an orthonormal basis:

@b = [5G0 P8 =G
Our aim is to solve the Schrodinger equation for a particle in the potential V (x, #):

0y
(Ho+Vx 0y = ZE (18)

Expand:
Y=Y an(t)ppx)e Ent

n=0
and insert into (18):

Pnx)e ' Ent

Y an(OVE, pp@e Lt =iy dc;;(t)

Multiply this by ¢ ; (x) and integrate.

t ,
fd3xzan(l‘)(,bf(x)V(x Dppx)e iBut _ ;t( ) Bt
dars(t |

Lz;t( ) = —izan(t)[d?’X(l);(x) VX, 1) P x) o~ i(Er—En)t
7

Assume at ¢ = —% the system is in state i:
ai(-3)=1, a,(-1)=0 vn#i
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d .
% (_%) = —ifd?’x(pjl(x) V(pi(x)el(Ef_Ei)(T/z) 9

Assume that the potential is small, so there is no perturbation of the initial state up to a
0™ -order approximation.

Integrate (19):

t
ap(t) =—i / dt’deX(P}(x)Vdn(x)ei(Ef—Ei)t’
-T/2

At t = T/2, after the interaction,

Tyi=as(3)
T/2
= f dtfdgx[gbf(x)e_iEft] Ve 0 [gieoe B,

50 i ()

where x = (£,%). So a covariant form for Ty; is:

Ty = —ifd“x(p;(x)v(pi(x).

12.1 Interpretation of T;

Consider a time-independent V (x).
T/2
Tri=—iVy f dre "Bt
~T/2
with:
vfizfd3x¢;(x)V(x)¢i(x).
Look at the limit as T — oo:
T/2
dte " Er-E)t . on§(Ep - Ey).
~T/2
Soas T — oo, |Tf; 12 ox “52 (Ef— E;)”. This is not well-defined! 7 But we can define:

W= lim |7y [

. T/2 2
=|Vfi|2Tlim (? f dte"'(Ef‘Ef”)
—00

~T/2
/2 .
e | v [ 1 o
= |Vyi|® lim (f dte“(Ef‘E’”) lim (— f dte i Er EJ[J
T'—o0 T—oo| T
T2 -T2

T/2
— 2 ; 1 —i(Ef—E)t
= | Vi 2ﬂ5(Ef—Ei)TlErc>lo(? f dte Er )
-T2
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Now because of the delta function, we can set E r=E;in the integral, since 6 (E r—Ei)=0
when Ef # E;. The integral simply reduces to T, giving:

W = |Vyi|* 228 (Ef - Ey).

12.2 Fermi’s golden rule

We have an initial state specified and a set of final states. Let p(E ) dE  represent the
number of final states with energies between Ef and E¢ + dEy.

Wy = ZEdefp(Ef)|Vfi|26(Ei —Ep)
Wy; =2mp(E)IVpil*.

This is known as Fermi’s golden rule.

12.3 Determining T;

Use the Klein-Gordon equation (0,,0* + m?)¢ = 0 and couple to an e.m. potential A* =
(A% A) through the substitution p* — pH + eA* (the particle has charge —e.) In other
words i0* — i0* + e AV,

So:
[0 — ieA) (@ —ieAM) + m?] ¢ =0
gives:
0u0" + m*)p=-Ve,
where:

V=—ie(@u A" + AFO,) — e* A, AP,

Note that V is an operator acting on ¢, and 0, A*¢p = (0, A*)p + AH(0u¢p).

. 2 o L
Since a = - = %7, organise interactions in powers of e. Neglect the e? A, A* term.

Tfi = —if(/);i(x)V(x)(pi(x) d*x
= —ef¢>; (x) (AH0, + 0, AM) ;i (x) d* x

This can be integrated by parts:

f P30u(AFP) d x = - f Oup) AFp; d*x.
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12.4 Currents

Now we can define j such that:
nfhdfﬁ%mAWmd%.
This requires: ‘
ji 0 = ~ie(@70upi — 0upPbi)

the electromagnetic transition current for i — f.
The free particle solutions are:

¢i(x) = Nje 7™

¢f(x) = Npe 'Pr¥,

which gives:
j;];l (x) = —eNiN}‘ (pi + pf)e’(pf—Pi)x

To determine A, we solve the Maxwell equation: 0,F""(x) = j¥(x), where j¥(x) is the
electromagnetic current produced by a K™:

JV ) = —ie(¢10" s~ @ p;)p2)
= —eNy Ny (2 + pa)’ e PP
Using the Lorenz gauge condition d, A¥ = 0,we can write:
0, FH =0,(0" AY — 9" AF)

=AY -0"(9,4H)
=AY

So the Maxwell equation reads simply:

OAY (x) = j¥ (x).

Using the fact that (e’P* = —p?e’P¥, so this is easily solved:

A'(x)=- (—e)NzN: (p2 + p4)Vei(P4—P2)X

(pa— p2)?

1,
- " (x
(P4 —Pz)zj )

— l'V
——Ey(m,

where g = ps — p», the 4-momentum transfer.

Now,
Te: = —i fi 1 i, 4
fi= = Ju (O | =z (KT5x) d*x
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Label i — 1 and f — 3, giving:
T= —ifjﬁl(x);—;jfz(x) d*x
= N1 N3 N> Ny fd‘lx(—i)e(pl + p3);—218(p2 + pa)H @' PaPIX gl (Pa=pa)x
Recall that [d*x e'P* = 2m)*6™@ (p). So:
T = 2m)*6" (p1 + p2 — p3 — po) N1 Nj NoNj (—i L), (20)

where ./ is the invariant amplitude, defined such that:

_ 8y
1=

—idl = [ie(pr+ ps)]

[ie(p2+ pa)]
The second term here is the photon propagator.

The process can be described using a Feynman diagram as in Fig. 5. The arrows on lines
follow the flow of electric charge.

A

r

Figure 5: Feynman diagram for n™-K™ interaction

12.5 Observations

¢ 4-momentum is conserved at each vertex. At vertex 1,
p1+(=p3)+(-q)=0
>p1—-p3=q
At vertex 2,
p2+(-pd)+g=0
> ps—p2=4g

Combining these shows that p; — p3 = ps — p2, i.e. p1 + p2 = p3 + pa, which is en-
forced by the 6 in (20).

pV
 Each vertex ¢p ¢y gets a factor: >\AA}‘ =ie(p+pHt, LMV = —%, the
p q

photon propagator in the Lorenz gauge.
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13 Scattering

13.1 From scattering amplitude to cross-section

Tiz—34 = 21)*6® (p1 + p2 = p3s — p) NI N; N3 Nj (=il
This is the transition rate per unit volume per unit time.

The normalisation condition that we will use for the probability density p = 2E|N|? is:
f pdV =2E,
4

i.e. there are 2E particles per volume V. This gives:

N=N"= !
vV’
allowing us to write:
| T12-34]°
Wiggg = ——— 21
1234 TV 21)

1
= W(zn)‘*a(‘” (p1+ p2—p3—pal ).

The (6®)? which appears in expanding (21) is dealt with exactly as in section 12.1.

Wiz—34
initial flux
so we need to find the number of final states and the initial flux.

Cross-section = x no. of final states, (22)

There are 2E particles per volume V; in a finite V the number of states with momentum

inp,...,p+dpis:
v 3

(2n)32Ed p-

So the total number of available final states is:

Vdips Vdp,

(2m)32E3 (2m)32E, (23)

To find the initial flux we use a frame where particle 2 is at rest. The number of beam
particles passing through unit area per unit time is:

2E,
V|- =—,
Vil v
where V is the velocity and 2—5‘ is the particle density. The number of target particles

per unit volume is:

2E,
v
So the initial flux is:
E_ vy 22 "
V2 vV Vv



So using (23) and (24) in (22) gives:

d® P3 a? P4

do .
(2m)32E3 (27)32E,

@m)*6™ (p1 + p2 — p3 — pa) |4 )P

= (25)
4E1E, V4]

[do] = area; do is the effective area over which particles 1 and 2 interact to produce

particles 3 and 4, whose momentaliein ps, ..., p3+d°p3 and py, ..., ps+d°>p4 respectively.

(25) can be written as:
do = % |.#|* dLips (26)

where “dLips” is the Lorentz invariant phase space factor:

d’ps d*pa
(27’[)32E3 (277,')32E4

dLips = 2m)*6™W (p1 + p2 — p3 — pa) 27)

F is defined in (24) as 4E; E»|V;|. This is not manifestly Lorentz invariant, but by noting
thatp; =y1m;Vy,and y; = 51—11, we can write:

1/2
F=4[(p1p2)? - mim3] (28)
an explicitly Lorentz invariant form.
3
Are the terms (27‘:)% in dLips Lorentz invariant? Write:

d4p 2 2
f(ZT)L@mS(p -m*)0(po) f (p)

[ dp [dp° 02 2 0
= (Zn)gfgﬂ(p )2 —E*)0(p°) f(p)

(29)

where 6 is the Heaviside step function. The § term can be expanded as:
1
— |6(po—E)+6(po+E)
210 [6(po po ]
1
=—|6(po—B)|,
20 [6(po - E)]
since we define E = y/p? + m? = 0. Hence (29) can be written as

d®p
f(2n)32Ef(E,p)

and so the terms are Lorentz invariant.

E=\/pTenE

13.2 Elastic scattering 1,2 — 3,4

We will focus on the centre-of-mass system (CMS); see Fig. 6.

Since we are in the CMS, p; + p2 = 0, so let p; = —p2 = p, similarly p; = —p4 = p’. So we
can write the 4-momenta:

py = (E,p), ph=(Es-p), ps=(Esp), py=(Es-p).
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Figure 6: Elastic scattering in CMS

Since we are dealing with elastic scattering, the initial and final states contain the same
particles, so |p| = |p’| = p. Hence:

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Ey=p°+mij, E;=p°+m;, E3=p°+m3=p°+mj, Ej=p°+my=p°+m;.

The expression for dLips in (27) contains p4 explicitly. This is eliminated by integrating
so that only the 0-component of the 6 remains:

—— 0"V (p3+pa—p1—p2) = —06(E3+Eys—E1 - Ep), (30)
E4 E4

where E; on the right-hand side is determined by E4 = \/p3 + m3 and ps = —p3 + p1 + P2,
i.e. itis no longer independent.

We can decompose d° ps = |p3|? d|p3| dQ. Since E§ = p% + m%, this gives:
EsdEs = |psl|dIpsl.

So using this and (30), we get:

1 E3 dE
dLips = dQIpSl 3773
(4)? Ey

6(E3+E4—E1—E2) 31

where dLips now refers to the original dLips integrated over py.
Now, bearing in mind that in the CMS E3z dE3 = pdp = E4 dE,, define:
w' = Es+E,4
=>dw =dE;+dE,

=(&+&)pap
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This gives, defining w = E; + E»:

E
fp%a(E3+E4—(E1+E2) f ’4p6(w w)
4

P
e

13.3 Mandelstam variables

At this stage it is convenient to introduce Mandelstam variables:

s=(p1+p2)*
t=(p1— P3)2 = 672
u=(p; — pa)*

Note that s = (p1 + p2)? = (E1 + E2)?> = w? in the CMS, so w = /5.
So by using (32) in (31) we can write the convenient expression:

p

1
dLips = ——dQ—,
PS= a2 s

where again the integration has been absorbed into the definition of dLips.

13.4 Fluxfactor

In (28) we defined:
F=4[(p1p2)* — mi{m3] e
Using the fact that:
p1p2=E\E;—p1-p2 = E1Ex + 7,

we can expand:

=16[E{ E; +2p" Er By + p* — mm]
=16 [(p* + m?) (p* + m3) + 2p*E1 E» — m>m5 + p*|
=16[2p* + p*(m{ + m3) + 2p”E, B |
= 16[p2(p? + m? + p* + m2) + 2p*E1 B
—_— ——
=E? =E}
=16p*(E; + E»)?
= 16]928
= F=4py/s.

34

(32)



13.5 Putting things together

Now we can rewrite (26):

1
do = — |4 % dLips

1 p 1
= — aQ
4] 1672 \/s 4py/s

This gives:

d 1

a9 = | ?
dQ|cy 64712s

We can use ¢ = g as a variable, so that % is independent of reference frame:

t=q"=(p1—ps)°
= p} + p5 — (2 E3 —2p; - p3)
= 2m§ - 2(;92 +m?)+ 2p2 cosOcm
= —2p2(1 —cosfOcm)

= dt=2p*d(cosOcym)

dQ can be expanded:
dt
dQ=d¢d(cosOcm) =dp—.
¢pd(cosbcm) =d¢ 27
Since these are spinless particles there is no ¢ dependence:

1 dr 1 drt
do = f— | dp— = lH)? =
6471%s 2p?  64ms p?

Use F? = 16p°s:
do 1 1 2

dt  64n (p1p2)? - m%mg

’

a Lorentz invariant form!

14 External spin-1 particles

14.1 Massive particles

For example, vector bosons, W*, Z0, etc.

For a massive spin-1 particle, M # 0 so we can go to the rest frame. A spin-1 particle has
3 polarisation states, one particular basis is:

1 0 0
€e1=|0], €e=]|1], €=]0
0 0 1
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Or, we can single out the z-axis to obtain a more common basis:

1 1
1 1
eEA=1)=—-—|i|, eA==-1)=—|-i], eA=0)=
ﬁ(’) NG Ol

- O O

These represent left circular polarisation around z, right circular polarisation and longi-

tudinal polarisation along z respectively.

This basis is orthonormal: €(A)-€(1) =6y for A =-1,0,1.

To construct the corresponding 4-vectors e# (1), sete®(1) = 0 in the rest frame, and define

et () = (), e()).
In the rest frame, 4-momentum g* = (M, 0) so g,e" (1) =0.
For a boost in the z-direction,

xH= A xY

x0=y(®+ pxd)

x® =y + BxY)

x/l — xl' le — x2,

so the e transform as:

eEFA=+D)=etA==1)
e*(A=0)=(yp,0,0,7) = 3;(pl,0,0,E),
usingy = %, B= %, YB= %.
The 4-momentum transforrns as:
q" = (yM,0,0,yfM) = (E,0,0,|pl)
(33) and (34) give the relation:
que* = 0.

The completeness relation for {e#} is:

Y. efp Ve (p,A) =g +
A=0,+1

and is needed in calculating |.#|? with external spin-1 particles.

14.2 Massless particles

For example, v, etc.

The Maxwell equation is:
0,F"Y =0AY -3%(0,A") = 0.
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15 Gauge invariance and the gauge principle

15.1 Invariance of Lagrangian

The electron-photon Lagrangian is:
LX) =yx)([if +efd(x) - my(x) - 1 Fuy () F* (x)
Just like in QM, this % is invariant under the combined transformations:

w(x) — W'(X) — eiw(x)w(x)
T — P (x) = e “Oy(x)
Ap(x) — AL (x) = Ay(x) + 0,0 (%)

This is easily verified. For the first term:
V' (0 id+ed )y () = () e COyH [i0, + e Ay(x) + 0,0 (x)] Py (x)
=y (x)e Oy [—auw(x)ei“’(X) +eMid, +eA,(x)e"™W +
+ O“w(x)ei‘”m] '™y (x)
=y (x)yH(id,+eAu )y (x). v
For the second term:

Fpp (%) = 0 A7, (x) = 0y A, (%)
=0, Ay (x) = 0y Au(x) + 2 (0,0, w(x) — 8,0,0(x))
=0, Ay (x) =0y Apu(x)
=Fu(x). v

'™ e (1), the unit circle in the complex plane, so this is called a U(1) gauge theory.

15.2 Inverting the logic

Now we start with the free Lagrangian density:
LX) =y x) (g - my(x)

which is invariant under v — e/, ¥ — e~ "% with constant w — a global U(1) invari-

ance.

Now promote this global invariance to a local one by replacing w — w(x). The free £ is

not invariant:

Y@ (id - my(x) — yx) (id — Jo(x) - m)y (x).
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This is because, for w = w(x), in general:

Oy A~ €0,y

So introduce the covariant derivative: D, =9, + iq A, (x), and demand that:
ify(x) — eYy(x), Duy(x)— YDy (x). (35)
What does this imply?

O+ gAY (x) — Oy +iq ALY (x)
= '™ (0, +i(0,w(x) + ig A, (x))y (%),
= e (3, + iqAu(x0) w(x).
= i0,0(x) + iqA,(0) £ igAu(0)

— A;t(x) = A, (x) - %Guw(x).

So (35) determines how A, transforms.

15.3 Conclusion

We may convert the global U(1) symmetry of the free £ (x) to alocal one by introducing
a gauge field A, (x) with interacts with the fermion. The same approach can be used for
complex scalar fields.

15.4 An observation

DDy (x) = 0y +iqAu(x)) 0y + iq Ay () (X)
=040y +iqOuAV) +iqAB, +iqAudy — G* AL Ay| ().

Note the symmetric terms. Taking the commutator gives:

[DuDy 1y (x) = iG@0y Ay — 0,)w (x)
= iqF ().

Since there is now no d acting on v, this can be taken as a definition of F,:
va = [D,uy D,].
15.5 Non-abelian symmetries
Suppose ¢ has 2 components, e.g. a proton and a neutron:
Yp
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where ¥, and y, are Dirac spinors. The free Lagrangian is:
L=y, v .
& p)( 0 ’?"mr’) (‘//P)

SU(2) is the non-abelian group of complex 2 x 2 matrices U with UTU = 1, detU = 1.
When m,, = my, = m, £ (x) has a global SU(2) invariance:

v(x) — Uy(x)
w(x) —yx)U'.
T
— — [Un U [ig—-m 0 Un Ui2|(vn

Or, in a more compact notation,

Lx) —yUtig-mUy
=wU'UGd - my
=yig-my=2Lx). v

Now we render U local: U — U(x). This gives:
0uy (x) — 0 (U (xX)y (X))
=0, UX)y(x) + U(x)0,y(x)
So, using the gauge covariant derivative: 0, — D, =0, +igAyu(x),
Dyw(x) = Ux)Dyy(x)
O +igAu(xX)w(x) — |0,UX)+U(x)0y + igA;l(x) W(x)
LU0y +igAu ()W (x)

= A,(x0) = U@ AU (x) + ,iU(x)a#U‘l(x).
ig

Note: 0,(UU 1) =0,1=0, so we can use (0,U) U + U3, U™ =0.
Suppose Ay (x) = 0. Then:

A (x) = éU(x)ay U (x). (36)
Any U € SU(2) can be written:

3 T“
iy at(x0)—
a=1 2
3 Ta
~1+i) a®(x)— asa—0
a=1 2

U(x) =exp
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Similarly:
a

3
T
Ut ~1-i) a*(x)—.
a=1 2
Here a?(x) are real numbers, and 7% are the Pauli matrices — a basis for SU(2).

NB:

a

izaﬂ(x)%] ( Y dua —)exp

because the 7% do not commute.

Za (x)—]

0y exp

But we can use:

1
OueM:[dseSMauMe(l_s)M
Now look at A;L in (36).

1 a b
Ap(x) = — (1 + ia“T—)aﬂ (1 - iabT—)
ig 2 2

1 b
=— (—iauab(x)r—)
ig 2

1 Té
= —gaua“(x)y,

up to O(a?). So A;l is Hermitian and traceless.

In fact, this can be obtained without using an explicit representation for U:

1
A= —e_Md eM
ig
1

=i dse DM@ Mel=-9M
lg

1
= Al = —,—fdse(l_s”mauMJre(S_DMT
g

1
Y P,
ig H

1
1
ra)= 7 [ ds tr(e“ Mg, Mell=9M)
1
1
= —tr(@,M) =0
ig

An SU(2) gauge field A, (x) is a traceless Hermitian matrix field. This means that for each
x, Ay(x) € su(2), the Lie algebra of SU(2).
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A Lie algebra is a linear vector space combined with a Lie bracket — a commutator. A
basis for this Lie algebra is T = %, a=1,2,3. The scalar product (7%, Yy =2tr(TeTY) =
6 ab-

The Lie bracket [T%, T?] = i f*¢T¢, where f%’¢ are real constants called the structure

constants. We know that:

b c
. T
— leabc

2

’

Td
2’

T
2

so for su(2), f4¢ = eabe,
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