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3.8 Addition of angular momenta



Chapter 1

3D Potentials

1.1 Introduction

In 3D,
_— _',
H= > V —|—V(r)

or, in spherical coordinates:

b h2(1aza 1 0 . .9 1 32>.

“om \ 2o or T 2sin090 "M% T 2ein2 0 092

The orbital angular momentum operator, L, is:

f:?xﬁ:?(?’x@).
Using:
L—Ei and
Z_Z-a(Pl
12 1 92 1 o 0

2 sinf009? Sin@%smeﬁ'

H can be written as: )

2
H=Fr g

- 2m + V(V, 9’(P)’

2mr?

where p, = (1 + 2.
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1.2 Notes
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/d3r Pp Y = /dQ /1’2 arp*p.yp
0
= / dQ / 2 dr (p,)*y, for suitable boundary conditions.
0

Therefore, while ?% is not Hermitian, p, is Hermitian.

3. H takes the same form as the classical Hamiltonian:

g_po, L

 2m 2mr?

+ V(7),

where p, = mi and L = mr?0.

1.3 Central potentials
Suppose V(7) is central, i.e. V(¥) = V(r). Then:
[L%,H] = [L,,H] = [L,,L*] = 0.
Thus, we can choose simultaneous eigenstates g, of L?, L, and H such that:
Htppom = Eeom,  LYrom = W00+ D) Ppom,  Lopon = mhtprp,.
Factoring the 7 out of L% and L., and renaming, gives:

by P L2
2m  2mr?

+ V(r).

Since V(r) is spherically symmetric, we can separate r from 6 and ¢ in our expression for
Y. We let gy, (7) = Ree(r) Yo (60, ¢) where the spherical harmonics Yy, satisfy:

L%y, = L(L+1)Y,,
LZYEm = mYZm/

where/ =10,1,2,...andm = —¢,—¢+1,...,1L.

Note: The quantum numbers for ¢ and m are a consequence of the algebra of angular mo-
mentum, i.e. [Ly, L, = L (+ cyc.). See later.
The Schrodinger equation for the radial eigenfunction Rg, reads:

<p3 N R0+ 1)

2m 2mr2 + VU)) Rg¢(r) = ERgy(r), or:

2m r2dr dr r2 Re(r) = ERp(r).

[hZ (_Wrzdﬁ(“l))juvm
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Since Yy,,s satisfy:

2 T

/ d¢ / 46 Sin6Y:, (8, §)Yim(6,$) = 6110
0 0

the bound-state normalisation condition:
/dsr [Yeem(P))? =1

reduces to:
[ee]

/r2|REg(r)\2dr ~1.
0

If E lies in the continuum part of H’s spectrum, then set

[ee]

/rsz%(r)REg(r) dr = 6(E — E).
0

Let Rpy(r) = Y2U) Then Uy, satisfies:

r

i a2 i +1
<_+(+)

2m? dr2 72 ) + V(}’) uEZ(”) = EUEE(T).

Note: This is equivalent to the Schrodinger equation in 1D, with x = r > 0, and effective
potential given by V() + %W;{l).

The Hermiticity requirement:

/d37’ l/JE/g/m/HlPEgm = /d31’ (Hl[JE/g/m/)*lﬁEgm

T8 T PUe
/uE’éﬁuEf dr = /( d7’54> uEg dr.
0 0

reduces to:

In other words,

=0.
0

% dUEg du*/
(e~ St

A sufficient set of conditions for this is:
o Ur(0)=0
o UL, (0) = finite
o Ugy(o0) = Upy(e0) =0
Note: The Schrodinger equation for U and R = U/r are 1D problems with » > 0. In 1D,

none of the bound states of V(r) are degenerate. Therefore, bound-state wavefunctions U and
R may be assumed to be real.



1.4 The hydrogen atom

Consider the hydrogen atom with potential:

2
e
V(ir) = ——.
(n=-°
Then,
h? 2 (e+1)\ e
lzm (_dr2 2 > - Uge(r) = EUg(r).
The effective potential is % W;{l) — %, which has a bound-state spectrum for E < 0. Hence,
we assume E < 0 and look for bound states.
Let:
.o nh?
= 2me2”
__1me
- 7’12 2h2 4

where 1 and p are dimensionless.

2 n 1 LU+1) B
<d7’2+p_4_ pz )uEZ(p)_O‘

This gives:

Wpﬁl)
that behaves like p'*! as p — 0.

For p — oo, U}, ~ %Ugg, so Ugy ~ e . So we seek a solution that behaves like ¢e=*/2 as
p — oo because we need it to be normalisable.

Hence, we make the substitution Ug,(p) = p'*1e=#/2w(p). Then,

Forp — 0, Ug, ~ Ugy. Therefore, Ug, ~ Apg+1 + Bpfg. Hence, we seek a solution

+p/2

pw"+ (20 +2—p)w' +(n—0—1)w=0 (1.1)

We seek a solution of (1.1) which is finite at p = 0 and which satisfies

/ Ug, < oo
0
Solutions are of the form:
w(p) = " L
=0

Substituting this into (1.1) gives:

() (a+j+1+20)a 7 =Y (a+j+€—majp "
j=0 =

agk

Equating the summands with j = 0:
a(a+20+1)ay=0=a=0 or a=-2L

7



ap is arbitrary.
We select « = 0, so when j > 0,

](] +1+ 26)11]' = (1 + 40— Tl)lljfl, or:

j+{—n
=l 12
Y120 12
Note that as j — oo, a; ~ ‘lf]—fl, so w(p) ~ ef as p — co. This would give Ug,(p) ~ p'*lef/?
which is not normalisable! This means the series must terminate; this happens only if n =
1,2,3,...since/ =0,1,2,...and j =1,2,3,...

This means:
1 me*

T o

n =

wheren =1,2,...
Energy levels are degenerate except for n = 1 (the ground state):

n=1=¢=0, n=2=¢=0,1, n=3=/¢=0,1,2;, etc

Foreachn, ¢/ =0,1,...,n—1. Foreach {,m = —/,...,{. So the degeneracy of E, is:

n—1

Y (20+1) =n?
=0
Degeneracy with respect to m is obvious because of invariance of H under rotation about
the origin. Degeneracy of states with same n but different ¢ is peculiar to this particular poten-
tial however.

1.4.1 Hydrogenic wavefunctions

Recall that ey (r,60,¢) = Reo(r)Yen(8,¢), Reo(r) = %4 and Ug(p) = p'le /2w (p). We

r
will derive explicit expressions for i forn =1 and n = 2.

The series expression of w from (1.2) gives:

ao, n=1,£=
w(p) = qao(l - zp), n=2,¢
ao, n=21/0=
Thus,
Uy o = appe p/2
Upo = 3 (2—p)pe P12
Uy = agpze p/2
Recall:
. nh? n
2me2l = 2

where a is the Bohr radius.



Thus,

Ryg = crpe /"

R20 = C20<2 — Z)efr/Zu

Ry1 = cpyre /%

Normalising so that fooo rZRi pdr =1,

RlO - 32 e—?’/ll
1 r
R ( o 7) e—r/2a
20T 0V2a32 a
r —r/2a
21 e
21/6a3/2

Yuem (F) = Ryyo (7)Y (6, ¢) is the complete wavefunction.

1
Yoo = ——
00 47
3
Yio = 1/~ cos 6
10 47‘[COS
3 . +ig
Y]i]I:F QSIHQE .

MISSED LECTURE: 26 JANUARY 9:00

1.4.2 Example

Estimate E for:

hz
H= —%vz + Br
where > 0.
Solution:
£ < WIHY)
($ly)
n o 3L

WIHIp) = o+ 2= = (1)

1.5 Peierls’s theorem

Let uj, u,...,uyn be a set of orthogonal functions, and let Hyy, = (uy|H|uy). If {A;} are the
eigenvalues of the N x N matrix H;, arranged in ascending order (i.e. A1 < A, < ... < Ay),
then:

Ey <ALEy<Ay...,En <An.

That is, A; is an upper bound on the ith eigenvalue of the Hamiltonian.

9



1.6 Identical particles and symmetry

The Hamiltonian for a system of n identical particles is completely symmetric under particle
exchange. For example, the Hamiltonian of a helium atom is:

o, W, 28 2 e?

H=—— — = =
2m ' 2m 2 &1 2 |71 — 72|

Let ¥(1,2,...,n) be any solution of the Schrédinger equation which depends on the coordi-
nates — spatial and spin - of n identical particles. Let P;; interchange particles i and j. Then:
P;HY = HP,;¥Y = EP;Y.

For a general ¥ which is a solution to the Schrédinger equation, P;;'¥ # const. x ¥, i.e.
exchange degeneracy. But nature favours nondegeneracy, and we have:

Pj¥ = +Y,

with + for bosons: particles with integral spin (e.g. photons, mesons), and — for fermions:
particles with semi-integral spin (e.g. protons, electrons)

1.7 Examples

1.7.1 The helium atom

To estimate the ground-state energy of a helium atom (which has 0 total orbital angular mo-
mentum) we will select a trial wavefunction for each electron, built from hydrogenic wave-

functions: 3
Z 1
P100(r) = (> —=e 7

i) V=

where Z is an adjustable parameter. This gives:

(P100]¢100) = 1

forz > 0.

Here, a is the Bohr radius and Z is the effective nuclear charge seen by an electron. Due to
screening effects, we expect 1 < Z < 2.

We introduce trial wavefunctions:

Py = P100(r) (é) P, = P100(r) <2>

The trial wavefunction must be antisymmetric under exchange of electrons 1 and 2:
¥(1,2) = -¥(2,1).

If we put both electrons in g, their spin states must be different, so our trial wavefunction is:

¥(1,2) = ’7”100(1)‘/"100(2)\}5 Ké)l ((1)>2 - <(1)>1 ((1)> 2]

= —¥(2,1).

10



Also,
/ ¥t (1,2)%(1,2) Py dPry = 1.

The wavefunction can also be written:

¥(1,2) = —

N

Helium’s Hamiltonian is spin-free, so:

(YIH[Y) = /d3T1 d°r2 P00 (1) P00 (2) Hproo (1) r00(2)
= f(2).

We minimise f with respect to Z to obtain:

Ey < f(Z2)

Z=7

This works out to be Ey < —77.5 eV; compare this to the actual value Ey = —79.0 eV.

1.7.2 The lithium atom

In order to estimate the ground-state energy, we construct a trial wavefunction ¥(1,2,3) from

3 2 2 2 2 2
H:Z<_hv%_3é>+e+€+e

i=1

hydrogenic states.

We will use:
Pro0 = ae" Yoo, a0 =b [1—F(a+p)r]e P

So (P100|P200) = 0, and a and b are fixed by (¢P100|¢100) = (P200|¢200) = 1. « and B are ad-
justable parameters.
¥ (1,2,3) must be totally antisymmetric under electron exchange. Defining ¢4 = 1/)100((1)),
etc., then:
1 1+ (1) 91 (1) ¢p(1)
Y(1,2,3) = —=|911(2) ¥11(2) ¢21(2)
V3!
¥1+(3) ¥11(3) ¥21(3)
The determinant is antisymmetric under row exchange as required. Note that this also leads
to the Pauli exclusion principle.
Calculate Ey < (¥|H|¥) = f(a, ) and minimise f with respect to & and B. This gives an
answer of Ey < —200.8 eV; compare this to the actual value of Ey = —202.5 eV.

1.7.3 The H™ atom

H:ﬁ+p2 e e e'
2m  2m r;1 ra» 112

The simplest wavefunction that achieves binding is:

o =cfrrmsem ] H0), 0, (),6).)

11



H™’s ground-state energy satisfies:
5 < (PIHIY)
(F¥)

c is fixed in terms of a and b by (¥|¥) = 1, so we minimise the right-hand side with respect to
a and b.
This gives: a = 1.03925, b = 0.28309, so
me*
Eo < —1.026606 (2>
2h
13.6 eV

and this establishes binding, since ionising H™ takes energy I = —13.6eV — Ey = 0.36 eV.
This means that the atom is bound, and indeed it does exist in the sun’s photosphere.

12



Chapter 2

Scattering theory

2.1 Scattering theory in 1D

A particle moves from left to right with momentum p and energy 5. Its wavefunction is Aekx

where k = p/h. It interacts with a potential V(x) which is assumed to satisfy V(£o0) = 0.
In regions where V = 0, the Schrodinger equation reads:

hz
- %VJ” = Ey

and has solutions e***. Hence, the particle’s wavefunction in the presence of V has asymptotic

solutions:
ikx —ikx ikx
P(x) e Ae™ + Be ™, p(x) et Ce
Note: If V — Vjas x — oo (rather than V — 0), then
ik x N e
P(x) T Ce"* where k' = 7 (E—-W)

To interpret this formalism we need a QM continuity equation. We will work in 3D for

generality.
JRE:
14

The integral
is the probability for finding the particle in a finite volume V. Then,

: y oy
atV/!tl»!Zd3r /(attpw )

% (pH*v* — ¢*Hy)d°r
14

where:
hZ
H=—7_ —V2+V(r).

Using the fact that:
YV — Vi = V- (Vg — V)

13



and that V* = V, we get:

where:

Equivalently,
—;/y¢12d3r:/v§d3r:/§-dﬁ
v v v

In words, the change in the probability of finding a particle in V' = the net flow of probability
in/out through the surface dV.

S-dA is the number of particles passing through dA per second, therefore S must have
dimension 1/L2T, i.e. flux (in 3D).

For an energy eigenstate,

P = e_iEt/h¢E (7,»),

we get

2
il =0=V-5§=0.
ot

Now consider 1D again. For a particle with definite energy,

@-gz—id—S:OiS:const.
dx

So for x — —oo,

hk hk
S= EM’Z - E|B|2

and for x — o

S = %CF,
m
assuming V(c0) = 0.
Hence,
B> |CP
- = =1
al <14l =

or, in words,
Reflected flux + transmitted flux

Incident flux

14



2.2 Examples

2.21 Rectangular barrier

Determine the transmission coefficient for a rectangular potential barrier, where:

VW if0<x<
V(x):{o 1 X a

0 otherwise

We assume the particle is incident from the left with E < Vj. We already know that |T|? +
|IR|? =1, where T = B/Aand R = C/A.

For x < 0: )
I ) = Eplx) = g(x) = oM+ Re
nk?
T 2m
For0<x <a:
hZ
—%1//’(9() + Vour(x) = Ep(x) = ¢(x) = Ae " 4 Bel*, where
Zm(VO — E)
H= 12
For x > a:
hz " ikx
- =E = T
o (1) = Ep(x) = y(x) = Te
The problem is to find T and R; i and ¢’ must be continuous.
Atx =0,

1+R=A+B
ik(1—R) = u(—A + B)

and atx =g,
Ae M 4 Belt = Teike
u(—Ae " 4 Bel'™) = ikTe™™

Or in matrix form,
1 1 1 1 1 A
e M eha A ek 0\ (T
[ ) ()= (i ) o) e

Solving for (‘g) in (2.1):
ik ik
1+ % 1—- m R



Substituting this into (2.2):

Tpika 1\ [ coshpa+ % sinhpya  cosh ua — % sinh pya 1
ik ] \ usinh pa + ik cosh ya psinh ya — ikcoshua ) \ R
Solving these two equations for R and T:

—i(% + £)sinh pa o—ika

= KN o , T= T/ 0 ko
2coshpa + (§ — ) sinh ua coshpa + 3(f — &) sinh pa

This gives |T|*> + |[R|?> = 1.
For a high or broad barrier,

So the transmission coefficient,

IT|? = 2 1 : k 2
cosh”(pa) + 3 (f — «)?sinh” pa

kZVZ
R+ 1 (k2 + p2) sinh® pa

k 2
~ —2ua [
16e < 2y >

since sinh(x > 1) ~ ze*.

2.2.2 Barrier of arbitrary shape

For a high broad barrier of length L, we found:

|T’2 ~ e_ZL %(VO—E)
— 6_2 xbarrier width xbarrier height
kp \ _ oM [Vo—E _
where 16 (M) = O(1) provided P = O(5) (or more).

For an arbitrary barrier V(x), find the average height and treat it as a rectangular barrier:

[Pdx /22 (V(x) — E)

e
Average barrier height = ’ barrfiler width
Thus,
TP = efzfabdx 2 (V(x)-E)

16



2.2.3 Controlled fusion

Controlled fusion in a Tokamak:

H2+H® — He* + n
3.5 MeV 14.1 MeV

A blanket of lithium around the reactor core captures neutrons.

Li® +n — He* + H3 + 4.8MeV

recycled to reactor  heat to turbine

In order to react, the deuterium-tritium pair must be in range of the interparticle nuclear

force:
2

R~ —— ~3fm (1fm=10"cm)
mec

A head-on collision will have I = 0, and so effective potential seen by deuterium/tritium is:

cm

nuclear
force
zone

—20 MeV

Figure 2.1: The potential seen by D-T pair

So the pair must overcome the Coulomb barrier of mc? ~ 0.5 MeV. Tokamak operates at
T ~ 108 K = E., ~ 10 keV. So the probability for barrier transmission is approximately:

Cz/Ecm 2 >
exp | —2 / dr \/7;1 (er - Ecm>

e2/mc?

2.3 Scattering theory in 3D

We define a differential scattering cross-section:

do(0,¢)  d*Ns/dQat
dQ  d?Ni/dAdt

where dNjp is the number of particles crossing dA normal to incident beam, and dNq is the
number of particles scattered into a solid angle d().

17



Thus, the number of particles scattered into d() per unit time is:

d% N, B d%?Nipe do(6,¢)
dQdt  dAdt dQ

o o0
= incident flux x (80) (2.3)

o has dimension of area, measured in barns. 1 barn = 10~2* cm?.
If the target is another particle, it recoils during collision. So we need to find a 2-body
wavefunction in the centre of mass frame from Schrodinger equation:

n? . . .
[_2;4 +V(7)| ¢(¥) = Ey(¥)

where 7 = 7 — 7». This can be writen as:
(V24K = U(F)y (2.4)
uy h2k2

We must find a Green function such that:

(V2+KH)GF—7) = —4nS(F —7)

where U =

so that the solution of (2.4) is:

kT
V) = s = 3 7 G =P IUE () 25)
We get:

zpr

G{r) = _Eﬂe—m/ pp + k2 —

This function has poles at p = +Vk* +ie = £(k+ %), so we choose this contour: By

P

Figure 2.2: The contour used

Cauchy’s theorem,

IPT 1pr .
j{dp / p —27‘(z+ZRes

D71i + ei(k+ie/2K)

2k +ie/k
ikr
17t£ ase — 0.

18



So,

Hence, (2.5) is:

. oikT 1 eiklF=7 .
W0 = o = i & T U, (2.6)

The superscript (+) refers to our choice of G; see later.
We need l[J](:) for r — co. Suppose V (¥) (and hence U(7)) has range a:

V() ~ e or V(F)=0forr>a.

7—00
Then,
oiklF=7| pikr p—ikP7
|7 — 7’| r>;r’ r

ik

. e eikr s _ .
W0, 5 gz~ [ €7 U

since terms in the integral in (2.6) in region 7’ 2> r are suppressed due to rapid fall-off of U(7)
forr’ > a.
Therefore, at t = 0, we have the incoming plane wave:

eiE-?
wk(f’zo) = W = Pinc

- K>
wherek =kZ, E = —.
2y
For k > 0, the particle interacts with the potential. For t — oo, the particle is scattered and

is asymptotically free, with:

WO ~ (o
kA rsa (27r)3/2 r

= (lpinc + lpsc)eiiEt/h

) ) e e

where k' = k?; # isthe unit vector pointing from scattering centre to the observation point at 7.
So hk? = hk’ is the momentum of the particle scattered in direction 7.

2.3.1 Interpretation of f
The scattered wave is:
feikr
wsc = 3/2
(271)3/2r

and the scattered flux density is:
R
Sse = ﬂ(lpscvwsc — P Vipsc)

19



In spherical coordinates,

Hence, )
- hik| f|
S —
* (2n)? yrzr ()
where %k = V = initial laboratory frame velocity of m;.
So the number of particles crossing area dA per second of a large sphere centred at the
scattering centre is:

A®Nse = - VI
a0 A= G
(where dA = r3dQ)7.)
s is a radially outgoing scattered wave. This justifies our choice of boundary condition
for G.

The incident particle flux is:
\%

e = Gmpre®
and the number of particles crossing dA = dA 2 is normal to the incident beam is:
@*Nine ~ V
dtdA  (2m)3
By definition, differential cross-section is:

do  d®Ns/dQdt Tk
dQ)  d®Nipc/dAdt ¥
How to solve this problem with wave packets: start with a broad wave packet, centred at

= incident flux.

z-axis at t = 0. Expand in terms of eigenstates of H:

hz
[ FVZ+V(?) yi = 1p(+).

i
5 + outgoing spherical wave ek /r.

¢(+)

e (22

= 9(70) = [k yP1p0)90 (7).

This requires justification, since {gbk )} may not be complete, V may form bound states. But
l[J,(:) ~ e*7 4+ ... and {e*7} are complete.

At later times,
r t /d3 ¢(+) lp ( ) lhsz/zy

Examining this for large times (Vt >> a) but small enough so that the packet has not spread
appreciably, find that the initial packet, unchanged by V, still present in the scattered wave-
function. There is however a lot of “fine print’, see Merzbacher 3 ed. pp. 286-290.

20



2.3.2 First Born approximation for f

Recall (2.6):

k-7 ik|7—7|
Wy e 1 rge () (2
WO = e = g T U0

If this is iterated once, i.e. replacing IP](<+) with k7 / (271)3/2, we get the first Born approximation
to f from (2.6):

renaming ' — r, or:

Fourier transform of V

where Ak = k' — %, the momentum transfer.
This is true for high energies or short-range potentials, and some other cases.

Example: Find the condition for this to be true for:

Vir) = {VO forr <a

0 forr>a

Solution: One possibility is to demand small distortion even at r = 0:

eikr’ -
/dSI’/ 7V(r/)ezk~r

rl

H

= 2
0 27th

1/11(:)(7) — Pinc (7)
Pinc (7)

21



Chapter 3

Angular momentum

3.1 Introduction

Assume an isolated system of particles. Then all spatial orientations of the system are equiva-
lent. If external central fields are present, orientations about fields’ centres are equivalent.

Isotropy of space requires the system’s Hamiltonian to be invariant under rotation through
an angle ¢ (equivalent to rotating coordinate frame, however we will adopt the convention of
rotating the system) using the right-hand rule for orienting .

Consider two experimenters O and O’ using differently oriented coordinate systems with a
common origin. Let R specify their relative orientation through @. Let O prepare, for example,
a neutron in state |«) with momentum p moving parallel to x-axis. Let O’ prepare a neutron
state |; R) with momentum p moving parallel to the x’-axis.

If O carries out an experiment to determine the probability that state |a) has a definite
value of total angular momentum j with z-component m, then O will find this probability is
[(jmla) .

But O can also carry out a similar experiment on the states |«; R), |jm; R) prepared by O/,
and measure the probability |(j m; R|a; R) |2.

As far as O is concerned, the neutron and measuring apparatus are rotated by R.

The assumption that the rotated state and measuring apparatus have precisely the same
physical properties as the original state and measuring apparatus requires:

|(jm; Rla; R)|> = |(jm|a)]?.

By Wigner’s theorem [see Gottfried 1 ed. pp. 226-228], states in O and O’ are related by a
unitary operator R(¢):
[ R) = R(@) ), |jm;R) = R($)|jm). (3.1)
Rt =R"L
For an infinitesimal rotation about the z-axis, we define:

J2

R(0¢,) =1— ichbzﬁ,

where [, is a Hermitian operator with dimension of angular momentum. Note that RR" =
1+ O(5¢?).
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J is defined as the total z-component of angular momentum and is the generator of rota-
tions about the z-axis. Setting d¢, = %, a finite rotation can be obtained by compounding
successive infinitesimal rotations about the z-axis:

- N
Rigo) = Jim (1-7:%)

N—oo

— pilp:/1 (3.2)

(Similarly for R(¢y) and R(¢y).
Jx, Jy and ], operate on a Hilbert space of arbitrary dimension.

Example: An atom with spin up along z-axis is rotated by 6§ about the x-axis. New spin state
is:
R|1) = e T0/M1).

X

Example: Suppose a 3D vector 7 = <y) is rotated b d¢, about the z-axis. Physically 7 might

4
represent the spin state of a spin-1 atom, for example. We now that:

cos(d¢,;) —sin(d¢p,) 0\ [x
R7 = | sin(d¢,) cos(d¢p.) O] |y (3.3)
0 0 1 z
= (1+ 6¢.L.)7 + O(6¢-)?
where I, = (g _8] §).
R(6p.) =1+ 6¢p. 1, + ... (3.4)
Similarly, for rotations about the x- and y-axes,
R(6px) =1+ 0¢xI + ... (3.5)
R(0¢py) =14 5¢py I, + ... (3.6)
000 001
where I, = (8(1) —01> and I, = (91 0 8)’ and (I, I,] = L, etc.

Comparing (3.4), (3.5) and (3.6) with equivalents for infinitesimal ¢, we get that in 3D:
|, = inl;, I=x,y,z
and
[]xr]y] =ih], (+cyc.)
3.2 Commutation relations

Consider two sequences of infinitesimal rotations on a 3D vector 7:
1. 6¢, about x-axis followed by d¢, about y-axis

2. 0¢y, about y-axis followed by é¢, about x-axis
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Then get, from previous example,

7 = (14 6¢yL, + 5(¢y)*) (14 5Ly + 6(¢px))7
7' = (14 6¢x Ly + 0(¢px)?) (1 + Sy Iy + 6(¢py))7

Hence,

?I/ — ?/ = 5<Px5¢y[lx/ Iy]7+ O((S(PS)

= 6¢0py L7 + O(5¢°)
In terms of Js,
P —F = o, {—Zilx —Z)ﬂ 7+ 0(0¢°)
= S0, (—%) + 0(6¢%) (3.7)

These rotations act on objects in 4D space. To each such rotation, there corresponds a unitary
mapping in the Hilbert space of states.
Postulate that the analogue of (3.7) holds on the appropriate Hilbert space of more general

states. So:
") — o) = [R(‘54’x)R(5‘l’y> - R(5¢y)R(54’x)] )

—apudp, |~ = | )+ 0log)
—apapy [ <] o) + 0169,

by postulate.

Or,
U, Jy) = ih],  (+cyc.)
ie.

i Jj] = iheix,  {i,5,k} ={1,2,3}

This is the basic condition on generators of rotations (= components of system’s fotal an-
gular momentum). No reference is made to the details of the structure of the system, only
properties of rotations.

3.3 Quantisation of angular momentum

Set it = 1here, so []y, Jy] = i]; etc.
Verify that J? verifies [J2, J;] = 0. Take J?, |, as a compatible set, and |jm) as eigenstates of
J? and J,. So,

Jljm) = j(j +1)|jm)
Jeljm) = m|jm)
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We have chosen the J? eigenvalue by convention. Since J? is positive semidefinite, j(j + 1) > 0.
Let J+ = Jx & iJ,. Then get:

Uz J4] = T+ (3.8)
Uz J-]=]- (3.9)
U J-1=2]: (3.10)
]2, ]£] =0 (3.11)
(3.12)
Also,
J+]- = (]x + i]y)(]x - i]y)
=i+ +
=P —L(.—1) (3.13)
Likewise,
J-Js == J(J-+1) (3.14)
Consider J2]4|jm) = J+J?|jm) = j(j + 1)]+|jm) [by (3.12)]. (3.9) and (3.10) give:
JoJeljm) = (J+Jz £ T+ ) |jm)
= (m=£1)]+|jm)
Thus,
J+|jm) = eigenstates of J?, ], with eigenvalues j(j + 1) and m + 1 respectively.
The norms of ] |jm) J_|jm) are, respectively,
(m|]-Jyljm) = [j(j+1) — m(m + 1) (jm|jm) [by (3.14)]
ROOTS: m=j,m=—j—1
(T Ty = (G + 1) — m(m — 1) ol ) [by (313)]
ROOTS: m=—j,m=j+1
Since these must both be non-negative,
—j<m<j. (3.15)

Suppose ] |jm) = 0. A necessary and sufficient condition for this is the vanishing of the
vector’s norm, assuming |jm) # 0.

J+|jm) =0
< j(j+1)—m(m+1)=0
=>m=]. (3.16)
Likewise,
J-ljm) =0
<ij(j+1)—m(m—-1)=0
=m=—j. (3.17)
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Consider J |j, m) « |j,m + p) for p = 0,1,2,... Due to (3.15), m + p < j. Hence there is an
integer N > 0 such that:
JEj,m) o ] lj,m + N) = 0.
= m+ N = j [from (3.16)] (3.18)

(Otherwise, |j, m + N) = 0 which is extremely uninteresting)
Consider J? |j,m) « |j,m —q) for g = 0,1,2,... Due to (3.15), m — g < —j. Hence there is
an integer M > 0 such that:

M, m) o J-|j,m — M) = 0.
= m— M = j [from (3.17)] (3.19)
Combining (3.18) and (3.19) gives that2j = M+ N =0,1,2,...
=j=01313,...
Equations (3.15), (3.18) and (3.19) give:
m=—j,—j+1,...,].

Remember that j and m are in units of 71 here.

Note: In deriving these, we have used:
o Ux ]yl =ih]:
e J; Hermitian
e |jm) is in a Hilbert space

...and that’s all!

3.4 Conservation

The expectation of an observable A in a state |a’) obtained by rotating the system about the
z-axis is:
(WIAI') = {ae9:/7 A~ 1))

If [J2, A] = 0, the result of measurement of A is independent of the system'’s orientation in x-y
plane; and similarly for x- and y-axes. Hence, an observable is rotation invariant if it commutes
with Jy, Jy and J,. If a system’s Hamiltonian is rotationally invariant,

[J,H] = 0 => ] = constant.

3.4.1 Degeneracy

If the system’s Hamiltonian is rotationally invariant, [J, H] = 0. Since [J% ].] = 0, we can
construct simultaneous eigenstates of H, | 2 and I, ie.

H|Ejm) = E|Ejm);  J?|Ejm) = j(j+ D)I*|Ejm);  Jz|Ejm) = mh|Ejm).

Since m = —j, ..., ], each energy level with angular momentum j is (2j + 1)-fold degener-
ate.
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Proof that E is m-independent:
Suppose H|Ejm) = E(m)|Ejm). Then:
J+H|Ejm) = E(m)]|Ejm)
= H(J+|Ejm))
= E(m+1)]|Ejm)
= E(m+1) =E(m) QED.

3.5 Representations of |, .

We already found a representation of |, . for the case j = 1. Recall:
000, B 00i L [0-i0
Je=n(g05). d=n(88h). E=n(§1)
So [Ju, Jy] = J= (+ cyc.) And J? = 2% = j = 1, since > = 1j(j + 1).
For general j, we know (from (3.14)):
Jeljym) = cxljm+1)

where ¢4 are to be determined.
The norm of ] |jm) is:

()] T+ ljm) = (jm]? = J.(Jz +1)|jm)
— 12(j+1) — FPm(m+1)

= Jes ]
Set the phase of c. to zero. Then:
Jeljom) = my/j(i+ 1) = m(m + 1) j,m +1) (3.20)
Likewise, from (3.13),
Jlj,m) = /(1) — m(m —1)]j,m — 1) (3:21)

MEMORISE (3.20) AND (3.21)!
(3.20) and (3.21), together with J, = 1(J4 +J_), Jy = $(J- —J4+),and (jm|jm’) = 8, py, can
be used to find matrix representations of Jy ..

3.5.1 Example

Find a matrix representation of Jyy, for j = %

Suppose j : |jm) — |m). Then from (3.20) and (3.21):
(311+12) = 0= (311-13)
(=alJ4l=2) =0 =(=31/-] - 3)
(=3lI+l3) =0=(31]-1 - 3)
(Il =3y =n=(=31-13)
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Using Jx = 3(J+ +J-) and Jy = 3(J- — J+), get:

(2l)slz) =0 Al - =1
(~3l12) = S UAREIE
and:
Gliz) =0 Bl - b = -4
(=3ll2) =% (=31l - 1) =0
Finally,
(alEl2) = 3 TAREVE
(=213 =0 (~3IE -1 =%
Hence,

hfo 1
h:2<10> Jy =

3.6 Spherical harmonics

N S
N
- O
o |
~__
N\(

Il
N S

Consider the amplitude for finding a particle with angularm momentum ¢, m in the direction

f1 specified by spherical angles 0, ¢.
(ltm) = (6, p|tm) = Yu (6, 9).

We have, from (3.20) and (3.21),

L Yo = /000 £1) — m(m £ 1) Yy
Ly Yy = hmYyy,
where/ =0,1,2,...andm=—4{,—0+1,...,0—1,/4.

Even though L satisfies the basic commutator Ly, Ly] = ihL, etc. ¢ can only take values
0,1,2,... Classical degrees of freedom have integer values of ¢. See Gottfried 1 ed. p. 86.

3.7 Intrinsic angular momentum

There exist particles with nonvanishing angular momentum, spin, in their rest frames. Denote
rest-frame angular momentum operator by S. Then, [S;, Sy] = ihS,, etc. Eigenvalues of S? =
S2 + Sf + S2 are s(s + 1)k, where s = 0, %, 1,... Integers for bosons, half-integers for fermions.

If a particle has orbital angular momentum L, the total angular momentum operator is
J=L+S5.
S is not classical and cannot be represented by 7 x j. Therefore, we expect:

[L;,Si] = 0.
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3.71 Example

2-component spinors describe the spin states of non-relativistic spin—% particles. Let:

s=13.8:=3)=(5),
s=b 5= =()
Hence, with S, = % (525, then:
S:03,3) = 5= (§) = 513, 2)
Sih—3) =5 (9) = ~4L -}

and:
2L, +1) = 3|1, £1y = s = L.

3.8 Addition of angular momenta

Assume two systems with independent momentum operators Tl and fz, with [T1, Tz] = 0.

Problem: Construct the eigenkets and determine the allowed eigenvalues of the total angular
momentum operator J = J1 + Jo. Note that since [Jx, Jy] = i]2, etc., the allowed values of j are

0,1,1,...

Solution: Two complete sets of angular momentum operators for the complete system are:
@ 7 Jiz )3 T2z
®) 2 2 JE T3
Kets associated with set (a) are known:
[jima jama) = |jima)|jama)

which we will denote |mym;) for simplicity.
These satisfy:

J2mama) = j;(ji + 1) [mymy)
Jiz|mima) = m;|mymy)

wherei =1, 2.
The kets |j1j2jm) (which we will write as |jm)) associated with set (b) are unknown. By
definition, they satisfy:
J2|jm) = j(j + 1)|jm)
Jeljm) = m|jm)
J21jm) = jiGi + 1) jm)
(We assume (jm|jm) = 1.)
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Since
JE|jaf2jm) = ji G + 1) jaf2jm),
and
J£ljimjamz) = ji(jt + 1) |jmjama),
then:
(jrjajmfymjama) = (jm|mimz) =0
unless j; = j].
The set {|mymy) } spans a (2j 4+ 1)(2j + 1)-dimensional subspace of the infinite-dimensional

Hilbert space of states, i.e.:
Y [myma) (mymy| =1

where the sum is over —j; < my < j; and —j, < my < jo. Therefore, the unknown kets |jm) in
this subspace can be represented in terms of the known kets |mm,):

jm) =Y [myma) (mymy|jm) (3.22)

mimy
where (mymy|jm) = (jimyjamz|j1j2jm) are called Clebsch—Jordan coefficients.

Since J; = J1z + 2z,

(J1z + J2z)|jm) = m|jm)
(Jiz + Joz) |mamy) = (mq + my)|mymy).

Hence,
(jmlmymy) =0

unless m = my + my. So m must equal m; + my.
Since (jm|mimy) = 0, the largest value of m = j; + jo, = the largest value of j is j; + jo.
Otherwise, |J+|jm)| = 0 (see earlier). There is only one state with j = j; + j, and m = j:
i) = lij2)
= lhivlii2)
We have adopted the phase convention for the CG coefficient: (jij»|jj) = 1.
There are two linearly independent kets |mymy) with m = j; 4+ j, — 1:

|myima) = |j1,j2 — 1), |mima) = |j1 —1,j2)

One linear combination must be associated with j = j; + j», and the other is associated with
j = j1 +j2» — 1. Hence, we can generate a table:

Value of m Allowed values of j No. of kets
it ji+j2 1
ntp—1 t+j,pn+p—1 2

i+pe—2 pn+jppn+p—-Lj1+jp2-3 3
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For each allowed value of j; there are 2j + 1 kets |jm). These kets, for the allowed values of j,
also span the (2j; 4+ 1)(2j2 + 1)-dimensional subspace.
That is,

|myma) = Y [jm) (jm|mim;)

jm

Note: This implies that the CG coefficients are matrix elements of a unitary operator connect-
ing two alternative bases in the (2j; + 1)(2j2 + 1)-dimensional Hilbert space.

There is only one linearly independent ket |jm) for each value jm. Why?

Because there is no independent Hermitian operator constructed from Ji, J> that commutes
with J2, |, ]12, ]22. If there were such an operator, say K, then we could have simultane-
ous eigenstates |jij2jmk) giving degeneracy due to the allowed values of k = kq,ky,... with
(jmk;|jmk;) = &;;. But there is no such operator.

So we must have: o
Jit)2
Y, 2j+1) =21 +1)(22+1)
j:jmin
where jmin + N=j1+/,, N=1,2,...

Use formula:
M

Z 2n+1)=2M-N+1)(N+1) (3.23)
n=M-—N
Hence,
it
Y (2j4+1) =21 +2>-N+1)(N+1)=(21+1)(22+1)
j=h+p—N

or,
(N—=2j;)(N=2]—2)=0= N = 2j;, or 2j,.

Must have jmin = j1 +jo — N > 0sincej =0, 3, ... So:
N — {ijifjl > = jmn=j—J2
2j1if o> 1 = jmin = j2 — 1
So we conclude: The spectrum of J?, where T=T+]is:
Atintiz=1... 7=l

Eigenstates are given by:

jmy =Y (mymy|jm)|mymy)
- <m <
—ja<ma<jo

where m = mq + mo.
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