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1 Probability & statistics

1.1 Random variables

When we say X is a random variable, we consider a set of outcomes (or “alphabet”) X =
{x1, x2, . . . , xn} where n is finite. It is not much more difficult to deal with the infinite

discrete case – but the continuous case is more awkward in information theory. In this

course we’ll deal with the discrete case only.

For the set of outcomes X , we have a map:

px : X →R+
xi 7→ pX (xi )

with ∑
xi∈X

pX (xi ) = 1.

pX (x) can also be denoted Pr(x).

For example, if X is the roll of a die, then:

X = {1,2,3,4,5,6}

pX (1) = . . . = pX (6) = 1
6 .

If X is the next letter in a text,

X = {a, . . . ,z}.

Here X is not random, but it is unpredictable!

The estimator for the probability is:

pX (xi ) = lim
N→∞

# times xi happens

N

Generally:

Pr(E) = ∑
x∈X |E holds

pX (x)

For example,

Pr(3 or less) = pX (1)+pX (2)+pX (3) = 1
6 + 1

6 + 1
6 = 1

2

1.2 Expected value

Say g : X →R (or, more generally, any field). The expected value of g is:

EX g = 〈g (X )〉pX =
∑

x∈X

g (x)pX (x)

For example, if the distribution of heights in cm were:
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Height 199 200 201

p 1
4

1
2

1
4

To find the expected value of height, g is the trivial map and:

〈X 〉 = 1
4 ·199+ 1

2 ·200+ 1
4 ·201 = 200.

Or to consider a farmyard example,

Item cow sheep turnip

p 1
2

1
4

1
4

Using the trivial map makes no sense since X has no additive structure. However if

we define a map € : X → R, with €(cow) = 700, €(sheep) = 100 and €(turnip) = 0.2, for

example, then:

〈€(X )〉 = 1
2 ·700+ 1

4 ·100+ 1
4 ·0.2

= 375.05

In statistics, we have an estimator for 〈g (x)〉:

〈g (x)〉 = lim
N→∞

1

N

∑
trials

g (x)

If X does have a field structure, e.g. X ⊂R, 〈X 〉 is called the mean:

〈X 〉 = ∑
x∈X

xpX (x) = X .

1.3 Moments

The nth central moment is defined as:

µn = 〈(X −X )n〉.
Let’s calculate µ1 and µ2:

µ1 = 〈X −X 〉
=

∑
x∈X

pX (x)x −
∑

x∈X

pX (x)X

= X −X
∑

x∈X

pX (x)︸ ︷︷ ︸
1

= 0.

µ2 = 〈(X −X )2〉
= 〈X 2〉−2X 〈X 〉+〈X

2〉︸︷︷︸
X

2〈1〉

= 〈X 2〉−X
2

.
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µ2 =σ2, the variance. σ is the standard deviation.

γ1 = µ3

σ3 is the skewness, and γ2 = µ4

σ4 −3 is the kurtosis.

In passing, the issue of estimators is non-trivial:

X = 1

N

∑
N trials

x

σ2 = 1

N −1

∑
N trials

(x −X )2

Where the N − 1 comes from is very subtle indeed! Notice that as N → ∞ it becomes

unimportant.

1.4 Multiple random variables

Say you have two random variables X and Y , with sets of outcomes X and Y . We can

consider X ×Y and it is often possible to define the random variable (X ,Y ) with prob-

abilities pX ,Y (x, y).

For example, if X is the first letter of a random word and Y is the last letter of the same

word,

pX (e) ≈ 0.0186

pY (e) ≈ 0.1916

(for a certain corpus).

The probability that both the first and last letters are e is:

p(X ,Y )(e,e) ≈ 0.0028

Note:

pX (e)pY (e) = 0.0035 > p(X ,Y )(e).

So X and Y are not independent – a word starting with e is less likely to end in e than a

randomly selected word, and vice versa.

p(X ,Y )(x, y) is called the joint distribution, and pX (x) and pY (y) are called marginal dis-

tributions. pX (x) can be expressed as:

pX (x) = ∑
y∈Y

pX ,Y (x, y).

There are also conditional distributions – for example, pX |Y (x|y) is the probability that

X = x given that Y = y .
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1.5 Bayes’ rule

Bayes’ rule relates joint, conditional and marginal probabilities. One statement of the

rule is:

pX ,Y (x, y)︸ ︷︷ ︸
joint

= pX |Y (x|y)︸ ︷︷ ︸
conditional

pY (y)︸ ︷︷ ︸
marginal

,

i.e. “The probability of getting X = x and Y = y is the probability of getting Y = y multi-

plied by the probability of getting X = x given that Y = y .”

Switching X ↔ Y gives: pX ,Y (x, y) = pY |X (y |x)pX (x), so we can combine these to give a

more common statement of Bayes’ rule.

p(y |x) = p(x|y)p(y)

p(x)

Omitting subscripts (as above) is a common but potentially confusing abuse of notation.

Using the first/last letter example again, pX ,Y (e,e) = 0.0028 and pX (e) = 0.0186. So:

pY |X (e,e) = pX ,Y (e,e)

pX (e)
= 0.1522.

Compare this to pY (e) = 0.1916.

For another example, consider Y = {a,b} and X = {1,2,3}, with probabilities:

a b

1 1
6

1
6

2 1
12

1
6

3 1
6

1
4

We can calculate the marginal distributions for X and Y by simple addition:

X

1 1
3

2 1
4

3 5
12

Y

a 5
12

b 7
12

If we wanted to find pX |Y (1|b), we use Bayes’ rule:

pX |Y (1|b) = pX ,Y (1,b)

pY (b)
=

1
6
7

12

= 2

7
.

1.6 Monty Hall Problem

If C is the position of the car, and R is the door opened by Monty, we can write:

C = {1,2,3}, R = {2,3}

assuming that the contestant always chooses door 1 for simplicity.
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Let’s say R = 2 and we want PC |R (c|2). Use Bayes’ rule:

pC |R (c|r ) = pR|C (r |c)pC (c)

pR (r )

We know that pR (2) = 1
2 and pC (1) = 1

3 . We also know the conditional probabilities

pR|C (2|3) = 1 and pR|C (2|1) = 1
2 . So:

pC |R (1|2) = pR|C (2|1)pC (1)

pR (2)
=

1
2 · 1

3
1
2

= 1

2
,

pC |R (3|2) = pR|C (2|3)pC (3)

pR (2)
= 1 · 1

3
1
2

= 2

3
.

So the contestant is better off switching!

Also, pC |R (2|2) = 0. Naturally.

2 Quantities in information theory

2.1 Entropy

Shannon’s entropy is the central quantity in information theory. It is defined as:

H(X ) =−
∑

x∈X

pX (x) log2 pX (x)

=−〈log2 pX (x)〉p .

Note: “log” without a subscript is in this course taken to mean log2.

This definition can be justified somewhat – no matter what type of thing x is, pX (x)

is always a number and so 〈pX (x)〉 is well-defined. In addition, the log simplifies the

multiplicative structure of probabilities into an additive one.

For example, for this uniform distribution:

a b c d e f g h
1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8

the entropy is easily calculated:

H(x) =−1
8 log 1

8 − 1
8 log 1

8 − . . .−−1
8 log 1

8

=− log 1
8

= 3 bits.

(Information entropy is measured in bits).

For a different distribution:

a b c d e f g h
1
2

1
4

1
8

1
16

1
64

1
64

1
64

1
64
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the entropy is different:

H(x) =−1
2 log 1

2 − 1
4 log 1

4 − 1
8 log 1

8 − 1
16 log 1

16 −4 · 1
64 log 1

64

= 1
2 + 1

2 + 3
8 + 4

16 + 24
64

= 2 bits.

Lower entropy means that we learn less from hearing the ‘answer’ for this distribution –

half the time, the answer is a so we are less surprised when it comes up. In the uniform

distribution, all answers are equally surprising.

An efficient encoding scheme for the second distribution is:

a b c d e f g h

0 10 110 1110 111100 111101 111110 111111

No ‘comma’ is needed – a string of bits can be uniquely resolved into characters.

The average length of one letter is:

〈L〉 = 1
2 ·1+ 1

4 ·2+ 1
8 ·3+ 1

16 ·4+4 · 1
64 ·6 = 2 bits.

A naïve code such as:

a b c d e f g h

000 001 010 011 100 101 110 111

which again needs no comma, would have 〈L〉 = 3. This code is however optimal for the

uniform distribution.

The average code length is closely related to the entropy, but they are not always equal

as in these examples.

Lemma. H(x) Ê 0.

Proof. − log pX (x) Ê 0, since 0 É pX (x) É 1.

Lemma. Hb(x) = logb aHa(x).

Proof.

loga B = logc B

logc A

=⇒ logb aHa(x) =−∑
x

p(x) loga b loga x

=−
∑
x

p(x) logb x

= Hb(x).
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2.2 Joint entropy

If pX ,Y (x, y) is a joint distribution, the joint entropy is defined as:

H(X ,Y ) =−∑
pX ,Y (x, y) log pX ,Y (x, y),

i.e. the normal definition applied to a joint distribution.

2.3 Conditional entropy

The entropy of a conditional distribution pX |Y (x|y) is:

H(X |Y = y) =−
∑

x∈X

pX |Y (x|y) log pX |Y (x|y).

The conditional entropy is the average of the entropies of the conditional distributions:

H(X |Y ) =
∑

y∈Y

pY (y)H(X |Y = y)

=− ∑
y∈Y

pY (y)
∑

x∈X

pX |Y (x|y) log pX |Y pX |Y (x|y)

=−∑
pX ,Y (x, y) log pX |Y (x|y),

since pY (y)pX |Y (x|y) = pX ,Y (x, y) by Bayes’ rule.

In other words,

H(X |Y ) =−〈log pX |Y (x|y)〉pX ,Y

2.4 Chain rule for entropy

Theorem.

H(X ,Y ) = H(Y )+H(X |Y ).

Proof.

H(X ,Y ) =−∑
pX ,Y (x, y) log pX ,Y (x, y)

=−∑
pX ,Y log

[
pY (y)pX |Y (x|y)

]
=−

∑
pX ,Y log pY (y)−

∑
pX ,Y log pX |Y (x|y)︸ ︷︷ ︸

H(X |Y )

As for the first term,∑
x,y

pX ,Y (x, y) log pY (y) =∑
y

log pY (y)
∑
x

pX ,Y (x, y)︸ ︷︷ ︸
pY (y)

=
∑

y
pY (y) log pY (y)

= H(Y ).
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In words, the chain rule states: “The information in X and Y is equal to the information

in Y plus the further information in X given that you know Y .”

A corollary is that:

H(X ,Y |Z ) = H(X |Z )+H(Y |X , Z ).

2.5 Kullback–Leibler divergence

Say X = Y , p(x) ≡ pX (x), q(x) ≡ pY (x). The Kullback–Leibler divergence (or KL diver-

gence, sometimes relative entropy) between p and q is:

D(p∥q) = ∑
x∈X

p(x) log
p(x)

q(x)
.

In other words,

D(p∥q) =
⟨

log
p(x)

q(x)

⟩
p

.

The important properties of the KL divergence are:

D(p∥q) Ê 0 ∀p, q

D(p∥q) = 0 ⇐⇒ p(x) = q(x)∀x ∈X .

The KL distribution is somewhat like a ‘distance’ between two probability distributions.

Note that it is not a metric – it is not symmetric!

In many applications of the KL divergence, you will have a “real” distribution and a

“model” distribution, and want to minimise the divergence between them. It is com-

monly used in AI, where it is often as practical as the standard L2 distance:

D2 =
√∑(

p(x)−q(x)
)2

One practical problem with the KL divergence is that if p(x) ̸= 0 and q(x) = 0 for some

x ∈X , then D(p∥q) is undefined.

2.6 Mutual information

The mutual information between X and Y is:

I (X ;Y ) = D
(
pX ,Y (x, y)∥pX (x)pY (y)

)
,

or “how far the distributions are from being independent”. Or using the definition of D ,

I (X ;Y ) =
∑

pX ,Y (x, y) log
pX ,Y (x, y)

pX (x)pY (y)
.
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2.7 Relationship between all this stuff

I (X ;Y ) =∑
p(x, y) log

p(x, y)

p(x)p(y)

=∑
p(x, y) log

p(x)p(y |x)

p(x)p(y)

=∑
x,y

p(x, y) log p(y |x)−∑
x,y

p(x, y) log p(y)︸ ︷︷ ︸
=−∑

y p(y) log p(y)

=−H(Y |X )+H(Y ).

In other words, H(Y ) = H(Y |X )+ I (X ;Y ), “the information in Y equals the information

left in Y when you know X plus the information knowing X gives you about Y .”

Another form is I (X ;Y ) = H(X )+ H(Y )− H(X ,Y ), so it is somehow a measure of the

overlap of X and Y .

2.8 Chain rule for entropy

Theorem.

H(X1, X2, . . . , Xn) =
n∑

i=1
H(Xi |Xi−1, . . . , X1)

For example,

H(X1, X2, X3) = H(X1|X2, X3)+H(X2|X3)+H(X3).

Proof.

H(X1, X2) = H(X1)+H(X2|X1)

=⇒ H(X1, X2, X3) = H(X1)+H(X2, X3|X1)

= H(X1)+H(X3|X2, X1)+H(X2|X1)

and so on.

2.9 Chain rule for mutual information

We define conditional mutual information:

I (X ;Y |Z ) =∑
p(x, y, z) log

p(x, y |z)

p(x|z)p(y |z)
,

the mutual information of the conditional probabilitied averaged over the condition.

By Bayes’ rule we can write:

I (X ;Y |Z ) =∑
p(z)

∑
p(x, y |z) log

p(x, y |z)

p(x|z)p(y |z)

=∑
p(z)I (X ;Y |Z = z)
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Theorem.

I (X1, X2, . . . , Xn ;Y ) =
n∑

i=1
I (Xi ;Y |Xi−1, . . . , X1)

Proof.

I (X1, . . . , Xn ;Y ) = H(X1, . . . , Xn)−H(X1, . . . , Xn |Y )

=
n∑

i=1
H(Xi |Xi−1, . . . , X1)−

n∑
i=1

H(Xi |Xi−1, . . . , X1,Y )

=
n∑

i=1

[
H(Xi |Xi−1, . . . , X1)−H(Xi |Xi−1, . . . , X1,Y )

]
=

n∑
i=1

I (Xi ;Y |Xi−1, . . . , X1)

2.10 Chain rule for KL divergence

We define conditional KL divergence:

D
(
p(y |x)∥q(y |x)

)=∑
x

p(x)
∑

y
p(y |x) log

p(y |x)

q(y |x)

This is just the average of the KL divergence of the conditional distributions. By Bayes’

rule it can also be written: ∑
x,y

p(x, y) log
p(y |x)

q(y |x)

Theorem.

D
(
p(x, y)∥q(x, y)

)= D
(
p(x)∥q(x)

)+D
(
p(y |x)∥q(y |x)

)
Proof.

D
(
p(x, y)∥q(x, y)

)=∑
p(x, y) log

p(x, y)

q(x, y)

=∑
p(x, y) log

p(x)p(y |x)

q(x)q(y |x)

=∑
p(x, y) log

p(x)

q(x)
+∑

p(x, y) log
p(y |x)

q(y |x)

=∑
p(x, y) log

p(x)

q(x)
+∑

x
p(x)

∑
y

p(y |x) log
p(y |x)

q(y |x)

= D
(
p(x)∥q(x)

)+D
(
p(y |x)∥q(y |x)

)
.
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3 Jensen’s inequality etc.

3.1 Cup-like & cap-like functions

Eschewing the terms “convex” and “concave”, we say that a function f is cup-like if for

all a < b, λ ∈ (0,1):

f
(
(1−λ)a +λb

)É (1−λ) f (a)+λ f (b),

i.e. the function is below the straight line, as in Fig. 1.

We say f is strictly cup-like if the inequality is strict, and f is cap-like if − f is cup-like.

a b

f

Figure 1: A cup-like function

3.2 Jensen’s inequality

Theorem. If f is cup-like on X ,

〈 f (X )〉 Ê f (〈X 〉).

Furthermore if f is strictly cup-like,

〈 f (X )〉 = f (〈X 〉) ⇐⇒ X = 〈X 〉,

i.e. X is constant.

Proof. Take the case X = {x1, x2} in which case the inequality follows directly from the

definition of cup-like, replacing λ→ p1:

p1 f (x1)+p2 f (x2) Ê f (p1x1 +p2x2),

Now assume that the inequality holds for X = {x1, . . . , xn−1}. Assuming pn ̸= 1, let

p ′
i =

pi

1−pn
,
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so that (p ′
1, . . . , p ′

n) is a probability distribution on X ′ = {x1, . . . , xn−1}. So:

n∑
i=1

pi f (xi ) = pn f (xn)+ (1−pn)
n−1∑
i=1

p ′
i f (xi )

Ê pn f (xn)+ (1−pn) f
(∑

p ′
i xi

)
(by induction assumption)

Ê f
(
pn xn + (1−pn)

∑
p ′

i xi
)

(by definition of cup-like)

= f
(∑

pi xi
)

i.e. 〈 f (X )〉 Ê f (〈X 〉).

If f (x) is strictly cup-like, the 2-point case reads:

f (p1x1 +p2x2) = p1 f (x1)+p2 f (x2) ⇐⇒ p1 = 1 or p2 = 1,

and proceed as above.

3.3 Information inequality

This is also called Gibbs’ inequality.

Theorem. Let p(x) and q(x) be probability distributions on X . Then,

D(p∥q) Ê 0,

with D(p∥q) = 0 ⇐⇒ p(x) = q(x)∀x ∈X .

Proof. Let A be the support of p: A = {x ∈X : p(x) ̸= 0}. We can write:

−D(p∥q) =− ∑
x∈A

p(x) log
p(x)

q(x)

Now define a new random variable Y :

yi = q(xi )

p(xi )
, with pY (yi ) = pX (xi ).

We want to apply Jensen’s inequality to this new variable.

−D(p∥q) =− ∑
x∈A

p(x) log
p(x)

q(x)

= 〈logY 〉
É log〈Y 〉, (by Jensen) (1)

= log
∑

x∈A

p(x)
q(x)

p(x)

= log
∑

x∈A

q(x)

14



So,

−D(p∥q) É log
∑

x∈A

q(x)

É log
∑

x∈X

q(x) (2)

= log1 = 0

=⇒ D(p∥q) Ê 0.

log is strictly cap-like, so if (1) is an equality, then p(x)
q(x) = c with probability 1. This means:∑

x∈A

q(x) = c
∑

x∈A

p(x) = c

= ∑
x∈X

q(x) = 1,

if (2) is an equality.

Corollary.

I (X ;Y ) Ê 0,

with equality ⇐⇒ X , Y independent.

Proof.

I (X ;Y ) = D
(
pX ,Y (x, y)∥pX (x)pY (y)

)Ê 0,

with D
(
pX ,Y (x, y)∥pX (x)pY (y)

)= 0 ⇐⇒ pX ,Y (x, y) = pX (x)pY (y), i.e. X and Y are inde-

pendent.

Corollary.

D
(
p(y |x)∥q(y |x)

)Ê 0,

with equality ⇐⇒ q(y |x) = p(y |x)∀x, y.

Proof. This follows directly from the information inequality with p → p(y |x) and q →
q(y |x).

Corollary.

I (X ;Y |Z ) Ê 0,

with I (X ;Y |Z ) = 0 ⇐⇒ X , Y conditionally independent, i.e. p(x, y |z) = p(x|z)p(y |z)∀x, y, z.

Proof. This follows directly from the first corollary.

3.4 Upper bound on information

Theorem.

H(X ) É log |X |
where |X | is the size of the set of outcomes, with equality ⇐⇒ p(x) = 1/|X |, i.e. a uniform

distribution.

15



Proof. We have X and p(x). Define another distribution on X given by u(x) = 1
|X | . Then:

0 É D(p∥u) = ∑
x∈X

p(x) log
p(x)

u(x)

=−H(x)− log
1

|X |
= −H(X )+ log |X |.

The information inequality also gives that equality ⇐⇒ p(x) = u(x)∀x.

Theorem.

H(X |Y ) É H(X )

with equality ⇐⇒ X , Y independent.

Proof.

0 É I (X ;Y ) = H(X )−H(X |Y ).

Theorem.

H(X1, X2, . . . , Xn) É
n∑

i=1
H(Xi ),

with equality if X1, . . . , Xn all independent.

Proof. For n = 2:

0 É I (X ;Y ) = H(X )+H(Y )−H(X ,Y )

⇒ H(X )+H(Y ) Ê H(X ,Y ).

Now use the chain rule:

H(X1, . . . , Xn) =
n∑

i=1
H(Xi |Xi−1, . . . , X1)

É
n∑

i=1
H(Xi ).

3.5 Log-sum inequality

Theorem. For non-negative numbers a1, . . . , an and b1, . . . ,bn ,

∑
ai log

ai

bi
Ê (∑

ai
)

log

∑
ai∑
bi

16



Proof. Assume without loss of generality that ai > 0, bi > 0. f (t ) = t log t is cup-like

(since f ′′(t ) > 0). Define:

αi = bi∑
k bk

, ti = ai

bi
,

and apply Jensen’s inequality to T = {ti }, pT (ti ) =αi , f :

〈 f (T )〉 Ê f (〈T 〉)∑
αi f (ti ) Ê f

(∑
αi ti

)
∑ bi∑

k bk
f

(
ai

bi

)
Ê f

(∑
i

bi∑
k bk

ai

bi

)
∑

bi f

(
ai

bi

)
Ê∑

bk f

(∑
ai∑
bi

)
∑

ai log
ai

bi
Ê (∑

ai
)

log

∑
ai∑
bi

3.6 Information inequality

Theorem.

D(p∥q) Ê 0.

Proof.

D(p∥q) = ∑
x∈X

p(x) log
p(x)

q(x)

Ê
( ∑

x∈X

p(x)

)
log

∑
p(x)∑
q(x)

= 1log1 = 0.

Equality ⇐⇒ p(xi )
q(xi ) = const. ⇒ p(xi ) = q(xi ) for all i .

3.7 Cup-likeness of KL divergence

If (p1, q1) and (p2, q2) are two pairs of probability distributions, then:

(pλ, qλ) = (
λp1 + (1−λ)p2,λq1 + (1−λ)q2

)
is also a pair of probability distributions for 0 ÉλÉ 1.

Theorem. For (p1, q1) and (p2, q2), λ ∈ [0,1],

D(pλ, qλ) ÉλD(p1∥q1)+ (1−λ)D(p2∥q2).
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Proof. Consider some x ∈X .

(
λp1(x)+ (1−λ)p2(x)

)
log

λp1(x)+ (1−λ)p2(x)

λq1(x)+ (1−λ)q2(x)
É

Éλp1(x) log
λp1(x)

λq1(x)
+ (1−λ)p2(x) log

(1−λ)p2(x)

(1−λ)q2(x)

by log-sum. Sum both sides over x:

D
(
λp1(x)+ (1−λ)p2(x)∥λq1(x)+ (1−λ)q2(x)

)
λD(p1∥q1)+ (1−λ)D(p2∥q2)

3.8 Cap-likeness of entropy

Theorem.

H(λp1 + (1−λ)p2) ÊλH(p1)+ (1−λ)H(p2).

Proof. X1 and X2 are two random variables on the same set of outcomes X with distri-

butions p1 and p2; let θ be a random variable with two outcomes: pθ(a) = λ, pθ(b) =
1−λ. Consider the random process Xθ: θ = a → X1, θ = b → X2. So,

pXθ
(x) =λp1(x)+ (1−λ)p2(x).

H(X |θ) =λH(X1)+ (1−λ)H(X2)

=λH(p1)+ (1−λ)H(p2)

=−∑
p1(x) log p1(x).

We know H(X ) = H(λp1 + (1−λ)p2), and H(x) Ê H(X |θ). So:

H(λp1 + (1−λ)p2) ÊλH(p1)+ (1−λ)H(p2).

3.9 Another theorem

Theorem. Let (X ,Y ) ∼ p(x, y) = p(x)p(y |x). Then the mutual information I (X ;Y ) can be

considered a function of pX and pY |X , and is cup-like in p(x) for fixed p(y |x) and cap-like

in p(y |x) for fixed p(x).

Proof in book.
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4 Markov chains & sufficient statistics

4.1 Markov chains

Random variables X , Y , Z are said to form a Markov chain denoted X → Y → Z if

p(x, y, z) = p(x)p(y |x)p(z|y). Equivalently, X and Z are conditionally independent:

p(x, z|y) = p(x, y, z)

p(y)
= p(x, y)p(z|y)

p(y)

= p(x|y)p(y)p(z|y)

p(y)

p(x, z|y) = p(x|y)p(z|y)

Note also that the definition is symmetric: X → Y → Z ⇐⇒ Z → Y → X . Also, if Z = f (Y )

then X → Y → Z .

4.2 Data processing inequality

Theorem. If X → Y → Z , then I (X ;Y ) Ê I (X ; Z ).

Proof.

I (X ;Y , Z ) = I (X ; Z )+ I (X ;Y |Z )

= I (X ;Y )+ I (X ; Z |Y )

Since p(x, z|y) = p(x|y)p(z|y), then:

I (X ; Z |Y ) =
∑

p(y)
∑

log
p(x, z|y)

p(x|y)p(z|y)︸ ︷︷ ︸
=1

= 0

So I (X ;Y ) = I (X ; Z )+ I (X ;Y |Z ) Ê I (X ; Z ), with equality if I (X ;Y |Z ) = 0 ⇐⇒ X → Z →
Y .

Corollary. If Z = g (Y ) then I (X ;Y ) Ê I (X ; g (Y )).

Proof. X → Y → g (Y ).

Corollary. If X → Y → Z , then I (X ;Y |Z ) É I (X ;Y ).

Proof. Recall I (X ;Y )+I (X ; Z |Y ) = I (X ; Z )+I (X ;Y |Z ). Noting I (X ; Z |Y ) = 0 and I (X ; Z ) Ê
0 gives result.
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4.3 Sufficient statistics

{pθ(X )} is a set of probability distributions indexed by some underlying variable θ. T (X )

is a statistic, e.g. mean, variance, mean and variance, . . .

Since T (X ) is a function of X ,

θ→ X → T (X ),

so I (θ; X ) Ê I (θ;T (X )).

T (X ) is a sufficient statistic if I (θ; X ) = I (θ;T (X )). In other words, if:

θ→ T (X ) → X .

For example, let X1, . . . , Xn with Xi ∈ {0,1} be an independent and identically distributed

(iid) set of random variables. Let θ = pXi (1). We want to estimate θ.

Let:

T (X ) =
n∑

i=1
Xi .

Claim: T (X ) is a sufficient statistic. We show this by showing that X is independent of θ

given T (X ).

Pr
(
(X1, . . . , Xn) = (x1, . . . , xn)

∣∣∑ Xi = k
)=

 1
N if

∑
xi = k

0 otherwise,

where N = (n
k

)
. This is clearly independent of θ. This means θ→ T (X ) → X , so T (X ) is a

sufficient statistic.

4.4 Fano inequality

X is a random variable. Y is a measurement. X̂ is a guess of X . We are interested in the

probability of error.

If H(X |Y ) ∼ H(X ), then reconstructing X from Y is just a guess – i.e. the chance of error

is not different from guessing without knowing Y . If H(X |Y ) = 0, then there is no uncer-

tainty left in X when given Y , so Y determines X and there will be no error. The Fano

inequality quantifies this.

X is a random variable; Y is another variable which is related to it. X̂ is the reconstruc-

tion of X from Y ; we usually imagine X̂ to be a function of Y . Note that in general

X ̸= X̂ . Denote the probability of error pe = Pr(X ̸= X̂ ).

Theorem. If X̂ is an estimator: X → Y → X̂ , and pe = Pr(X ̸= X̂ ), then:

H(pe )+pe log |X | Ê H(X |X̂ )

Ê H(X |Y ).
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This inequality is often weakened to:

1+pe log |X | Ê H(X |Y ),

(since H(pe ) Ê 1) or:

pe Ê H(X |Y )−1

log |X | .

Proof.

H(X |X̂ ) Ê H(X |Y )

since I (X ; X̂ ) É I (X ;Y ). So:

H(X )−H(X |X̂ ) É H(X )−H(X |Y ).

Define:

E =
1 if X̂ ̸= X

0 if X̂ = X

so that pE (1) = pe .

H(E , X |X̂ ) = H(X |X̂ )+H(E |X , X̂ )

= H(X |X̂ ),

since E is known given X and X̂ .

H(E , X |X̂ ) = H(E |X̂ )+H(X |E , X̂ ).

We know:

H(E |X̂ ) É H(E) = H(pe )

and

H(X |E , X̂ ) = pE (0)H(X |X̂ ,E = 0)+pE (1)H(X |X̂ ,E = 1)

É 0+ log |X |pe ,

since X = X̂ when E = 0, Putting this together gives the Fano inequality:

H(pe )+pe log |X | Ê H(X |Y )

Corollary. If X̂ ⊆X then the inequality can be tightened to:

H(pe )+pe log(|X |−1) Ê H(X |X̂ ).

Proof. Before, we had H(X |X̂ ,E = 1) É log |X |. However if X̂ ∈ X and we know E = 1,

then X can only take |X |−1 different values.

Corollary. For any two random variables X and Y , let p = Pr(X ̸= Y ). Then H(p) +
p log |X | Ê H(X |Y ).

Proof. Simply apply the Fano inequality to the Markov chain X → Y → Y .
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5 Asymptotic equipartition principle & typical sets

5.1 Convergence

Convergence: given a sequence of random variables Y1,Y2, . . . we say the sequence con-

verges to Y :

• “in probability” if ∀ε> 0, Pr(|Yn −Y | > ε) → 0

• “in mean square” if
⟨

(Y −Yn)2
⟩→ 0.

• “with probability 1” or “almost surely” if:

Pr
(

lim
n→∞Yn = Y

)
= 1

5.2 Law of large numbers

If X1, X2, . . . is a sequence of iid random variables with Xi ∼ X , µ= 〈X 〉, X n = 1
n

∑n
i=1 Xi ,

• Weak law: X n →µ in probability.

• Strong law: X n →µ almost surely.

The asymptotic equipartition principle is basically the law of large numbers for infor-

mation theory.

5.3 Asymptotic equipartition principle

The AEP states that:

p(X1, X2, . . . , Xn) ∼ 2−nH(X )

for iid random variables X1, . . . , Xn with Xi ∼ X .

For example, if X = {0,1} with probabilities p and q respectively, one possible sequence

is (1,1, . . . ,1), but it is not the most likely: it has probability qn .

Usually the sequence will consist of ∼ np 0s and ∼ nq 1s. Such a sequence has probabil-

ity pnp qnq , and:

pnp qnq = 2log pnp
2log qnq

= 2log pnp+log qnq

= 2−nH .

So 2−nH is, roughly speaking, the probability of a typical outcome.

Theorem. If X1, X2, . . . , Xn are iid with Xi ∼ X , then:

− 1

n
log p(X1, X2, . . . , Xn) → H(X ) in probability.
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Proof. Functions of independent variables are independent: Y independent of Z ⇒
f (Y ) independent of f (Z ). So {log p(Xi )} are independent variables. By the weak law

of large numbers,
1

N

∑
log p(Xi ) →〈log p(X )〉

The theorem follows from noting that 〈log p(x)〉 =−H(X ), and:∑
log p(Xi ) = log

∏
p(Xi )

= log p(X1, . . . , Xn).

5.4 Typical set

The typical set A(n)
ε is the set of elements (x1, x2, . . . , xn) ∈X n such that:

2−n(H(X )+ε) É p(x1, . . . , xn) É 2−n(H(X )−ε)

We saw that p(X1, . . . , Xn) → 2−nH(X ), so A(n)
ε consists of the (x1, . . . , xn) which are close

to the limit.

Theorem. 1. If (x1, . . . , xn) ∈ A(n)
ε , then:

H(X )−εÉ− 1

n
log p(x1, . . . , xn) É H(X )+ε

2. Pr(A(n)
ε ) > 1−ε for sufficiently large n.

3. |A(n)
ε | É 2n(H(X )+ε), and:

4. |A(n)
ε | Ê 2n(H(X )−ε).

Proof. 1. Follows from taking the log of the definition of the typical set.

2. We know:
1
n log p(X1, . . . , Xn) → H(X ) in probability.

In other words:

Pr
(∣∣− 1

n log p(X1, . . . , Xn)
∣∣< ε

)→ 1.

or in terms of δ,

Pr
(∣∣− 1

n log p(X1, . . . , Xn)
∣∣< ε

)> 1−δ

and let δ= ϵ for result.

3.

1 = ∑
x∈X n

p(x) Ê ∑
x∈A(n)

ε

p(x) Ê ∑
x∈A(n)

ε

2−n(H(X )+ε).

So:

1 Ê 2−n(H(X )+ε)
∑

x∈A(n)
ε

1

= 2−n(H(X )+ε)
∣∣A(n)

ε

∣∣ .
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4.

1−ε< Pr(A(n)
ε )

= ∑
x∈A(n)

ε

p(x)

É ∑
x∈A(n)

ε

2−n(H(X )−ε)

= ∣∣A(n)
ε

∣∣2−n(H(X )−ε).

5.5 Code word length

Let X1, X2, . . . be iid with probability distribution p(x), and we wish to find a short de-

scription of a length-n output. We can construct a code word by letting the first bit be 0

if x ∈ A(n)
ε or 1 otherwise. Then assign some order to elements of both A(n)

ε and X n \ A(n)
ε ,

convert the number of the element to binary and concatenate.

For example, the 18th element of the typical set would have a code word 010010 by this

scheme.

The length of this binary number must be less than log |set|+1. Hence the elements of

the typical set have code words of length l < log2n(H+ε) +1+1 = n(H +ε)+2. Similarly

words not in the typical set have length l < log |X n \ A(n)
ε |+2, ⇒ l < log |X n |+2.

What is the average length of a code word?

〈l (x)〉 =∑
p(x)l (x)

=
∑

x∈A(n)
ε

p(x)l (x)+
∑

x∉A(n)
ε

p(x)l (x)

É ∑
x∈A(n)

ε

p(x)
[
n(H +ε)+2

]+ ∑
x∉A(n)

ε

p(x)
[

log |X n |+2
]

= Pr(A(n)
ε )

[
n(H +ε)+2

]+Pr(X n \ A(n)
ε )

É (1−ε)
[
n(H +ε)+2

]+ε
[

log |X n |+2
]

= n(H +ε′),

where ε′ ≡ ε+ε log |X |+ 2
n . So:

〈l (x)〉
n

É H +ε′.

ε′ can be made arbitrarily small for sufficiently large n and suitable choice of ϵ. This

means that for iid X1, . . . , Xn with Xi ∼ X , the code length per outcome can be made

arbitrarily close to H .
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6 Encoding

6.1 Definitions

Ideally we want common outcomes to have short code words, and rare outcomes to have

long code words. For example, in Morse code, e is ·, t is –, a is · –, etc.

We define a source code C for a variable X as a mapping:

C : X →D∗, x 7→C (x)

where D∗ is the set of finite-length strings of elements from the D-symbol alphabet D.

The length of C (x) is denoted l (x).

The expected length of a source code, L(C ) is the average length:

L(C ) = 〈l (x)〉
=

∑
x∈X

p(x)l (x).

We say a code is non-singular if every x ∈X maps to a different string:

x ̸= x ′ ⇒C (x) ̸=C (x ′).

i.e. c is injective.

The extension C∗ of a code C is the induced map:

C∗ : X ∗ →D∗

given by concatenation:

C (x1 x2 . . . xn) =C (x1)C (x2) . . . C (xn).

A code is instantaneous (or a prefix code) if no code word is the prefix of another, e.g.:

a b c d
0 10 110 111

A prefix code (e.g. 01101010111) can be uniquely split up:

0

a
110

c
10

b

10

b

111

d

However, codes can have this property without being prefix codes.

25



6.2 Kraft inequality

Theorem. For any prefix code over an alphabet of size D with code word lengths l1 =
l (x1), l2, . . . , ln ,

n∑
i=1

D−li É 1.

Conversely, given {li } satisfying this inequality it is possible to construct a prefix code.

Note that this inequality has nothing to do with efficiency – it is about prefix-ness.

Proof. Construct a tree where code words give a ‘route map’. Each node in the tree has

É D outgoing connections labelled 0,. . . ,D − 1. For example, here outcomes a – k are

assigned code words from a 3-nary alphabet:

1

1

2

2

0

0

1

2

0

1

2

0

1

0

0

1

a

b

c

d

e

f

g

h

i

j

k

00

01

02

10

11

12

200

201

210

211

202

This example is a prefix code, since all of the outcomes correspond to leaves: nodes

with no outgoing connections. Leaves have no descendants: nodes which a given node

prefixes.

Call the length of the longest code word l∗ for a given prefix code. If all leaves at this

level were in the code, we would have D l∗ leaves. If there is a code word of length li < l∗,

then it would have had Dl∗−li descendants at length l∗. For example, here a code word

of length 1 would have had 33−1 = 9 descendants of length 3.

Because this is a prefix code, no two code words share any descendants. So the number

of children at level l∗ must be less than or equal to the maximum number of children at
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level l∗:
n∑

i=1
D l∗−li É D l∗ .

Dividing by D l∗ gives the Kraft inequality.

Conversely if l1, . . . , ln satisfy the Kraft inequality, we can choose disjoint family subsets

of size D l∗−li at level l∗ and cut them off at their parent to form a prefix code.

Note that this is for |X | finite. There does exist an extension for countably infinite X .

6.3 Optimal codes

The idea is to find a lower bound on L(C ). We can do this by minimising L(C ) = ∑
pi li

subject to
∑

D−li É 1. Use Lagrange multipliers!

J =
∑

pi li +λ
(∑

D−li −1
)

.

Now minimise J :

∂J

∂li
= pi −λD−l lnDi = 0

⇒ D−li = pi

λ lnD

Sum both sides over i :

1 = 1

λ lnD

and substitute back in:

D−li = pi .

So the optimal length, l∗i , is given by − logD pi . The average length of a code word is

given by:

L∗ =∑
pi l∗i

=−
∑

pi logD pi

= HD (X ).

Note that − logD pi is in general not an integer. We say that the best code has li = ⌈l∗i ⌉,

i.e. l∗i rounded up to the nearest integer.

The Shannon–Fano theorem states that for an optimal prefix code:

HD É L É HD +1.

In other words, the average code word length of an optimal prefix code is within 1 digit

of the minimum possible average length.
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6.4 Huffman coding

An elegant scheme for constructing an optimal prefix code.

Begin with the outcomes as leaves labelled by their probabilities. Then repeatedly join

the D nodes with the lowest probabilities (sometimes this can be done in more than one

way) and label the new node with the sum of these probabilities. Here this is performed

for D = 2:

0.25

0.25

0.2

0.15

0.15
0.3

0.45

0.55

1

Labelling routes yields code words for each outcome:

0.25

0.25

0.2

0.15

0.15

10

00

01

110

111

0

1

1

1

1

0

0

0

This gives a prefix code where the most probable outcomes have the shortest code words.

For D Ê 3 there may not be the correct number of symbols. Since each joining replaces

D symbols with 1, and we want 1 left at the end, this alogrithm only works for numbers

of the form k(D − 1)+ 1. To solve this, introduce a sufficient number of 0-probability

nodes. For example, for D = 3:

0.25

0.25

0.2

0.1

0.1

0.1

0

0 

1 

20 

21 

220 

221 

[222]

0.2

0.5

1

This means that there will be codes that do not correspond to any outcomes (for exam-

ple, 222 above). This means the code is in some sense not as efficient as it ‘could be’.

However the code will still have L É HD +1.
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