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Summary

We use the method of bond-orientational order parameter analysis on X-ray

tomographic data to investigate the interal structure of an experimental sam-

ple of ∼ 25 000 microbubbles. By employing appropriate cutoff distances in

the parameter space, we see that over the 7 days of the experiment the amount

of ordering in the sample increases signficantly. In line with previous ex-

periments and simulations, we see a preference for face-centred cubic (fcc)

ordering over hexagonal close-packed (hcp).

We present a simple geometrical argument concerning the ideal shapes

of bubbles at an arbitrary liquid fraction between the dry and wet limits. By

applying the appropriate transformation to an fcc bubble at a given liquid

fraction, we obtain a ‘trial’ hcp bubble of the same surface area. This surface

can be relaxed, proving that the hcp structure has lower energy than the fcc.

We perform Surface Evolver simulations of fcc and hcp bubbles over the full

range of liquid fractions. The trend observed confirms our proof: the ener-

gies are equal at the wet and dry limits, and for intermediate liquid fractions

the surface area of the hcp bubbles is very slightly lower.

The Z-conemodel is a mathematical formulationwhich provides analytic

approximations to the energy of a bubble as it is deformed. We verify its ac-

curacy for some fundamental test cases: a bubble compressed between par-

allel plates, a bubble confined to a cube, and a bubble confined to a regular

dodecahedron. We see that the energies predicted by themodel are accurate.

We apply the model to the case of a bubble in an fcc foam, and see once

again that the predicted values of liquid fraction and energy match those ob-

tained from computer simulation. For the fcc case, we obtain from themodel

an interaction potential similar to that reported in previous simulations. We
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derive expressions for the osmotic pressure and, hence, a liquid fraction pro-

file from the cone model expressions which agree with experimental data.

Furthermore, we obtain a relationship between liquid fraction and surface

liquid fraction which, again, matches experimental data well.

We extend the model to deal with the body-centred cubic structure, re-

sulting in excellent agreement between the model and simulation over the

full range of liquid fractions. We investigate the variation of energy with liq-

uid fraction close to the critical liquid fractions at which nearest neighbours

and next-to-nearest neighbours are lost. At each point we see logartithmic

terms in the variation of energy; however, the forms are different.

We present the results of experiments and simulations concerning the in-

teraction between soap films and fibres: a fibre in the plane of a film, and a

fibre in a Plateau border. In each case we see that our simulation predicts

the lengths of films and Plateau borders involved. In the latter case we can

calculate the force necessary to unpin the fibre from the Plateau border.

Finally, we present simulations concerning pairs of fibres, modelled as in-

finitely long rigid cylinders, bridged by a liquid drop, for the case of a small

contact angle. We see that the drop acts to pull the fibres together, and that,

for certain drop volumes, they preferentially orient at an angle which is nei-

ther parallel nor perpendicular. We see similar behaviour for a slightly in-

creased contact angle.
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Chapter 1

Introduction

1.1 Foams

Figure 1.1: A foam. This particularly attractive example is simplymade from

soap, water and air. Photo: Long Gao Wu

A foam is nothing more than a collection of gas bubbles separated by a

liquid.

Yet the physics of foams touches on a surprisingly rich variety of topics,

including minimal surfaces, sphere packings, and fluid mechanics.

Of course foams are not of interest simply as a topic of academic research.

They are ubiquitous in our everyday lives and have applications across fields

ranging from firefighting to mining to papermaking.

This is not to mention their aesthetic value — see Fig. 1.1!
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CHAPTER 1. INTRODUCTION

1.1.1 Foams research

The modern scientific study of foams began in 1873 when Joseph Plateau

published his book Statique expérimentale et théorique des liquides soumis aux

seules forces moléculaires [1]. C.V. Boys popularized the field with his 1890

book Soap Bubbles: Their Colours and the Forces WhichMould Them [2], a compi-

lation of a series of public lectures in which he demonstrated various simple

experiments on soap films.

By the 20th century, however, the field had faded into relative obscurity;

it was not until 1946 that it resurfaced, thanks to the work of Cyril Stanley

Smith and William Lawrence Bragg [3].

Beginning in the 1980s [4], and through the 1990s [5, 6, 7] the field was

once again revitalized as computer simulation became a feasible option for

modelling the behaviour of 2d and 3d foams.

1.1.2 What is a foam?

Slightlymore technically, wemaydefine a foamas a “two-phase system inwhich

gas cells are enclosed by liquid” [8]. We note that this definition does seem to

exclude solid foams, which are the topic of active research. Solid foams, which

tend to be formed by solidifying a liquid foam, are very much outside the

scope of this thesis. So from here onwards, wherever I write ‘foam’, I mean

‘aqueous foam’.

Being a dispersed two-phase system, a foam is one member of the family

of systems called colloids. Other members of this family include gels (liquid

dispersed in solid), aerosols (liquid dispersed in gas) and emulsions (liquid

dispersed in liquid). Of these related systems, emulsions are particularly

closely analogous to foams: in fact, many fundamental results pertaining to

foams are directly applicable to emulsions.

Bubbles are shaped by surface tension, which we will denote by γ. Under

the effects of surface tension, a bubble acts to minimize its surface area. This

2



CHAPTER 1. INTRODUCTION

Figure 1.2: A soap bubble appears spherical because it wants to minimize its

surface area. Photo: Sara Carter

is why a free soap bubble attains its familiar spherical shape (as in Fig. 1.2):

no body has a smaller surface area than a sphere of the same volume.

When bubbles are packed in a foam, things become more complicated;

however much of what goes on in a foam can be understood in terms of

the bubbles attempting to minimize their surface area subject to other con-

straints.

Foams inwhich all bubbles have the samevolume are referred to asmonodis-

perse, and ones with a range of bubble volumes are calld polydisperse. In prac-

tice, precise monodispersity is of course not achievable experimentally: we

can define a dispersity:

dispersity =

√
〈D2〉− 〈D〉2
〈D〉

(1.1)

as the ratio of the standard deviation of bubble diameters D to the mean

bubble diameter, and choose an appropriate cutoff value. A dispersity of

6 5% is often taken as the threshold for monodispersity [9].

3
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1.1.3 Dry foams and wet foams

The two ingredients of a foam are liquid and gas, so it is perhaps natural that

the behaviour of a foam depends on how much of each is present. Through-

out this thesis we will describe foams in terms of their liquid fraction, which

we denote φ.1

φ =
volume of liquid
volume of foam . (1.2)

Foams can broadly be classified as either dry or wet according to their

liquid fraction. The boundary is naturally somewhat fuzzy but it is generally

accepted a foam with φ . 0.1 is dry, and one with φ & 0.2 is wet. Liquid

fraction is by no means constant throughout a foam; in Fig. 1.1, for example,

we see a foam which, as a result of drainage, is dry at the top and wet at the

bottom.

The critical liquid fraction, φc, is that liquid fraction at which every bubble

in a foam is spherical. Whenφ > φc, the amount of liquid is such that contact

between all bubbles is not maintained. At this point the foam ceases to be

a foam and is referred to more properly as a bubbly liquid [10]. The value

of φc depends on the structure and polydispersity of the foam. In general,

for a monodisperse disordered foam, φc ≈ 0.36. This corresponds to the

void fraction in a random close packing of spheres, and was first computed

by Bernal and Mason in 1960 [11]. We refer to φ → 0 as the dry limit and

φ→ 0.36 as the wet limit.

Fig. 1.3 shows everyday examples of both dry andwet foams. Clearly they

look very different. Bubbles in the wet foam are close to spherical and are

only just touching. The dry foam adopts a cellular structure, in which liquid

channels and thin films separate bubbles which are roughly polyhedral. In

this regime, the structure adheres to Plateau’s laws.
1The debate as to whether φ should denote liquid fraction or gas fraction rages on. In

view of how often I will be referring to liquid fraction, the compromise of φl, as used in e.g.
[10] is, in my opinion, too unwieldy to use here. The symbol ε is sometimes seen— however
we will be using ε to refer to excess energy.
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(a) (b)

Figure 1.3: Two popular commercially available foams, as viewed under a

microscope. (a) Gillette shaving foam: a dry foam, with φ < 0.07 [12]. (b)

Guinness beer foam: a wet foam.

1.1.4 Plateau’s laws

Joseph Plateau’s 1873 work [1] was the first empirical description of the ge-

ometry of soap films, applicable to dry foams in equilibrium. It states the

following rules:

1. A soap film is a smooth surface of constant mean curvature. The mean

curvature is directly proportional to the pressure difference across the

film.

2. Soap films meet in threes along an edge, at mutual angles of 120◦.

3. Plateau bordersmeet in fours at nodes, atmutual angles of arccos(−1/3) ≈

109◦.

It was not until 1976 that these laws were proven mathematically, by Jean

Taylor [13]. The first law in fact predates Plateau, and is called the Young–

Laplace equation. The edges described in the second law are nowadays re-

ferred to as Plateau borders. At small liquid fractions the vast majority of the

liquid in a foam is contained in its Plateau borders.

The following fourth law is often added [10]:

4. Soap films meet walls at 90◦, at surface Plateau borders.

5
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(a) (b)

Figure 1.4: (a) Three soap filmsmeet at a Plateau border at angles of 120◦. (b)

A soap film meets a solid boundary at a surface Plateau border at an angle

of 90◦.

Figure 1.5: Cross section of a Plateau border, as in Fig. 1.4. Its shape consists

of three arcs of circle.

This can be understood somewhat intuitively by picturing a wall as a plane

of reflection: in order for a soap film to be smooth, as required by Plateau’s

first law, it must meet the plane at a right angle.

1.1.5 Structure of dry foams

The question of what monodisperse dry foam structure has the lowest en-

ergy is an open one. Lord Kelvin conjectured in 1887 [14] that the body-

centred cubic structure (also now called the Kelvin foam), shown in Fig. 1.6

minimizes the surface area per bubble. In this structure, each bubble takes

the form of a truncated octahedron, with eight hexagonal faces and six square

6
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Figure 1.6: Bubbles in a dry body-centred cubic foam or ‘Kelvin’ foam take

the form of truncated octahedra which pack together to fill space.

ones: the hexagonal faces are slightly warped to ensure that Plateau’s third

law is obeyed. Indeed, the bcc structure is seen to dominate in experimental

monodisperse dry foams, created under the correct conditions [9].

In 1993, Weaire and Phelan [6] found a counterexample to Kelvin’s con-

jecture: the so-calledWeaire–Phelan structure, comprising two different types

of bubbles, has a slightly lower surface area per bubble, initially verified by

computer simulation, and later proved mathematically [15].

However, unlike the bcc foam, the Weaire–Phelan structure is not seen to

spontaneously emerge in monodisperse foams. This is due to the fact that

the arrangement of bubbles cannot meet a flat container wall comfortably. It

was not until 2012 that a Weaire–Phelan foamwas produced experimentally,

using a 3d printed container with walls designed to mesh with the structure

[16].

1.1.6 Structure of wet foams

In the wet limit, φ ≈ φc, bubbles in a foam are approximately spherical.

In this regime, bubbles are often approximated as hard spheres acting under

7
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Figure 1.7: The Weaire–Phelan foam is to date the most efficient known par-

tition of space into cells of equal volume.

the influence of buoyancy forces. Hence, whenwe are dealingwithmonodis-

perse foams, finding the minimum energy arrangement of bubbles is equiv-

alent to finding a packing of equal-volume spheres which attains the highest

possible density. This is an old problem. Johannes Kepler conjectured in 1611

[17] that the densest such packing is the face-centred cubic (fcc) arrangement,

whose packing density is π/
√
18 ≈ 0.74; this corresponds to a liquid frac-

tion of φ ≈ 0.26. Thomas Hales finally proved this in 2005 via an exhaustive

computer-aided minimization process [18].

Nothing beats fcc, but it can be matched. The hexagonal close-packed (hcp)

arrangement has the samepacking fraction. Both strucutres consist of stacked

layers of close-packed spheres — they differ in the order in which the layers

occur. In hcp, they are arranged in the ‘aba’ order, and in fcc, the ‘abc’: this

difference is perhaps most easily understood visually, as in Fig. 1.8.

It is worth noting here that the so-called random hexagonally close-packed

(rhcp) arrangement, obtained from arbitrary stacking of a, b and c layers,

also achieves the optimum packing fraction of ∼ 0.74, but since it can be con-

sidered locally either fcc or hcp at any region, it is not considered a separate

structure here. Furthermore, the rhcp is very rarely observed experimentally

in wet foams [19].

8
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(a) (b)

Figure 1.8: The two densest possible packings of equally-sized spheres. (a)

the hexagonal close-packed (hcp) structure. The top layer is aligned with the

bottom layer, hence the ‘aba’ nomenclature. (b) the face-centred cubic (fcc)

packing. The top layer does not line up with either of the other two layers,

hence ‘abc’. The full structure is obtained from stacking layers in ‘ababab. . . ’

or ‘abcabc. . . ’ order respectively.

1.1.7 Coordination number

The coordination number of a bubble, denoted Z, is the number of other bub-

bles with which it is in contact. Typical values of Z depend on the liquid

fraction, polydispersity, and structure of a foam. 〈Z〉 refers to the mean coor-

dination number taken over all the bubbles in a foam.

For monodisperse foams at the wet limit, we have 〈Z〉 = 6 in the case

of a disordered, i.e. random, packing of spheres. For an ordered wet foam,

Z = 12, as we have seen.

At the dry limit, computer simulations on random monodisperse foams

give 〈Z〉 = 13.7. For ordered monodisperse dry foams, the bcc has Z = 14,

and the Weaire–Phelan foam has 〈Z〉 = 13. One can also obtain 〈Z〉 = 13.4

for an idealized dry foam, based on Plateau’s laws, by considering the solid

angle of the vertex of a tetrahedron [20].
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1.1.8 Foam dynamics

We mentioned the Young–Laplace equation in Section 1.1.4. The equation,

as it applies to a pair of bubbles separated by a liquid film, may be written as

H =
∆p

4γ , (1.3)

whereH is the mean curvature of the interface between two bubbles, γ is the

surface tension of the liquid film, and ∆p is the difference in the pressures of

the two bubbles.

The mean curvature H can be defined

H =
1
R1

+
1
R2

, (1.4)

where R1 and R2 are the principal radii of curvature of the interface. H de-

creases with bubble size, and accordingly (1.3) implies that the pressure of

the gas in smaller bubbles is higher than that in larger bubbles. Soap films

permit some amount of diffusion of gas from bubble to bubble, and so this

pressure difference implies that gas tends to flow from small to large bub-

bles, in a process called coarsening. On average, large bubbles grow and small

bubbles shrink, and eventually disappear. This means that the average bub-

ble radius increases with time: experimentally one sees 〈R〉 ∼
√
t [21]. Hence

foams are by their nature dynamical systems, although, as we will see later,

the rate of coarsening can be significantly arrested in experiment.

Drainage is another important dynamical effect in foams [22]. A freshly-

formed foamwith a uniform liquid fraction is not in an equilibrium state. The

liquid phase, under the influence of gravity, tends to flow downwards: this

occurs, primarily in the Plateau borders of the foam, until an equilibrium

state is reached, in which liquid fraction decreases with height. This state

represents a balance between forces due to gravity and those due to surface

tension [23]. The liquid fraction profile as a reult of drainage can be clearly

seen in Fig. 1.1: bubbles are rounder at the liquid interface, where φ ≈ φc is

high, and more cellular in the upper region of the foam, where φ→ 0.

10
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Coalescence is a dynamical process closely linked to drainage. Thedrainage

of liquid from films causes them to become thinner and eventually rupture,

causing neighbouring bubbles to combine. This occurswith higher frequency

in smaller films [24].

In addition to these internal dynamic effects, bubbles in a foammove and

rearrange when an external strain is applied. Foam rheology is an active area

of research focuses on these effects. However, foam dynamics are outside the

scope of this thesis. When I discuss foams, it is to be taken that I am referring

to a foam in equilibrium.

1.1.9 Capillary length

The capillary length l0 of a fluid–fluid interface (here, between the liquid and

gas phases of a foam) is a characteristic length scale which is defined as

l0 =

√
γ

ρg
, (1.5)

where γ is the surface tension of the interface (here, the surface tension of the

liquid), ρ is the density of the fluid, and g is the acceleration due to gravity.

The capillary length of water in air is ∼ 2 mm.

Physically, the capillary length is related to the height of a meniscus in

a narrow capillary tube, which is given by
√
2l0. In addition, we may also

derive an approximation to the heightWwet of a wet foam sitting on a liquid

interface to be

Wwet ≈
l0

2

D
, (1.6)

whereD is the bubble diameter [8]. Equivalently we can say that the number

of layers of wet bubbles is approximately (l0/D)2.

1.1.10 Excess energy

In the wet limit, a bubble is spherical, as this is the shape which minimizes

its surface area S. Away from the wet limit, bubbles are not spherical, and
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hence have a higher surface area. We describe this increase in surface area in

terms of dimensionless excess energy, denoted ε, and defined as

ε(φ) =
S(φ)

S0
− 1, (1.7)

where S0 is the area of a sphere having the same volume as the bubble, i.e.

S0 = (36πV2)1/3,

where V is the bubble’s volume.

Naturally, for a spherical bubble, as is the case at φ = φc, this reduces to

ε(φc) = 0.

1.1.11 Osmotic pressure

The osmotic pressure in a foam is a pressure which arises due to deformation

of the bubbles. It was first defined byHenry Princen in 1979 [25] for 2d emul-

sions, by analogy with a similar quantity in chemistry. In 1986 he offered a

much more thorough treatment of the concept, in 3d [26].

The osmotic pressure is denotedΠ, and is defined as the force felt per unit

area on a semi-permeable membrane (i.e., one which allows liquid to pass

through it but not gas bubbles), as it is moved into the foam, as illustrated

in Fig. 1.9 (this apparatus is called an osmometer). The osmotic pressure of a

foam is very sensitive to its liquid fraction: at the wet and dry limits we have

Π(φ = φc) = 0, and Π(φ = 0)→∞ (1.8)

Osmotic pressure ultimately stems from the fact that at a higher liquid

fraction, bubbles are closer to spheres, and have lower surface area. Remov-

ing liquid from a foam increases the surface area of the bubbles within it,

and hence requires an amount of work which is proportional to the incuded

increase in surface area.

12
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Figure 1.9: An osmometer consists of a semi-permeable membrane which is

forced into the foam. The osmotic pressure Π, which is a function of φ, is

simply the force felt on the membrane per unit area, which is necessary to

deform the bubbles.

1.2 Surface Evolver

1.2.1 Overview

Surface Evolver is an interactive programwhichminimizes the energy of sets

of surfaces subject to given constraints [5]. The software was created in 1992

by Kenneth Brakke at the University of Minnesota’s Geometry Center. The

software is freely available online and is still maintained and updated by

Brakke — the most recent version, 2.70, was released in August 2013.

Surface Evolver has been invaluable for the computational study of three-

dimensional foams. An early coup for the program was the verification that

the Weaire–Phelan structure did indeed beat Kelvin’s conjecture [6].

1.2.2 Principle of operation

Surface Evolver represents a surface as a mesh of triangular facets (as shown

for the ‘double bubble’ in Fig. 1.10). The user specifies the positions of a list

of vertices, followed by a list of directed edges which link vertex to vertex,

and facets which are spanned by a list of edges: the initial setup of vertices

typically comprises a crude but topologically faithful approximation to the

desired arrangement.
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Figure 1.10: Surface Evolver represents surfaces as a mesh of triangular

facets. Shown here is the ‘double bubble’. The mesh is not particularly fine

here.

Also specified are constraints which may apply to any vertices, edges or

facets. Where films meet planes, e.g. the wall of a container, we may impose

a planar constraint, for example. Linear constraints, e.g. soap films attaching

to a wire in a wireframe, can be implemented as a pair of intersecting planar

constraints. Curved wire boundaries may also be implemented by paramet-

ric description of the curve in 3d space.

The two fundamental operations of Surface Evolver are refinement and it-

eration. In a refinement step, each triangular facet is subdivided into four

smaller coplanar facets (see Fig. 1.11). In an iteration step, each vertex is

moved according to a gradient descent method, over the total energy func-

tion, subject to the appropriate constraints. The result of this is, hopefully,

a small reduction in the energy after each iteration step. There are a multi-

tude of other operations at the disposal of the Surface Evolver user; many of

these are useful tools which allow systematic ‘grooming’ of the surface; for

example, automatic subdivision of overly long edges, deletion of extremely

small facets, etc. Nonetheless a Surface Evolver script is at its core a carefully

constructed list of refinements and iterations.

The canonical simple Surface Evolver example is perhaps the evolution

of a cube into a sphere (a version is included with the software as cube.fe).
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(a) (b) (c)

Figure 1.11: The general principle of operation of Surface Evolver as shown

for a single facet. (a)→ (b) is a refinement step; (b)→ (c) an evolution step.

(a) (b)

Figure 1.12: Simulating a free bubble using Surface Evolver. (a) The starting

point is a crude approximation to the desired surface. (b) The result, after

several iterations and refinements.

The initial arrangement of surfaces, as shown in Fig. 1.12(a), is a cube, which

Surface Evolver automatically divides into 16 triangular facets. After 5 re-

finement steps, with ∼ 100 iterations between each, we arrive at the body

shown in Fig. 1.12(b): a good approximation to a sphere. If higher accuracy

were required, the steps can be repeated as many times as necessary, limited

only by memory and performance concerns. After a refinement step, each

iteration takes roughly 4 times as long, and the surface requires 4 times as

much memory to store.

Surface Evolver also allows the implementation of periodic boundary con-

ditions via the so-called torus model: naturally, this makes the file setup and
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Figure 1.13: Using Surface Evolver’s quadratic model, facets take the form of

quadratic patches: each edge is a quadratic spline which joins two endpoints

(•) via a specified midpoint (×). This is a single facet — contour lines are to

visualize curvature.

management of edge and facet directions more awkward. For this reason, I

tend to avoid using this mode here, and exploit the symmetries in periodic

structures to allow them to be represented using standard boundary condi-

tions. This is explained in more detail later.

1.2.3 Quadratic model

For simulations where higher accuracy in edge lengths or facet areas is desir-

able, at the expense of longer simulation times, Surface Evolver also includes

a quadratic model to represent facets. The general principle of operation is

identical to the linear model described above. Under the quadratic model,

each edge is assigned a midpoint vertex in addition to its endpoints. Edges

aremodelled as quadratic splines which passes smoothly through their three

assigned points. Facets are described not by simple triangles but by quadratic

patches: see Fig. 1.13. Naturally this model slows down computation time —

not only are there more vertices whose positions must be calculated for each

iteration step; the calculation of surface area is now a quadratic integral in

3d.

1.3 Structure of this thesis

This thesis comprises three main strands of work:
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• fcc and hcp foams

• The cone model

• The interaction of foams and fibres

These touch on theoretical, computational and experimental work. Here I

will clarify where my own contributions lie in regard to each section.

The chapter concerning fcc and hcp foams begins with analysis of exper-

imental data. The experiment was carried out by Aaron Meagher in Berlin,

and the tomographic data was segmented by that group. I performed all of

the analysis detailed in the chapter based on 3d bubble position data pro-

vided to me. The proof regarding the energies of the structures was a collab-

orative effort on the part of our group. The various simulations backing up

the proof are entirely my work.

The cone model was derived and formulated mathematically by Robert

Murtagh. I implemented the model computationally using Wolfram Mathe-

matica. I also derived expressions for, and computed, the physical quantities

derived from the model, detailed in the chapter. All of the Surface Evolver

simulations in this chapter are my work.

Regarding foams and fibres, the quasi-2d experiment was carried out by

our collaborators in VTT, Finland. The frame experiment was carried out by

Benjamin Haffner in TCD. Again, all of the simulations in the chapter are my

work.
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Chapter 2

fcc and hcp Foams

2.1 Introduction

2.1.1 Motivation

It has long been known that small monodisperse bubbles (called microbub-

bles, for diameters < 1 mm), when produced in a pool of surfactant solution,

spontaneously form ordered structures at the surface. These assemblages of

bubbles were investigated by Bragg and Nye in 1947 as model systems for

crystal structures [27], and are now known as Bragg rafts in recognition of

this work. While Bragg and Nye did not pursue this topic further, Bragg

rafts have since been used to model various dynamical processes in crystals

and glasses [28, 29]. Specialist equipment is not needed to create a Bragg raft

— Fig. 2.1 shows an example of one which formed naturally in the process of

washing dishes!

Bragg and Nye’s original paper focuses primarily on rafts consisting of a

single layer of close-packed bubbles. They briefly discuss rafts of multiple

layers, suggesting that both fcc and hcp ordering occurs, but note that obser-

vation of 3d structure was difficult, since the effects of refraction mean that

each layer of bubbles distorts the view of the layer below it.

More recently, the computer graphics technique of ray-tracing has been

used to infer the structure up to a depth of four layers of bubbles from op-

tical microscopy [30]. An analysis of a large number of monodisperse foam

samples using this ray-tracingmethod suggested that bubbles in thewet limit
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Figure 2.1: A Bragg raft consisting of several close-packed layers of bubbles,

spontaneously produced while washing dishes.

tend to order preferentially in the fcc structure over the hcp, at a ratio of ap-

proximately 2:1 [31].

The preference for fcc over hcp observed in this optical experiment is in

line with analogous observations in collections of spherical glass particles

which, when gently vibrated, are seen to settle into the fcc structure more

readily than the hcp [32].

However, all of the ordering observed with the aid of ray-tracing occurs

within no more than 4 outer layers of bubbles — refraction once again is the

limiting factor. The results, therefore, are perhaps not strictly representative

of a bulk foam. To probe the internal structure of a foam, more sophisticated

techniques are needed.

In this chapter, we focus on a recent experiment which allowed the full

internal structure of a monodisperse foam to be calculated. We also present a

rigorous proof concerning the energy difference between the fcc and hcp struc-

tures between the wet and dry limits.
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2.1.2 Experimental overview

The ‘lifetime experiment’ [33]was an experiment conducted byAaronMeagher

to investigate the full 3d structure of a foam sample consisting of monodis-

perse microbubbles, and the evolution of this structure over time. The inter-

nal structure was determined using benchtop X-ray computed tomography

(CT).

The liquid phase of the sample was a solution of the commercially avail-

able Fairy washing-up liquid, at a concentration of 5% by volume. The gas

phase was a mixture of nitrogen and perfluorohexane (C6F14) vapour. C6F14

is not soluble in water and hence does not readily pass from bubble to bub-

ble. This significantly reduces the rate of coarsening, meaning the bubble

sizes remain close to constant over the length of the experiment. Bubbles

were produced using a flow-focusing device [34], which results in bubbles

of a very controllable size. The dispersity (defined as the standard devia-

tion of the distribution of bubble diameters divided by its mean) was 2.4%

on day 1, increasing to 3.4% on day 7 due to coarsening: this is below the

commonly-used threshold of 5%, allowing us to classify the foam as effec-

tively monodisperse.

Approximately 10 000 bubbles with an average diameter of 0.8mm were

issued into an open cubic container of side length 20mm. The container was

then sealed by sliding a Perspex plate over the open face. Of the ∼ 10 000

bubbles in the sample, ∼ 2 300 are surface bubbles, in contact with either the

container wall or the surface of the liquid. Once per day over a seven-day pe-

riod, the sample was imaged using a benchtop X-ray computed tomography

system. The pixel size of the detector is 50µm, meaning that the images are

sufficiently high quality to allow accurate determination of the centre posi-

tion of every bubble in the sample.

The ‘rule of thumb’ described in Section 1.1.9 gives a number of layers

which may be considered ‘wet’, in terms of the capillary length l0 and the

bubble diameter D: Nwet = (l0/D)2. In this case this gives Nwet ≈ 6. Since

21



CHAPTER 2. FCC AND HCP FOAMS

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0  0.2  0.4  0.6  0.8  1

Li
qu

id
 fr

ac
tio

n 
φ

Reduced height x

Experimental
Empirical

Figure 2.2: The variation of liquid fraction with reduced height as computed

from the lifetime experiment data on day 7, as compared to an empirical ex-

pression from Höhler et al. [9].

the sample consists of 11 layers of bubbles, it is important to note here that

the sample cannot be considered to be at the wet limit throughout; however,

the average liquid fraction was φ ≈ 0.2, as determined from application of

the Beer–Lambert law to the X-ray absorption data, and so we are certainly

dealing with a wet foam, even if not all the way at φc.

By representing each bubble as a sphere of appropriate volume, we can

compute an approximate local liquid fraction at any given height in the foam.

Fig. 2.2 shows the liquid fraction profile, obtained in this way, of our foam on

day 7 in terms of the reduced height x̃ = xR/l20, where R is the bubble radius.

Each ‘dip’ represents a horizontal plane of bubbles. We compare the liquid

fraction profile with an empirical expression derived from Höhler et al. [9]

(discussed in more detail in Section 3.5.4). We see that while our foam is

generally wetter than the empirical expression predicts, the liquid fraction

generally falls off at approximately the expected rate.
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2.2 Bond orientational order parameters

2.2.1 Background

Bond orientational order parameters (boops) are a set of numbers, denoted

Q`, which quantify the local structure of a set of points. Paul Steinhardt et al.

first employed boops in 1983 in order to study the change in the structure of

atoms undergoing the liquid–glass transition [35].

For a given point, its boops are determined based only on the relative posi-

tions of its set of nearest neighbours. By computing the boops for a point and

comparing the values to a reference set of boops for known lattices, we can

determine with good accuracy the local structure around that point. Stein-

hardt refers to this process as “shape spectroscopy”.

In the case of the lifetime experiment, we have accurate position and vol-

ume data for every bubble in the foam sample for each day of the experiment.

From this we can determine each bubble’s nearest neighbours. The method

of boops is an ideal tool to help us gauge the local structure throughout the

sample in this case.

2.2.2 Computation

We leave the full description of the definition ofQ` to Appendix A, but note

that the useful boops are Q4 and Q6, and that they depend only on the posi-

tions of each bubble’s nearest neighbours. The nearest-neighbour positions

for fcc and hcp are of course known analytically; hencewe can obtain analytic

values for their (Q4,Q6) signatures. They are as follows:

fcc:
(√

7/192,
√

169/512
)
≈ (0.191, 0.575)

hcp:
(
7/72,

√
29237/124416

)
≈ (0.097, 0.485)

Plotting these two points in (Q4,Q6) space (Fig. 2.3), they appear rela-

tively close together — so much so that we must be cognizant of the risk of

‘crosstalk’ between these values, i.e. bubbles which are fcc being classed as

hcp, or vice versa. However, as we will see, for our data we can separate the

peaks cleanly.
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Figure 2.3: The boop signatures for the fcc and hcp structures, plotted in

(Q4,Q6) space. The two points are relatively close together; however, as we

will see, the peaks at each point are narrow enough to be distinguishable.

2.3 Lifetime experiment

2.3.1 2d and 3d visualizations

Using image processing software, we can obtain from the CT scans accurate

values for the x, y and z coordinates of the centre of each bubble in the sample,

for each of the 7 days. A natural first step in probing the ordering of the

sample is a direct two-dimensional visualization of the bubble positions.

Fig. 2.4 shows a simple 2d projection of the x and y coordinates of the

bubble centres on the first day of the experiment (where y is the direction of

gravity). Even from this crude visualizationmethod it is evident that there is

some degree of ordering in the sample: we see the bubbles tend to ‘line up’

parallel to the edges. This is to be expected: the planar walls of the container

encourage close packing of the bubbles.

This close packing is evident in simple 3d visualizations too. In Fig. 2.5

we draw a sphere around each computed bubble centre for the first day of the

experiment (note that this is not a direct visualization of the 3d tomographic

data). Immediatelywe see once again that the bubbles are fairlywell-ordered

at the walls of the container on the first day.
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(a)

(b)

Figure 2.4: x and y positions of bubbles. (a) On day 1 of the experiment,

this view of the bubble centres reveals that there is some degree of ordering

near the walls. (b) By day 7, the ordering has become clearer: throughout the

sample there are horizontal close-packed planes.

25



CHAPTER 2. FCC AND HCP FOAMS

Figure 2.5: 3d visualization of bubble positions on day 1 of the lifetime ex-

periment. It is evident here that the ordering near the walls is due to the

bubbles roughly forming close-packed planes. Each of the three arrows rep-

resents a length of 5 mm. This image, and all the 3d images in this section,

were created using Wolfram Mathematica.

Figure 2.6: 3d visualization of bubble positions on day 7 of the lifetime ex-

periment. Compared to Fig. 2.5 the extent of the ordering has increased: in

particular, the close-packing of exterior bubbles is much more pronounced.

26



CHAPTER 2. FCC AND HCP FOAMS

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0  0.5  1  1.5  2

F
re

q
u
e
n
c
y

Distance / mean bubble diameter

Figure 2.7: A truncated radial distribution function g(r) for the foamon day 1

of the experiment. The position of the minimum between the first two peaks

gives us a cutoff distance rc for bubbles we wish to consider nearest neigh-

bours.

Hence we are compelled to investigate more quantitatively the extent of

the ordering in the foam. boop analysis is a suitable tool.

It should be noted here that the sample was accidentally dropped on day

3 of the experiment; this significantly disrupted the foam structure. Nonethe-

less, we can observe separate trends on days 1 – 2 and 3 – 7.

2.3.2 Coordination number analysis

All of our analysis here hinges on the properties of bubbles’ nearest neigh-

bours. To define the set of nearest neighbours for each bubble, we need to

choose a cutoff distance rc for our definition of nearest neighbours.

We do so by computing the radial distribution function, denoted g(r).

g(r) is defined as the probability distribution to find a bubble centre at a dis-

tance r from the centre of some reference bubble [36]. The first two peaks

in g(r) represent the typical separation distances for nearest neighbours and

next-to-nearest neighbours respectively. The position of the minimum value

of g(r) between these two peaks is therefore a natural definition for our near-
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Figure 2.8: Histograms of the coordination numbers Z as obtained from our

cutoff radius on (a) day 1 and (b) day 7 of the lifetime experiment. The most

common coordination number is Z = 12 over the length of the experiment,

and the peak grows sharper over time.

est neigbour cutoff distance: Fig. 2.7 shows the distribution on day 1, as well

as the computed rc. For each day we compute a value of rc by this method.

Having decided on a cutoff distance rc, we can obtain for each bubble its

coordination numberZ. The coordination number for a bubble is the number

of nearest neighbours it possesses (analogously to the same quantity in crys-

tallography [37]); we interpret this as the number of bubbles whose centres

are separated from it by less than rc. For each day we arrive at a distribution

of Z: we plot histograms for days 1 and 7 in Fig. 2.8.

Note that the presence of bubbles with apparent coordination numbers

Z > 12 is an artifact of the imperfect nature of the cutoff distance method.

For a monodisperse foam a bubble cannot have more than 12 contacts: 12 is

the so-called kissing number in 3 dimensions, as conjectured by Newton, and

proven by Bender in 1874 [38].

We can also chart the evolution of the sample by noting the proportion

of bubbles which have Z = 12: see Fig. 2.9. This is a simple measure of

the amount of ordering in a sample. We note that theoretically, a bubble
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Figure 2.9: The fraction of bubbles with coordination number Z = 12 is a

measure of order in the sample. Here we see that, with the exception of the

dip on day 3 due to mishandling, and a slight decrease on the final day, it

increases over the course of the experiment.

with Z = 12 must be locally ordered (in either the fcc or hcp structures, or

icosahedrally [39]). Due to our choice of rc not all bubbles with Z = 12 will

necessarily be perfectly ordered: however it is still a useful and convenient

method of obtaining a trend.

2.3.3 boop analysis

Now that we have for each bubble a set of nearest neighbours, and hence

nearest-neighbour directions, we can compute the boops Q4 and Q6 directly,

via the formula described in Appendix A. This results in a ‘cloud’ of points

in (Q4,Q6) space for each of the 7 days, as shown in Fig. 2.10. It is clear

that the large number of points makes it impossible to draw any meaningful

conclusion from such plots. For this reason we aim to quantify the shapes of

these clouds.

We wish to classify bubbles as ‘fcc’ or ‘hcp’ depending on their proximity

to the appropriate boop signatures, and so we must turn again to cutoff dis-

tances: this time, however, in (Q4,Q6) space. Unfortunately here we cannot
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(a) (b)

Figure 2.10: The distribution of Q4 and Q6 values on (a) day 1 and (b) day 7

of the experiment. The large number of points makes it impossible to draw

any meaningful conclusion from such plots.

employ the first-minimum method which we used to define nearest neigh-

bours. The relative proximity of the fcc and hcp boop signatures means that

we may use a scheme as shown in Fig. 2.11: the threshold radius is deter-

mined by the distance between the points, rather than chosen arbitrarily. We

obtain a threshold radius rthresh = 0.065 by this method.

Luchnikov et al. analyzed Q4 and Q6 distributions to classify spheres in

simulated packings as either fcc or hcp by a similar method [40]: they de-

fine elliptical regions around the ideal (Q4,Q6) values for fcc with major and

minor axes decided “from inspection” — the choice of axes introduces four

arbitrary parameters into the classification scheme.

In Fig. 2.12 we plot the fraction of bubbles classified as either fcc or hcp

by this method. The trend is clear: as the experiment progresses (with the

exception of day 3, when the sample was dropped, as noted) the number

of bubbles which are classified as both fcc and hcp increases steadily. This

strongly suggests that the sample is becoming ordered over time. On day

6, ∼ 72% of the bubbles are reported as being either fcc or hcp. Given that

∼ 2 500 of the bubbles lie on the walls of the container, and mostly do not

bear either the fcc or hcp signatures, this corresponds to an ordering rate of

& 85% in the bulk.
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structure’s (Q4,Q6) signature. The threshold distance is chosen such that the

circles are in contact: rthresh = 0.065.
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Figure 2.12: The fraction of bubbles classified as fcc or hcp, using a large

threshold (Q4,Q6) distance as shown in Fig. 2.11.
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(a) (b)

Figure 2.13: Randomly selected examples of bubbles which were counted

as being (a) fcc and (b) hcp respectively, but whose distance from the ideal

(Q4,Q6) signature is near (> 0.9×) the cutoff distance. Inset are visualiza-

tions of the theoretical nearest neighbour directions for the relevant struc-

tures. Despite the distance between their signatures and the ideal cases, (a)

clearly displays abc ordering in the three layers (of 3, 6 and 3 bubbles respec-

tively), and (b) displays aba.
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Figure 2.14: The fraction of bubbles classified as fcc or hcp, using a smaller

threshold (Q4,Q6) distance: namely, 1/5 of that used in Fig. 2.12. The ‘dip’

on day 3 becomes prominent when using this tighter threshold: this is due

to a mishandling of the sample on that day.

It is tempting to believe that this huge amount of ordering may be purely

due to the generosity of the threshold distance used in (Q4,Q6) space. In

Fig. 2.13 we draw the positions of nearest neighbours for two examples of

bubbles which are classified as fcc or hcp but whose (Q4,Q6) signatures lie

very close to the edge of their respective basins. We see that, despite their

relatively high distance from the ideal boop signatures, they are recognizable

as the appropriate abc or aba arrangement. For this reasonwe proceed using

this cutoff distance, confident that it does not result in an unduly high rate of

false positives.

Nonetheless it is worth repeating this analysis with a stricter threshold:

Fig. 2.14 shows the same type of plot as Fig. 2.12, except using a threshold

(Q4,Q6) distance which is smaller by a factor of 1/5: where before we used

rthresh = 0.065, here we use rthresh = 0.013. Naturally the fraction of bubbles

classified as being ordered is lower, but the same trend is clearly visible; in

fact, the dip on day 3 is much more pronounced here.

Here it should be pointed out that a potential drawback of the boopmethod
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is the possible presence of false positives in the classifications it generates.

One technique which has been suggested to ameliorate this drawback is the

use of averaged bond-orientational order parameters [41]. Using this method, we

replace each bubble’sQ4 andQ6 with themean value of the quantity, as taken

over the bubble and all of its nearest neighbours. In our case, however, this

method smears the peaks of the (Q4,Q6) distribution, as well as producing a

huge number of false negatives. Bubbles whose neighbours’ positions clearly

imply fcc or hcp ordering are dragged away from the correct (Q4,Q6) signa-

ture by this averaging process. For this reason, we continue to use the ‘tra-

ditional’ boop method. Presumably, for less ordered datasets, the number

of false negatives introduced is smaller than that of false positives removed,

which would explain the advantage of such an averaging process.

Mickel et al. [42] highlight how the computed values of Q4 and Q6 for a

particle can depend strongly on the choice of nearest-neighbour selection al-

gorithm. However here there is less ambiguity than in their examples: look-

ing at Fig. 2.7, the outer edge of the peak representing the first shell is quite

well defined. In other words, there is very little overlap between the nearest-

neighbour and next-nearest-neighbour peaks.

The sharp decrease on day 3 is explainable by the accidental jolting of

the sample, as described earlier. We see a smaller, but noticeable, decrease

on day 7: while it was not noted that the sample was knocked as on day

3, it is possible that it was handled less steadily than on previous days. As

discussed earlier, a higher degree of ordering corresponds to a lower total

energy. Accordingly, a decrease in the ordering implies an increase in the

total energy of the system: this cannot occur spontaneously.

We can plot 2d histograms of the joint distribution of (Q4,Q6) values to

visualize their behaviour as the experiment progresses. Figs. 2.15, 2.16 and

2.17 show such histograms for days 1, 4 and 6 respectively. This method of

visualization makes the increase in ordering abundantly clear.
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Figure 2.15: Histogram ofQ4 andQ6 on day 1 of the lifetime experiment. The

boop signatures for fcc and hcp are marked in red and blue respectively. This

is a probability distribution function in two dimensions: the total volume

under the surface is 1, and the data is smoothed by a Gaussian kernel of

width 0.002.

Figure 2.16: Histogram of Q4 and Q6 on day 4 of the lifetime experiment.
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Figure 2.17: Histogram ofQ4 andQ6 on day 6 of the lifetime experiment. The

peaks for fcc and hcp have clearly increased in height and become narrower

over the length of the experiment.
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Figure 2.18: Each bubble is coloured according to its position in (Q4,Q6)

space: the intensity of the colour fades as we move away from the ideal fcc

or hcp value.

2.3.4 3d boop visualization

We can combine our bubble position data with our boop data to create a

clearer visualization of the ordering of the sample. As in Fig. 2.5 we place

a sphere on every bubble centre, but we now colour the spheres according

to their computed boop signature: red for fcc, blue for hcp, and white for

‘other’: the proximity of each bubble’s (Q4,Q6) signature to the ideal values

is shown by fading the intensity of the colour with distance from the fcc or

hcp value: this scheme is illustrated in Fig. 2.18.

Fig. 2.19 shows the result of such a visualization on days 1 and 7. We

see that bubbles at the walls of the container, despite lying in a close-packed

plane, are generally not counted as fcc or hcp by our boop method.

To account for this effect, we focus now on interior bubbles, by restricting

our analysis to a given range of x, y and z near the centre of the sample. By

doing so, the process of crystallization becomes much clearer.

Fig. 2.20 shows the evolution of this central section of the foam. The trend

is obvious in this view. After the disruption on day 3, ordered layers of fcc

and hcp spontaneously form and increase in extent over time. By day 7,
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(a)

(b)

Figure 2.19: Bubble positions on (a) day 1 and (b) day 7 of the lifetime experi-

ment. Bubbles are coloured according to the scheme in Fig. 2.18. We see that

the surface bubbles are generally not classed as either fcc or hcp by our boop

distance method.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 2.20: Bubble position for an excised central section of the sample on

days 1 to 7 of the lifetime experiment. Bubbles are coloured according to the

scheme in Fig. 2.18.
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clearly divided regions of fcc and hcp are visible. We also see in this region

a preference for fcc over hcp.

2.3.5 Relative prevalence of fcc and hcp

The ratio of the number of fcc bubbles to hcp bubbles on day 7, as computed

using our boop threshold method, depends on the threshold distance rthresh
used. For our initial (larger) threshold we have Nfcc/Nhcp = 1.38. For the

smaller threshold, Nfcc/Nhcp = 1.16. In either case, this ratio falls well short

of the value of ∼ 2 obtained from optical observations in [31]. However, as

discussed in Section 2.1.1, these measurements were limited to 6 4 layers of

bubbles, due to the effects of refraction.

Heitkam et al. carried out a sophisticated simulation of small gas bub-

bles rising in a low-viscosity liquid [43]. In their simulation the bubbles were

modelled as soft spheres which interact with one another as well as hydro-

dynamically with the liquid. Periodic boundary conditions were imposed in

the horizontal directions. Studying 100 runs of 120 bubbles at a time, they

observed Nfcc/Nhcp ranging between 1 and ∼ 1.5 depending on the drainage

rate imposed. Our values of Nfcc/Nhcp are in agreement with these.

2.4 The relative energy of fcc and hcp foams

2.4.1 Introduction

The preference observed in the lifetime experiment for the face-centred cubic

structure over the hexagonal close-packed is in line with many other simula-

tions and experiments [9, 31, 43, 44]. This is the case despite the fact that at

φ = φc ≈ 0.26 all energies — those arising from bubble surface areas, and

buoyant energies — are equal. The reason for this preference is unclear: the

relative instability of hcp pyramids on the impact of a rising bubble may play

a role [43]. Woodcock [45] computes the relative entropy of simulated fcc and

hcp hard sphere packings by integrating P-V isotherms around a reversible
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(a) (b)

Figure 2.21: The shape of bubbles at φ = 0. (a) fcc: a rhombic dodecahe-

dron, and (b) hcp: a trapezo-rhombic dodecahedron. All faces are flat, and

all the angles between adjoining faces are 120◦, satisfying Plateau’s condi-

tions for equilibrium; however, these structures are unstable equilibria due

to the presence of eightfold vertices.

path linking the structures, finding a slightly higher entropy in fcc, hence a

theoretical preference for fcc over hcp.

Evidently there is more at play than simply the energies of the two struc-

tures. Nevertheless we are drawn to examine the energy of each structure:

here, this is equivalent to the surface area of a single bubble.

Here we will prove that it is in fact hcp which has the lower energy for

values of liquid fraction φ between its limiting values: the dry limit of φ = 0

(although the structures are not stable in this limit, as discussed later), and

the wet limit φ = φc, with equality of energy at these two limits.

2.4.2 Proof

In the wet limit (φ = φc), bubbles are perfect spheres, so clearly the energies

of the two structures are equal. In the dry limit, a bubble in an fcc foam

takes the form of a rhombic dodecahedron, with twelve identical rhombic faces;

in hcp, a trapezo-rhombic dodecahedron, with six rhombic and six trapezoidal

faces, as in Fig. 2.21. These polyhedra have identical surface areas so the
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(a) (b)

Figure 2.22: (a) A bubble in an fcc foam at liquid fractionφ ≈ 0.125, obtained

from Surface Evolver simulation. (b) By reflecting the top half of the fcc bub-

ble in the dividing plane (marked by a dashed line), we obtain a trial solution

for the shape of a bubble in an hcp foam.

energies are also equal at φ = 0.

For all liquid fractions, we assume a canonical foam, in which the bubble

surface assumes a unique shape which minimizes its surface area at constant

volume. We assume that in the ordered structures discussed, each bubble

possesses all the symmetries of the underlying lattice.

Fig. 2.22(a) shows the form of a bubble in equilibrium for an fcc foam

between the wet and dry limits, at φ ≈ 0.1. Also indicated is a plane which

divides the bubble into two pieces. Since the fcc lattice is centrally symmetric,

any plane passing through the centre of the bubble divides its surface into

two congruent pieces, equal in area and volume: we use the (1 1 1) plane,

indicated by the dashed lines in Fig. 2.22. We can reflect one half of the fcc

surface (the top half in the figure) through this dividing plane, to obtain the

form shown in Fig. 2.22(b). This new surface is everywhere continuous and

retains the surface area and volume of fcc, but the positions of its contacts

match the hcp structure. It may be regarded as a trial solution for hcp, and

cannot therefore have a lower energy than the true hcp structure.

Indeed the energy must be higher, since this rejoining results in discon-
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(a) (b) (c)

Figure 2.23: The surface obtained by reflection in Fig. 2.22(b) is continuous

but not smooth: it can be further relaxed to obtain a surface of lower energy.

Here (a) shows the shape of the flat contact for an fcc bubble, (b) for the trial

hcp surface and (c) the further relaxed hcp surface. The size of the kink has

been exaggerated here for clarity.

tinuities in the surface normal (see exaggerated sketch in Fig. 2.23). Hence

the surface can be relaxed, removing these ‘kinks’ and lowering its energy.

This completes the proof. At this point it should be noted that this differ-

ence of energies is extremely small. Experimentally it cannot be said to play

a role: the effect of any experimental error would far outweigh the size of this

energy difference.

It is tempting to consider a similar inverse argument, in which half of an

hcp bubble is ‘twisted’ by 30◦ and rejoined to yield an fcc bubble of equal

surface area. This argument fails: the intersection of the hcp bubble with the

dividing plane has only threefold rotational symmetry, as we will see later,

and so this process results in a discontinuous surface.

2.4.3 Axial ratio

It should be noted that, unlike the fcc structure, the hcp structure has an

extra degree of freedom: its axial ratio, denoted c/a, is not fixed. c/a in this

case is equal to twice the ratio of the separation of close-packed planes to the

separation of neighbouring bubbles within the planes, as shown in Fig. 2.24.

Some metals that crystallize in the hcp structure, such as zinc and cadmium,
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Figure 2.24: The definition of the axial ratio c/a for the hcp structure. For the

ideal hcp, c/a =
√

8/3.

have c/a ratios which are very different from the ideal ratio [46].

We do not have this degree of freedom for the fcc structure: the analogous

quantity is fixed by symmetries of the lattice.

The ideal value c/a =
√

8/3 is easily calculated at the wet limit by con-

sidering the coordinates of sphere centres. In the dry limit, it is easily ver-

ified that the surface area of the trapezo-rhombic dodecahedron is indeed

minimized at the ideal value of c/a. For some arbitrary intermediate liquid

fraction, however, it is possible that varying this value (as illustrated in exag-

gerated sketches in Fig. 2.25) further reduces the surface area of a bubble in

an hcp foam.

Fig. 2.26 shows the excess energy ε, as defined in (1.7), as a function of c/a

near its ideal value for three intermediate liquid fractions between 0 and φc:

φ ≈ 0.06, 0.13, 0.19. We describe the axial ratio in terms of a ‘stretch factor’ s:

s =
c/a

(c/a)ideal
. (2.1)

In order for the curves to be viewable on the same plot, we shift the curves

by subtracting εideal (i.e. ε at s = 1) from each.

The shapes of these plots suggest that the bubble’s surface area is indeed

minimized at least extremely close to the ‘ideal’ c/a value. It also shows that

the magnitude of any possible reduction is extremely small. We note here

that if varying the axial ratio at some liquid fraction 0 < φ < φc does indeed
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(a) (b) (c)

Figure 2.25: The axial ratio c/a can be varied for a bubble in an hcp foam. (a)

shows a reduced axial ratio, (b) the ideal, and (c) increased. Note that these

are exaggerated illustrations, and not properlyminimized surfaces. Note also

that in creating Fig. 2.26 bubble volumes were kept constant.
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Figure 2.26: Excess energy ε as a function of axial ratio c/a for liquid fractions

φ ≈ 0.06, 0.13, 0.19. The curves appear seem to achieve a minimum at s = 1,

i.e. the ideal axial ratio. Note that there is a small amount of numerical noise

visible in the curves: this is due to the very small changes in ε over the range

of stretch factors considered here: we are approaching the limit of accuracy

achievable using Surface Evolver.
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Figure 2.27: Sketch of how an hcp bubble–bubble contact could warp while

retaining central symmetry. The size of the warp is greatly exaggerated here

for clarity.

result in a small reduction in the surface area of the bubble compared to the

ideal ratio, this only strengthens our result.

2.4.4 hcp facets

The underlying symmetries of the fcc lattice mean that every bubble–bubble

contact is planar for any given liquid fraction. Bisecting the line connecting

the centres of any two bubbles is a plane of reflection of the structure. Since

we assume the bubble’s symmetries match those of the lattice, we know that

the contact is equal to its reflection and must be planar.

The hcp structure does not possess as many symmetries; by the same ar-

gument we can only guarantee that 6 of the 12 contacts must be planar (those

which are trapezoidal in the dry limit). For the other 6 contacts (those which

are rhombi in the dry limit) there is no reflectional symmetry; rather, a point

symmetry at the midpoint of the bubble pairs. Hence we know that the con-

tact possesses central symmetry, but is not necessarily planar: it is possible

that a ‘warping’ of the contact reduces the energy of the foam. An exagger-

ated sketch of this potential warping is shown in Fig. 2.27

This is somewhat analogous to the warping of the hexagonal faces in the

Kelvin foam. Plateau’s laws dictate that soap films meet in threes at 120◦: for

the Kelvin structure, this ensures that at φ = 0 the hexagonal faces must be

warped. Conversely, for the hcp structure atφ = 0 it ensures that the rhombi

must not be warped! As one increases the liquid fraction of a Kelvin foam,
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the warped faces ‘flatten out’ fairly quickly. Since the hcp facets begin flat,

one may assume they remain flat as φ is increased. However we note that it

is possible that at some liquid fraction 0 < φ < φc a slight curvature in the

bubble–bubble contacts affords a reduction in the bubble surface area. Once

again this would only strengthen our result.

We should also note that the fcc and hcp structures are unstable very close

to the dry limit, due to the instability of junctions of more than four Plateau

borders in the dry limit [47, 48]. Instead, the body-centred Kelvin structure

tends to occur in ordered dry foams [9, 49]. This does not affect our calcula-

tions — we deal only with a single bubble in a fixed fcc or hcp environment

and so no such instability arises. It is also worth noting that experimentally,

mixtures of fcc and hcp arrangements are seen when close-packed planes

are randomly stacked. However, in this case, each bubble can be considered

locally to be either fcc or hcp, depending on the positions of its nearest neigh-

bours.

2.4.5 Evaluation of difference using Surface Evolver

We can evaluate the difference in energies between the two structures using

Surface Evolver. Fig. 2.28 is a sketch of our initial simulation method: we

compress the bubble between 12 constraint planes, situated in the appropri-

ate nearest-neighbour directions for either structure. Note that since we are

using constraint planes here, we are that the rhombic contacts of the hcp bub-

ble are planar. As discussed earlier, if it is the case that they are curved be-

tween φ = 0 and φ = φc this would only increase the surface area difference.

However since our simulation cannot account for this effect, we consider it

preliminary for now.

The energy difference between the two structures is small: so small that it

seems to be right at the limit of what our Surface Evolver simulation can re-

solve. The quadratic model, described in Section 1.2.3, significantly reduces

the magnitude of the numerical noise: however some amount does still re-
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Figure 2.28: We simulate the bubble–bubble contacts in Surface Evolver by

compressing the bubble between 12 constraint planes. (a) shows the plate

positions for fcc; (b) the plate positions for hcp. The positions of 3 plates

(lower right in these pictures) change between (a) and (b).

main. Ideally this could be reduced by using a finer mesh, but we find that

even one further refinement leads to an unfeasibly long runtime.

In Fig. 2.29 we plot the difference in surface area between a bubble in

an fcc foam and a bubble in an hcp foam as a function of liquid fraction,

as obtained from Surface Evolver simulations. Along with our preliminary

results we show results obtained by Andy Kraynik, who used a finer mesh

as well as a more sophisticated simulation setup — by employing periodic

boundary conditions he was able to allow nonplanar rhombic faces in the

hcp case.

We see the expected result: Sfcc > Shcp, with equality only at the wet and

dry limits. The bubbles are of volume 1, meaning their surface area varies

from ∼ 4.84 in thewet limit to ∼ 5.34 in the dry limit. Therefore themaximum

surface area difference achieved is of the order of ∼ 10−5 relative to the total

surface area. This maximum difference is achieved at a liquid fraction of

φ ≈ 0.11.
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Figure 2.29: The difference in surface area between fcc and hcp bubbles,

Sfcc − Shcp as a function of liquid fraction φ, as obtained from our prelimi-

nary simulations, as well as later simulations performed by Andy Kraynik.

The difference is very small, and hence due to numerical noise in our prelim-

inary simulations some points near the endpoints lie below 0 here.

2.4.6 Visualization of kinks

It may be easier to picture the relaxation of the kinks, as sketched in Fig. 2.23

in terms of the vertical Plateau borders surrounding the bubble. In Fig. 2.30

we sketch this same relaxation as it appears in the dividing plane.

From our Surface Evolver simulation we can obtain the shape of the inter-

section of the bubble surface with the dividing plane to further visualize the

mechanism by which the relaxing of the kinks in the bubble surface allows

our trial hcp surface to be relaxed to obtain a lower energy.

Fig. 2.31 shows such a cross section for fcc and hcp bubbles — we show

only part of it, as the rest is equivalent by symmetry. While the shapes of the

twofigures are clearly very similar, we do indeed see that some relaxation has

occurred in the hcp bubble compared with the reflected fcc bubble which we

described earlier: namely, three of the vertical Plateau borders have grown

in area and three have shrunk. This is manifested as the hcp bubble lying

outside the fcc at one vertex and inside it at the other.
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Figure 2.30: An exaggerated sketch of the intersection of the bubble with the

dividing plane. The ‘trial surface’ for hcp, in black, is created from reflecting

an fcc bubble. After relaxation of the kinks in the bubble we arrive at the true

hcp surface, in red.
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Figure 2.31: The intersection of fcc and hcp bubbles with the dividing plane

(as marked in Fig. 2.22) as calculated by Surface Evolver at φ = 0.12. Here

the normalization is such that the undeformed bubble had diameter = 1.
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Figure 2.32: Zoomed in views of the areas marked in Fig. 2.31. In (a) we

see that the relaxed hcp surface lies inside the fcc surface, and vice versa in

(b). We have rotated (b) by −30◦ for comparison with (a). We may estimate

the energy difference between the two bubbles by considering the size of the

gaps between the two surfaces. Note that at this zoom level it is visible that

the surface is piecewise linear, as represented in Surface Evolver.
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In Fig. 2.32 we zoom in on the two areas marked in Fig. 2.31, in which the

two surfaces differ most. The behaviour sketched in Fig. 2.30 is clearly visible

in these views.

2.5 Conclusion

Wehave proven that the preference observed in experiments and simulations

for fcc ordering over hcp ordering is not due to any energetic advantage. The

source of the preference is to some extent still not understood.

The argument presented by Heitkam et al. [43] based on the idea that

hcp regions are more easily destroyed by the impact of new bubbles is com-

pelling, but as stated seems only to apply to the case where a stream of bub-

bles is incident on a single point: it does not account for a layer-by-layer de-

position process.

Luchnikov et al. [40] studied the evolution of an ensemble of hard spheres

usingmolecular dynamics simulations. They found that an initial slight pref-

erence for fcc over hcp evolved over time into a 100% dominance of fcc. They

refer to it as a kinetic state, which is not stable thermodynamically. Perhaps

if an experiment similar to the lifetime experiment were allowed to run for a

much longer time, such a trend would begin to emerge in the relative abun-

dances of fcc and hcp.

We still cannot account for the trend seen in the lifetime experiment, in

which the amount of ordering spontaneously increases day by day. The small

amount of coarsening which occurred despite the presence of non-diffusing

gas may play a role.
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The Cone Model

3.1 Introduction

3.1.1 Motivation

The variation of the energy, i.e. surface area, of a bubble as it is deformed in

a foam, is vital in understanding the physics of a foam — although, as we

saw in the previous chapter, energy alone cannot account for the dominant

structure.

In view of this, computational methods, in particular the Surface Evolver

[5], are invaluable tools. Given appropriate initial conditions, Surface Evolver

can compute a minimal surface area to a high degree of accuracy. Such nu-

merical results, however useful, perhaps fail to provide a more general un-

derstanding of the forms of bubble–bubble interactions. For this reason, we

seek simpler representations: simplified models, analytic expansions and, as

we will see, analytic approximations, which provide more general insights

into the form of the interactions between bubbles.

Morse and Witten in 1993 [50] considered the case of a droplet (analo-

gous to a bubble) being weakly compressed between neighbours which are

arranged in an ordered manner. They found that the form of the forces in-

volved featured logarithmic terms; however they note that the expansions

are only valid for small deformations.

The soft disk model, formulated by Durian in 1995 [51], is an example of a

model which attempts to simplify the complex interaction between bubbles.
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It is a 2dmodel in which bubbles are represented by disks which are allowed

to overlap. The repulsive force between them is harmonic, with spring con-

stant related to the bubble radii. This greatly simplified model allows fairly

large ensembles of bubbles to be simulated, and useful quantities such as

shear moduli to be calculated.

In 1996 Lacasse et al. [52] employed Surface Evolver to obtain curves for

various crystalline arrangements of droplets, and computed power-law ex-

ponents for the bubble–bubble interactions. They found that the variation

of energy with bubble separation can be well approximated by a power law

with exponent of 2.2; in other words, it cannot be accurately described as har-

monic. In a later paper [53] they also derived an analytic form for the shape,

and hence surface area, of a droplet in 3d being compressed between two

parallel plates. They highlight the presence of logarithmic terms in the en-

ergy, as described by Morse and Witten [50], which cannot be accounted for

by purely power-law type approximations.

This chapter concerns the cone model, an analytic model which attempts

to provide analytic forms for the energy of a bubble as it is deformed by its

neighbours. We put its direct predictions to the test by comparison with ap-

propriate Surface Evolver simulations, as well as using themodel to calculate

various physical quantities, which can then be compared with appropriate

experimental data.

3.1.2 Formulation

The cone model is a mathematical formulation which provides analytic approx-

imations for the energy of a bubble as a function of in a foam as a function of

liquid fraction. It was initially inspired by Ziman’s 1961 work concerning the

electrical properties of metals [54], in particular his treatment of the Fermi

surface of copper.

The simplest case of the cone model is for a bubble which has Z planar

contacts which are all equivalent [55]. We split the bubble surface into Z

equal sections: one for each contact, as shown for the case of an fcc bubble
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Figure 3.1: A bubble in an fcc-ordered foam. The directions of its neighbours

are shown in red. The black lines on the surface divide it into 12 equivalent

sections: one for each neighbour.

(Z = 12) in Fig. 3.1. Since we have imposed that the contacts are all equiva-

lent, minimizing the surface area of the bubble is equivalent to minimizing

the surface area of any one of these sections.

We approximate each of these sections as possessing rotational symmetry

around the linewhich connects the bubble centres. This approximation is the

essence of the cone model: it reduces the complex multidimensional prob-

lem of minimization of bubble surface area to a much simpler minimization

problem in one dimension. This allows us to arrive at an analytic approxi-

mation for the energy of the bubble.

Fig. 3.2 is a visualization of the approximation of the sections of bubble

surface as cones. It is important to note here that if one were to place these

circular cones in the positions of the original sections, theywould necessarily

‘overlap’. This is due to the fact that each cone possesses the same volume

and solid angle as the section which it approximates — we want the entire

bubble surface to be represented by our cones.
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(a) (b)

Figure 3.2: (a) We split a bubble in an fcc foam into 12 identical pieces, as

in Fig. 3.1. (b) Under the cone model, we approximate each piece as being

centrally symmetric.

We leave the derivation of the cone model expressions to Appendix B,

but note that we arrive at analytic forms, in terms of elliptic integrals, for the

excess energy ε (as defined in (1.7)), in terms of the radius δ of the circular

contact, as shown in Fig. 3.3(b).

While δ is a useful parameter in the derivation of the cone model expres-

sions, it is not particularly practical when comparing results to simulation or

experiment. Thankfully, the cone model also provides analytic expressions

for the deformation ξ. Deformation is a dimensionlessmeasure of bubble com-

pression; it is defined as

ξ = 1− R ′

R
(3.1)

where R is the radius of the undeformed cone, and R ′ is the height of the

deformed cone, as shown in Fig. 3.3. For an undeformed bubble, R ′ = R and

we recover ξ = 0, as we expect.

The cone model yields expressions for ξ and ε, both in terms of δ. From

here we will avoid dealing with δ, and talk in terms of ε(ξ).
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(a)
(b)

Figure 3.3: Cross sections of undeformed and deformed cones. (a) R is the

radius of an undeformed cone. (b) The height R ′ of a deformed cone is the

distance from its apex to the contact, and δ is the radius of the contact.

Figure 3.4: The Z = 2 case of the Z-cone model corresponds to a bubble

compressed between two parallel plates, shown here in cross section. The

system is rotationally symmetric and hence the cone model is exact.

3.2 Simple tests

3.2.1 Parallel plates

For Z = 2, the Z-cone model is not an approximation. A bubble with two

contacts — which we visualize as ‘plates’ in Fig. 3.4 — consists of two equal

parts, each of which is rotationally symmetric. Since the only approximation

made in the derivation of the Z-cone model is that the cones are rotationally

symmetric, our results in this case should be exact. Hence we have an ideal

testing ground for the model: we can simulate this setup in Surface Evolver

and verify that the results for ε(ξ) match.
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Figure 3.5: Excess energy as a function of deformation for Z = 2. We see

agreement between Surface Evolver simulations and the Z-cone model.

In practice the ‘plates’ are implemented in Surface Evolver as constraint

planes. To each vertex, edge and facet is added the restriction it must lie

between the two planes, and the energy of the bubble is minimized subject

to these additional constraints.

Fig. 3.5 shows a plot of the excess energy ε, as obtained from both the

Z-cone model expression and Surface Evolver simulation results, for a very

wide range of deformations ξ: note that when ξ = 0.9 the bubble has been

flattened to one-tenth its original height. The difference between the values

obtained from Surface Evolver and the model are of the order of 10−5: a dif-

ference of this size may be atrributable solely to the error introduced when

we approximate the smooth surface as a mesh of triangles, and so we may

say that the simulations do indeed agree with the analytic predictions of the

Z-cone model, as we expect. We note here that this result is the same as that

of Lacasse et al. in 1996 [53].
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(a) (b)

Figure 3.6: (a) Plates arranged as the faces of a cube for Z = 6, and (b) as the

faces of a regular dodecahedron for Z = 12.

3.2.2 Platonic solids

The Z-cone model applies to bubbles whose contacts are all equivalent. A

natural next step in testing its predictions is setting up arrangements of con-

tacts whose positions correspond to the faces of Platonic solids. Herewe con-

sider the cube (Z = 6) and the regular (pentagonal) dodecahedron (Z = 12).

Again we can visualize the simulations as consisting of a bubble being com-

pressed by plates, as illustrated in Fig. 3.6.

Figs. 3.7 and 3.8 show the results of Surface Evolver simulations as com-

pared to the Z-cone model’s analytic predictions. We see good agreement

between theory and simulation over the full range of ξ— it is not exact, as in

the Z = 2 case, since the contacts are not rotationally symmetric here.

We note that the Z-cone model is more accurate for low deformations ξ.

This is to be expected, as at low ξ the contacts are very close to being perfectly

circular. It is only as ξ is increased that we can no longer think of the contacts

as being isolated from one another: the deformation induced by the plates

spreads across the bubble surface, causing an interaction of sorts between the

contacts which changes their shape to become less round.
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Figure 3.7: Excess energy as a function of deformation for cubic arrangement

of contacts. We see that the cone model is less accurate at high deformations

ξ.
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Figure 3.8: Excess energy as a function of deformation for dodecahedral ar-

rangement of contacts. Again, the cone model is less accurate at higher de-

formations, however the agreement is generally better than the cubic case

shown in Fig. 3.7
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Figure 3.9: Excess energy as a function of deformation for a bubble in an fcc

foam.

3.3 Application to fcc foam

3.3.1 Energy

The test cases described above are useful tests of the accuracy of the Z-cone

model. However, they are not truly representative of bubbles in foams! The

regular dodecahedron does not tile space, and the simple cubic foam is un-

stable for all liquid fractions [56].

Hence we look to the face-centred cubic structure. A bubble in an fcc-

ordered foam has 12 equivalent contacts, so its energy may be estimated us-

ing the Z-cone model. Once again we simulate the bubble using constraint

planes in Surface Evolver: the plate positions can be seen in Fig. 2.28(a). As

we increase the deformation, i.e.move the plates inwards, the bubble’s shape

approaches that of a rhombic dodecahedron, as we saw in the previous chap-

ter.

Fig. 3.9 shows the variation of excess energy with deformation for an fcc

bubble. Once again, the Z-cone model provides a good approximation to the

results of our simulation. Here the agreement is not as good as the case of the

regular dodecahedron. Consider the shape of the contacts at maximum de-
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formation — i.e., when the bubbles are completely polyhedral — the regular

dodecahedron’s faces are regular pentagons, whereas the fcc bubble’s faces

are rhombi. The approximation of rotational symmetry is more accurate in

the case of the pentagon.

3.3.2 Liquid fraction

Now that we are dealing with a bubble in a foam, it is perhaps more useful

to speak in terms of liquid fraction rather than deformation. For our simu-

lations this is simple: we consider the ratio of the bubble volume to the cell

bounded by the constraint planes:

φ = 1− Vbubble

Vcell
. (3.2)

For the cone model, φ may be linked to ξ by a geometrical argument [55],

yielding the relation

φ = 1− 1− φc
(1− ξ)3 . (3.3)

φc is the critical liquid fraction, as before. For the cone model we obtain a

value for φc by considering the volumes of the undeformed spherical cone

and the circular cone which contains it. After some simple trigonometry we

arrive at the approximation

φc =
3− 4/Z
Z− 1 . (3.4)

Note that this gives φc = 8/33 ≈ 0.24 for a bubble with 12 contacts: this is

close to the true value for an fcc foam; φc = 1− π/
√
18 ≈ 0.26.

Using (3.3) we can reframe the data shown in Fig. 3.9 in terms ofφ, giving

the plot shown in Fig. 3.10. We see that despite the approximation introduced

to convert ξ to φ we still see good agreement over the full range.

3.4 Curved interfaces

3.4.1 Curved plates

So far, we have applied the cone model to monodisperse ordered foams.

Bubble–bubble contacts in monodisperse foams have zero mean curvature,
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Figure 3.10: Excess energy as a function of liquid fraction for a bubble in an

fcc foam.

and so under our approximation of rotational symmetry we have taken them

to be planar. In general, the mean curvature of the contact is determined by

the difference in pressures between the two bubbles via the Young–Laplace

equation, as described in Section 1.1.8. Under the approximation of rota-

tional symmetry, the shape of the interface is a spherical cap, with radius of

curvature Rc given by

Rc =
4γ
∆P

. (3.5)

Such curved interfaces are seen in bidisperse ordered foams, in which bubbles

of two distinct sizes are carefully arranged into an ordered structure. Exper-

imentally bidisperse foams have been produced using pyramidal containers

with carefully chosen opening angles [56].

The derivations of the expressions for ε and ξ in the Z-cone model can be

adapted to deal with such a curved interface, and we arrive at analytic forms

once again [57]: we leave the details to Appendix B.

We can test the validity of these new forms by simulating the simple case

of Z = 2 in Surface Evolver. We represent the curved contacts as spherical

constraints, as sketched in Fig. 3.11. Note that the setup shown in Fig. 3.11
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(a)
(b)

Figure 3.11: Illustration of our simulation setup for Z = 2 with curved inter-

faces: a bubble is compressed between two spherical plates of radius Rc. (a)

Rc > 0. (b) Rc < 0.

(b) is unstable: the bubble can ‘slip out’ between the plates as they aremoved

inwards. For this reason we impose symmetry around the vertical axis: we

only simulate one quarter of the bubble, which acts to hold the bubble in

place, eliminating this possible instability.

In Fig. 3.12 we plot the variation of excess energy with deformation for

two cases of curved contacts: Rc = 3R and Rc = −3R — the positive case

being contacts which curve ‘outwards’, the negative ‘inwards’. In both cases

we see excellent agreement between the cone model theory and the results

of our simulations. However we do not see exact agreement as we did in

the case of Z = 2 with flat contacts (Fig. 3.5). This is due to the fact that an

approximation is introduced into the definition of ξ to account for the curved

contacts. Nonetheless here the difference between theory and simulation is

< 3% for Rc = 3R and < 8% for Rc = −3R over the entire respective ranges

of ξ.

3.4.2 Bidisperse cubic

Fig. 3.13(a) shows an illustration of a simple cubic structure with bidisperse

bubbles: note that each small bubble has 6 contacts which are all large. The

conemodelwith curved interfaces applies to these bubbles. Fig 3.13(b) shows

a simulation of a single bubble flattened by 6 spherical caps with Rc = 3R. In
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Figure 3.12: Variation of excess energy εwith deformation ξ for a bubblewith

two curved contacts, as in Fig. 3.11. Solid lines are cone model expressions;

points are results of Surface Evolver simulation. Over the full range of ξ we

see good agreement between theory and simulation.

(a)

(b)

Figure 3.13: (a) A bidisperse simple cubic structure, shown here at φ = φc:

each large bubble has 6 small contacts and vice versa. (b) Simulation of a single

bubble with 6 contacts, curving outwards. This represents a small bubble in

(a), for φ < φc.
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Figure 3.14: Variation of excess energy εwith deformation ξ for a bubblewith

6 curved contacts, with radius of curvature Rc = 3R. The bubble is pictured

at ξ = 0.1 in Fig. 3.13(b)

Fig. 3.14 we plot ε as a function of ξ, comparing the results of this simulation

to the conemodel predictions. We see excellent agreement over the full range

of ξ.

Bidisperse foams are frequently employed in two-dimensional rheolog-

ical experiments and simulations [58, 59]. They are useful in this context

since monodisperse 2d foams crystallize spontaneously and hence topologi-

cal rearrangements are rare. There has been relatively little work focusing on

bidisperse foams in three dimensions. Treatment of 3d bidisperse foams has

thus far primarily focused on dry disordered foams [60, 61].

It has been shown that it is possible, though difficult, to create ordered

polydisperse wet foams using appropriate containers [56], and foams which

are initially monodisperse have been seen to spontaneously evolve into a

bidisperse regime atφ ≈ 0.05 [62]. In addition, a dynamical process has been

observed in crystalline foams exposed to air, inwhich bubbles in the top layer

repeatedly shrink and occupy the spaces between the bubbles below, forming

a bidisperse top layer, before eventually disappearing completely [63]. This
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Figure 3.15: ε/ξ2 as a function of deformation ξ for a bubble in an fcc foam:

Z = 12. Note that near ξ = 0 there is visible noise in the Surface Evolver

data. This is due to the fact that the small amount of numerical noise in ε is

magnified when divided by very small ξ2.

process is seen to repeat multiple times.

An analytic approach to the estimation of the energies of such wet bidis-

perse foams as a function of their liquid fraction may be of use in analysing

the stability of such structures.

3.5 Applications of the Z-cone model

3.5.1 Interaction potential

The exact form of the interaction between bubbles in a foam is not fully un-

derstood. As we mentioned in Section 3.1.1, the interaction has sometimes

been approximated as harmonic, i.e. Hookean [64]:

ε = k ξ2, (3.6)

for some spring constant kwhich depends somehow on the physical proper-

ties of the foam. Indeed, the curve obtained for the fcc case of Z = 12, shown

in Fig. 3.9, looks to the eye like a quadratic curve.
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Figure 3.16: log–log plot of ε/ξ2 as a function of deformation as obtained, as

obtained from the Z-cone model for Z = 6 and Z = 12. A line of slope 2.2

is plotted as a guide to the eye. For intermediate values of Z we see similar

slopes; they are not included here for the sake of clarity.

In Fig. 3.15, we plot ε/ξ2 vs. ξ. If the interaction predicted by the model

were truly harmonic, ε/ξ2 would equal k for all values of ξ, i.e. a horizontal

line on this plot.

Clearly the behaviour of bubbles under the cone model cannot be accu-

rately described as a Hookean interaction.

In Fig. 3.16 we plot ε as a function of ξ on a log–log plot for a range of

values of Z. This confirms that an exponent of 2 is not a satisfactory descrip-

tion of the cone–cone interaction. The exponent which best fits the data is

α ≈ 2.2, in line with results from Lacasse et al., who reported exponents α

ranging from 2.1 to 2.5, depending onZ. Interestingly, under the conemodel,

the exponent does not seem to depend on Z to any significant degree.
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Figure 3.17: The inflection point on a plot of ε/ξ2 vs. ξ may be considered

the point at which the graph is flattest: we refer to the value of ε/ξ2 at this

point as an effective spring constant keff.

3.5.2 Spring constants

While we have shown that a harmonicmodel does not fully describe the vari-

ation of energy with deformation for the Z-cone model, it has been used by

others in the past, due at least in part to its computational efficiency. For ex-

ample, Durian approximates bubble–bubble interactions as harmonic in the

bubble model [65]. For this reason we compute an effective spring constant keff
for the interaction.

Fig. 3.17 shows ε/ξ2 as a function of ξ for a range of coordination numbers

Z = 4, 5, . . . 12. On each curve we mark the inflection point: that point at

which the second derivative is zero, and hence at which the slope is at its

minimum. This may be considered the point at which the curve is ‘flattest’,

and hence at which the approximation of harmonicity is best, at least locally.

By evaluating ξ/ε2 at the inflection point for each value of Z we obtain

keff(Z), which we plot in Fig. 3.18. We see a relationship which is very close
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Figure 3.18: The effective spring constants for different coordination num-

bers, as computed in Fig. 3.17: keff increases linearly with Z.

to linear. The line of best fit is:

keff = 0.21(Z− 0.75). (3.7)

This means that as the coordination number of a bubble is increased, the

interaction with its neighbours becomes ‘stiffer’.

Lacasse et al. [53] suggest that bubble–bubble interactionsmay be pictured

as a harmonic interaction with effective spring constant disappearing as Z→

0. We note that an alternative fit to the data,

keff = 0.15Z1.11 (3.8)

does vanish at Z = 0, and is an equally good fit: the lines are not distinguish-

able over the range shown in Fig. 3.18.

3.5.3 Osmotic pressure

We now turn to the osmotic pressureΠ, as defined in Section 1.1.11. It is pos-

sible to measure the osmotic pressure of a foam experimentally, in contrast

to the variables which the cone model directly predicts (e.g. the surface area

of a bubble within a foam, etc.).
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Dimensional analysis reveals thatΠ scales as γ/R, where R is the radius of

a bubble. Hence we deal instead with the reduced osmotic pressure, Π̃, defined

as

Π̃ =
Π

γ/R
. (3.9)

The reduced osmotic pressure is a dimensionless quantity which depends

not on the physical properties of the foam itself, but more generally on the

geometric effect of increasing a bubble’s surface area. Höhler et al. [9] studied

the osmotic pressure of ordered foams in experiments as well as simulations,

and arrived at an empirical expression which describes the behaviour of Π̃

over a wide range of liquid fractions:

Π̃(φ) = k
(φ− φc)

2
√
φ

, (3.10)

where k is a constant which depends on the structure of the foam. For an

ordered foam, k = 7.3 and φc ≈ 0.26.

We can derive an expression for the osmotic pressure as a function from

the cone model by considering a convenient definition of osmotic pressure,

namely

Π = −

(
∂E

∂V

)
Vg

. (3.11)

In other words, the osmotic pressure is the partial derivative of the total en-

ergy of the foamwith respect to its volume, when the volume of gasVg is kept

constant. This can be rewritten in terms of excess energy and liquid fraction

as

Π̃(φ) = −3(1− φ)2 ∂ε
∂φ

. (3.12)

In Fig. 3.19weplot the reduced osmotic pressure Π̃ as obtained from (3.12)

using ε(φ) from the Z-cone model with Z = 12, along with the empirical

form from (3.10). Asφ→ 0, the form obtained from the conemodel diverges

quicker than the empirical form, and so the difference between the two curves

too diverges. However for φ > 0.01, the difference between the two values

does not exceed 0.12.
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Figure 3.19: The reduced osmotic pressure Π̃, as derived from the conemodel

expressions for excess energy, compared with the empirical form (3.10) from

[9]. We see good agreement over a wide range of liquid fractions.

3.5.4 Liquid fraction profile

We can go one step furtherwith our expression for reduced osmotic pressure,

and use it to derive a liquid fraction profile for an ordered foam.

Here we speak in terms of the reduced height x̃ in the foam, defined as

x̃ =
x

l0
2/R

, (3.13)

where x is the height as measured from the foam–liquid interface (giving

φ = φc at x̃ = 0), R is the bubble radius1 and l0 is the capillary length of the

liquid; l02 = γ/(ρg); γ being surface tension, ρ the density of the liquid and

g the acceleration due to gravity, as described in Section 1.1.9.

The local liquid fraction at a height x̃ in a foam may be related to the

osmotic pressure by

dΠ̃ = (1− φ(x̃))dx̃. (3.14)

Expanding (3.14) into partial derivatives yields
∂φ

∂x̃
=

1− φ(x̃)
∂Π̃/∂φ

, (3.15)

1here we are considering a monodisperse foam: in the case of polydisperse foams one
uses the Sauter mean radius R32, defined as 〈R3〉/〈R2〉.
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Figure 3.20: The variation of liquid fraction φ with reduced height x̃. The

curve obtained from the Z-cone model, with Z = 12, agrees well with an

empirically obtained curve for ordered foams, as well as with experimental

data from an emulsion of oil in water.

with the boundary condition that φ(0) = φc.

As before, we can use the Z-cone model to obtain an expression for Π̃(φ)

via (3.12), and hence an expression for ∂Π̃/∂φ, as required in the denomina-

tor of (3.15). Therefore we can integrate this up from x̃ = 0 to yield a full

liquid fraction profile of the foam.

As a means of comparison we turn again to the empirical form of Höhler

et al.. One can derive from (3.10) a somewhat unwieldy expression for the

reduced height x̃ in terms of the liquid fraction φ:

x̃ = k

[
(
√
φc −

√
φ)

(
3+

√
φ3
c√
φ

)
+

+
1
2(3− 2φc − φ2

c) log
(
(
√
φ+ 1)(

√
φc − 1)

(
√
φ− 1)(

√
φc + 1)

)]
,

(3.16)

where again we use the parameters k = 7.3 and φc = 0.26 for an ordered

foam.

In Fig. 3.20we plotφ as a function of x̃ as obtained from theZ-conemodel,
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compared with the empirically derived expression of Eq. (3.16). We use the

parameters previously mentioned for an ordered foam, as well as those ob-

tained by Maestro et al. for polydisperse disordered foams [66]. In addition,

we plot results obtined for polydisperse emulsions of paraffin oil in water, as

measured directly by Princen and Kiss [67].

We keep Z constant for the sake of simplicity and to obtain analytic ex-

pressions; we note that in a real foam 〈Z〉 decreases steadily as we increase

φ, as shown by Jorjadze et al. [64]. Despite this we see good agreement for

Z = 12. For comparison we show the curve obtained by setting Z = 6 in the

Z-cone model, as is the case for a disordered monodisperse foam at the wet

limit. As one would expect this overestimates the empirical and experimen-

tal values.

3.5.5 Surface liquid fraction

It is simple to measure the average liquid fraction of a foam sample experi-

mentally. If a known volume of liquid is used in generating the foam, then

the volume of the foam can be read off e.g. a graduated cylinder, immediately

yielding an average value of φ.

There exist severalmethods formeasuring the local liquid fraction at a cer-

tain height. These include measurement of electrical conductivity across the

foam using electrodes [68], measurement of optical scattering [69], and even

measurement of X-ray transmission [33, 70]. These methods are much more

awkward than the straightforward determination of average liquid fraction.

The surface liquid fraction, denoted φs, of a foam in a container is the frac-

tion of the walls of the container which is coated by liquid. This quantity can

be measured experimentally by imaging the surface of a container of foam

using a telecentric lens and a 45◦ prism [71]. This method produces clear im-

ages of very high contrast from which φc is readily obtained through simple

image binarization, with errors of < 5%.

Since surface liquid fraction is easier tomeasure than local liquid fraction,

an expression relating φ with φs is of great use experimentally. Via consid-
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Figure 3.21: Variation of surface liquid fraction φs with liquid fraction φ,

as derived from the Z-cone model for various values of Z, compared with

experimental data from Drenckhan et al.

eration of osmotic and capillary pressures in the foam, one arrives at such an

expression [72]:
1− φ
1− φs

= 1+ 2
3
E

ΠV
. (3.17)

As noted in Section 1.1.11, Π→ 0 in the wet limit φ→ φc. Hence in the wet

limit, φs → 1: the surface is completely covered by liquid. This is intuitively

understood when one notes that bubbles are spheres at φc, and hence any

contact between a bubble and the surface consists of a single point, yielding

a total area of 0.

(3.17) can be nondimensionalized to give

1− φ
1− φs(φ)

= 1+ 2(1+ ε(φ))
Π̃(φ)

. (3.18)

We see that the relationship between φ and φc depends only on ε(φ) and

Π̃(φ)— these are both quantities which can be provided by the cone model,

and so we can obtain a curve relating φc to φ analytically.

The question remains as to what value of Z is appropriate. The contact

number Z of a bubble in a foam depends on the liquid fraction and the poly-
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dispersity, as well as the degree of ordering in the foam, and can vary from

6, for a random wet foam, to 13.4 for an idealized dry foam [20].

In Fig. 3.21 we plot φs as a function of φ as obtained from the Z-cone

model for various values of Z, along with experimental data from Drenck-

han et al. [72]. Least-squares fitting yields Z = 7.8 as the best fit to the ex-

perimental data: this makes some sense intuitively, as it lies between these

upper and lower limits. It is worth noting that the experimental data cov-

ers a range of dispersities, so it is perhaps surprising that the Z-cone curve

is satisfactory to describe the data. This may be explained by the fact that

for an ordered foam, the form of Π is relatively independent of what type

of structure is present [19]. It should be noted, however, that ordered and

disordered foams have distinct osmotic pressures at higher liquid fractions

since they must approach 0 at different values of φ.

3.6 Kelvin foam

3.6.1 Motivation

As discussed in Section 1.1.5, ordered foams below a liquid fraction φ . 0.1

do not tend to have bubbles arranged in the face-centred cubic arrangement.

In the dry regime, it is the body-centred cubic (bcc) arrangement, also called

the Kelvin foam, which is energetically favourable. The Z-cone model, as de-

scribed above, is not directly applicable to the bcc structure, for two reasons.

Firsly, we note that in a bcc foam at φ = 0, each bubble has 14 contacts:

8 nearest neighbours, in the 〈1 1 1〉 directions2, and 6 next-to-nearest neigh-

bours, in the 〈1 0 0〉 directions. The distance to next-to-nearest neighbours

is 2/
√
3 ≈ 1.15× the distance to nearest neighbours. These directions and

distances are shown in Fig. 3.22(a). Fig. 3.22(b) shows the shape of a bubble

at φ = 0. Clearly the contacts are not all equivalent, and so already we have

violated one of the requirements for validity of the Z-cone model.
2Here we are using the convention that 〈hk `〉 refers to the direction (h,k, `) in terms of

the direct unit vectors, as well as all directions which are equivalent by symmetry [73].
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(a)

(b)

Figure 3.22: (a) A bubble in a Kelvin foam has 8 nearest neighbours in the

〈1 1 1〉 directions (red) and 6 next-to-nearest neighbours, in the 〈1 0 0〉 direc-

tions (blue). (b) In the dry limit, the nearest neighbours correspond to the

hexagonal faces and the next-to-nearest neighbours to the square faces.

(a) (b)

Figure 3.23: Surface Evolver simulations of equilibrium bubble shapes in a

wet bcc foam; centres of neighbouring bubbles are marked. (a) For liquid

fraction φ < φ∗ (φ = 0.05 here) there are two sets of contacts, corresponding

to the (dry) hexagonal 〈1 1 1〉 and square 〈1 0 0〉 faces. (b) Whenφ exceedsφ∗

(φ = 0.15 here) the square contacts are lost.
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Secondly, we note that when the liquid fraction is increased above a cer-

tain point, the 〈1 0 0〉 contacts are lost, leaving the bubble with only 8 of its

14 contacts. We will denote this intermediate critical liquid fraction by φ∗

here. Fig. 3.23 shows examples, created using Surface Evolver, of a bubble

in a bcc foam for the two cases of φ < φ∗ and φ > φ∗. So not only are the

contacts not all equivalent for a bcc bubble, we find that Z is not constant!

This loss of contacts is itself a motivation for attempting to treat the bcc foam

analytically: it is a well-defined structure that can be used for the study of

a general feature of foams: namely, the gain or loss of a face at some critical

liquid fraction.

From Surface Evolver we find φ∗ ≈ 0.107. This corresponds roughly

to the point at which the bcc structure is no longer stable for an ordered

foam: Weaire et al. first suggested in 1993 [47] that this loss of next-to-nearest-

neighbour contacts may be the mechanism by which the bcc foam becomes

unstable. Here we discuss the energy of a bcc-ordered foam over the full

range of liquid fractions 0 6 φ 6 φc, neglecting this instability, just as we

did for fcc.

Part of ourmotivation concerns the details of the variation of energy close

to the liquid fraction at which contact is lost with the six neighbours in the

〈1 0 0〉 directions. Such subtle questions are difficult to pursue with Surface

Evolver simulations, due to the high level of precision required, and it was

expected that the extended conemodel would shed some light on thematter.

Among other things, it should bear on the precise position and nature of the

instability associated with the loss of 〈1 0 0〉 contacts.

3.6.2 Direct application of Z-cone model

Despite these difficulties, it is worth investigating howwell theZ-conemodel

can approximate the energy of a bcc foam, if at all.

At φ < φ∗ a bubble in a bcc foam has 14 contacts; at φ > φ∗ it has 8.

Hence onemight assume that usingZ = 14 orZ = 8 in theZ-conemodelmay

approximate the energy of such a bubble over some range. In Fig. 3.24we plot
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Figure 3.24: Applying the Z-conemodel to a bubble in a bcc foam. Evidently,

neither Z = 8 or Z = 14 captures the variation of energy with liquid fraction

adequately over any appreciable range. The energy does however lie closer

to the Z = 14 curve in the dry limit and the Z = 8 curve in the wet limit, as

one might expect.

ε vs. φ as obtained from a Surface Evolver simulation, as well as the curves

obtained from the Z-cone model for Z = 8 and Z = 14. Evidently, neither

value of Z adequately describes the form of the energy, although broadly one

could say that the true curve lies closer to the Z = 14 curve in the dry limit

and closer to the Z = 8 curve in the wet limit, in line with what one would

expect to observe.

In fact, the value of Z which best approximates ε(φ) for bcc is Z = 10.5,

as shown in Fig. 3.25. In some sense this is not physical, as Z should refer to

the integer number of contacts per bubble. However we know that the ε(φ)

curves vary smoothly with Z, so we can read this as representing some sort

of an ‘average’ coordination number over the full range of liquid fractions.

3.6.3 Extension of Z-cone model

Fig. 3.26 shows a sketch of howwe adapt the Z-cone model to account for the

behaviour of a bcc bubble. In short, the bubble surface is split into 14 pieces
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Figure 3.25: The value of Z which results in the best Z-cone approximation

to the energy of a bubble in a bcc foam obtainable is Z = 10.5.

(a) (b)

Figure 3.26: (a) The surface of a bubble in a bcc foam, shown here unde-

formed, i.e. at φ = φc, can be split up into 14 parts: 8 bounded by hexagons,

corresponding to the 〈1 1 1〉 contacts, and 6 bounded by squares, correspond-

ing to the 〈1 0 0〉 contacts. (b) In the conemodel, each of these is approximated

as a circular cone. The total surface area of the caps of the cones is minimized

subject to appropriate constraints.
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Figure 3.27: Tomodel the Kelvin foam, the conemodel requires two different

types of cone, as sketched here. The cones have different opening angles and

deformations, but have the same slant height hs.

of two distinct types: 8 for the 〈1 1 1〉 contacts, and 6 for the 〈1 0 0〉 contacts.

As before, we approximate these as being circular cones, but now the cones

are not all identical.

We obtain a value for the opening angle θ of each type of cone by consider-

ing the solid angle subtended by the corresponding face in the dry structure,

i.e. the truncated octahedron. The deformation ξ now differs for the two sets

of cones, and the volume of each type of cone can vary as φ is varied, but we

require that the slant heights hs of each type of cone match, in order for the

surface to be smooth: this is sketched in Fig. 3.27.

Once again, we leave the full details of the mathematics of the model to

Appendix B, but note that as before, the model yields analytic expressions

for ε and φ.

3.6.4 Results

As before, we test the accuracy of themodel by comparing the values of ε pre-

dicted by the model with those obtained from Surface Evolver simulations,

over the full range of φ.

Fig. 3.28 shows the variation of the dimensionless excess energy ε(φ)with

liquid fraction, obtained from both Surface Evolver and the cone model — a

surprisingly good estimation of the excess energy over the entire range of φ,

with the difference not exceeding one percent of ε0 = ε(0), i.e. the value of ε
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Figure 3.28: Variation of dimensionless excess energy εwith liquid fractionφ

for a bubble in a bcc foam, obtained from Surface Evolver calculations, and its

approximation using the generalized cone model. Increasing φ leads to the

loss of the six square faces. This takes place atφ∗ = 0.108 for Surface Evolver
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on plot.
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Figure 3.29: The difference in excess energy ∆ε between the cone model and

Surface Evolver for bcc, normalized by the dry energy ε0. The maximum

difference is less than 1%.

in the dry limit: this normalized difference is plotted in Fig. 3.29. It is worth

noting thatwe seemuch better agreement here than in the fcc case of the orig-

inal Z-cone model — this is perhaps surprising in view of the fact that extra

approximations need to be made (regarding the heights of the cones, which

are no longer all equal, as described in Appendix B) in order to extend the

model to deal with bcc. However this improved accuracy is explainable by

the fact that we approximate the contacts as circles: the square and hexago-

nal contacts in a bcc foam aremore rotationally symmetric than the rhombi of

an fcc foam. Similarly, for Z = 12 in the original Z-cone model we saw much

better agreement with simulation for a pentagonal dodecahedron than the

rhombic dodecahedron.

The excess energy in the dry limit ε(φ = 0) is found to be ε0 = 0.0970

from the Surface Evolver and ε0,C = 0.0980 from the cone model. The value

of φ at which the square 〈1 0 0〉 contacts vanish is given as φ∗ = 0.108 by the

Surface Evolver, and φ∗cone = 0.092 by the cone model.

It is worth noting that Weaire et al. [47] arrived at a remarkably accurate
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early estimate of φ∗. They approximate all Plateau borders as having a uni-

form cross-sectional area, and hence the liquid fraction going as the square

of the transverse dimension of the Plateau borders. If one thinks of the loss

of faces as arising from the Plateau borders spanning the corresponding face,

the ratio of φc/φ∗ is then given by the square of the ratio of the widths w of

the hexagonal and square faces. whex/wsquare =
√
3 by simple geometry, and

hence φ∗ ≈ φc/3 = 0.108.

The critical liquid fraction for the wet limit is φc = 0.320 for the Kelvin

foam; the cone model arrives at an extremely good approximation φc,cone =

0.319.

Fig. 3.30 shows the variation in area of both square and hexagonal faces

with φ: recall that φ∗ is defined as the point at which the area of the hexag-

onal faces disappears. When φ is very slightly less than φ∗ we encounter

problems in accurately modelling the surface using the Surface Evolver, due

to difficulties in allowing the area of facets to go to zero.

3.6.5 Logarithimic terms in energy

We now turn our attention to the variation of energy with liquid fraction

at each of the two critical points: φ∗cone and φc,cone. In doing so, results are

clearer when viewed in terms of derivatives. We show in Fig. 3.31 the vari-

ation of the derivative dε/dφ with liquid fraction as obtained from the cone

model. The asymptotic behaviour of dε/dφ near the wet limit φ = φc,cone, as

obtained from differentiating the expression from the originalZ-conemodel,

and keeping the highest-order term:

dε
dφ ∼ a

φc,cone − φ

log(φc,cone − φ)
, (3.19)

where a is a constant. This describes the present data well, as one might

expect: see Fig. 3.32(a).

For dε/dφ at φ = φ∗cone we did not succeed in finding an analytical ex-

pression from our new cone model, on account of the numerical procedures
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Figure 3.31: The derivative of excess energy with respect to liquid fraction,

dε/dφ, computed numerically from the conemodel. There is a discontinuity

of slope at φ = φ∗cone ≈ 0.092, i.e. the point at which the square faces are lost.

involved. By trial and error we arrived at the following empirical expression,

which is a good description of the data near φ = φ∗cone (see Fig. 3.32(b)):

dε
dφ ∼ b1 +

b2

(log(φ∗cone − φ))2
, (3.20)

with two parameters b1 < 0 and b2 > 0.

There is a discontinuity of the slope of dε/dφ atφ = φ∗cone, which is clearly

visible in Fig. 3.32(b).

Of note is the presence of logarithmic terms in both expressions, a feature

known from various studies of bubble–bubble interactions [53, 50]. The dis-

crepancy between the two forms (3.19) and (3.20) suggests that results which

describe simple bubble–bubble interactions are not directly applicable to con-

tact losses at intermediate critical liquid fractions, away from the wet limit.

It has been argued that the limit ofmechanical stability of theKelvin struc-

ture is directly attributable to the loss of the square faces [74]. A bcc crystal

of interacting points is well known to require second-nearest-neighbour in-

teractions to stabilize it when simple pairwise potentials are applied [75, 76].
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Figure 3.32: We zoom in on the two regions of interest of Fig. 3.31. (a) Near

φ = φc,cone (the wet limit), the variation of the derivative dε/dφ (points)

is well approximated by the form in Eq. (3.19) (continuous line), obtained

from the simple Z-cone model. (b) Near φ = φ∗cone (loss of square faces),

the variation is quite different, and is reasonably well approximated by the

proposed empirical form of Eq. (3.20) (continuous line).
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This appeared supported by Phelan et al. [7], who found a negative elastic

constant at values of φ > 0.11, i.e. very close to the value of φ = 0.11± 0.005

that these authors identified for the face loss.

3.7 Conclusion

We have shown that the Z-cone model achieves its goal of estimating the en-

ergy of a bubble whose contacts are all flat and equivalent, over a fairly wide

range of liquid fractions. We see the same when we extend it to deal with

curved contacts, i.e. spherical caps here. We have verified this by comparison

with Surface Evolver simulations.

The cone model as extended to deal with the bcc foam is remarkably ac-

curate over the full range of liquid fractions. We see logarithmic terms in the

variation of energy near φ = φc. At φ = φ∗, an empirical expression of a

similar form is a good fit to the data. It is possible to obtain these curves at

arbitrarily high resolution close to critical points.

To this end, the cone model perhaps presents an advantage over simula-

tion methods. Numerical noise hinders the determination of such sensitive

derivatives using the Surface Evolver. Understanding the variation of the en-

ergy of a bcc foam with liquid fraction at our intermediate critical value of

φ∗ may be applicable to the more general phenomenon of the gain and loss

of contacts at intermediate liquid fractions.
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Chapter 4

The Interaction of
Fibres and Foams

4.1 Introduction

In the paper making industry, foam forming is a relatively new manufactur-

ing technique in which the suspension of fibres in water is foamed, before

drying it to form paper [77]. The bubbles act to space out the fibres more

evenly, improving the homogeneity and the strength of the final product.

For this reason, foam forming is of great interest to the papermaking indus-

try. The method is also of interest as a method of producing fibrous material

for thermal insulation. The technique has been known since 1974 [77] but is

of renewed interest recently.

Adding fibres to a liquid foam alters its physical properties (e.g. drainage

rate, bubble size distribution, etc.) significantly. Recent work [78, 79, 80] con-

cerning the interaction of foams and fibres concerned mainly wet foams, i.e.

those with liquid volume fraction φ & 0.2, and focuses on the effect of the

presence of fibres on global properties of the foam.

In this chapter we consider the local effects of fibres on configurations of

soap films. We present two experiments investigating the interaction of a

single fibre with the simplest possible model systems for dry foams: one es-

sentially 2d in character, the other fully 3d. We compare data obtained from

these experiments to that obtained from simulations using Surface Evolver.

We consider the role that this fibre–film interaction may play in the observed
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Figure 4.1: The shortest possible network of lines connecting four points ar-

ranged in a square has lines meeting in threes at 120◦.

reduction of coarsening rates in fibre-laden foams.

We also present some simulations of configurations of cylinders bridged

by liquid drops which wet the cylinder surfaces. Such fibre–liquid–fibre

bridges are present in the microstructure of paper after the drying process,

and act to hold the mesh together. We examine the energy as a function of

fibre separation and angle, as well as considering evaporation rates via com-

putation of the exposed surface area.

4.2 The interaction of fibres and soap films

4.2.1 The effect of fibres in a quasi-2d arrangement of soap
films

Finding the shortest possible length of lines linking a set of 2d points is called

the Steiner problem. Solutions to the Steiner problem consist of sets of straight

lines meeting in threes at angles of 120◦, analagously to Plateau’s second law

[81]. The solution for the vertices of a square is shown in Fig. 4.1. Simple

geometry gives the length L0 of the central line

L0

S
= 1− 1√

3
≈ 0.42, (4.1)

where S is the side length of the square.

Fig. 4.2 shows a simple apparatus consisting of two parallel Perspex plates

bridged by four graphite pins arranged in a square. When it is dipped in a
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Figure 4.2: An experimental analog to Fig. 4.1: two Perspex plates bridged by

graphite pins after being dipped in a soap solution yields the corresponding

arrangement of soap films.

Figure 4.3: A fibre of widthW is inserted into the plane of the central film.

The length L of the film is measured on the top plate, as shown here. The

plates are separated by a distance D, with D < S in our quasi-2d setup.

surfactant solution, the network of films formed between the pins is a Steiner

tree of the same form as Fig. 4.1. Since the arrangement of films mimics the

2d Steiner tree, we refer to this a quasi-2d apparatus. We will use this simple

setup as a first step to investigate the interaction of soap films and fibres.

We place a narrow fibre into the plane of the central film, andmeasure the

variation in the length of the central film as we vary the thickness of the fibre.

Fig. 4.3 shows the definitions of the relevant lengths (i.e. the pin separation

S, the plate separationD, the fibre widthW and the length of the central film

L) for our setup. As a consequence of Plateau’s fourth rule, the soap films
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Figure 4.4: We can vary the aspect ratioD/S of the apparatus. We show here

two extreme cases without a fibre: D/S = 0.17 and D/S = 2 respectively.

must meet the fibre at right angles, resulting in an increase in the length L

as compared to L0, its length in the absence of a fibre. It is important to note

here that L is measured along the top plate here.

Before measuring the variation of film length Lwith fibre thicknessW we

note the following facts from the outset. WhenW = 0 there is no fibre, and

so we have, from earlier, L = L0 ≈ 0.42S. At W = D, the fibre spans the

space between the two plates. We know in this case that the films will meet

the fibre at right angles, giving L = S. Hence, regardless of the aspect ratio

of the setup, we have the theoretical endpoints: L/S = 0.42 atW/D = 0, and

L/S = 1 atW/D = 1.

Experimentally, we introducewoodfibres of variouswidths into the plane

of the central film of the apparatus shown in Fig. 4.2 to obtain values for L/S

between these endpoints. We vary the plate separation D to obtain data for

three different aspect ratios D/S: we illustrate two extreme aspect ratios in

Fig. 4.4.

We will compare the experimental data to that obtained from simulation

using Surface Evolver. The film length L can be output for a range of fibre

widths and aspect ratios. Full details of the simulation are left to Appendix

C.

92



CHAPTER 4. THE INTERACTION OF FIBRES AND FOAMS

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.2  0.4  0.6  0.8  1

L
/S

W/D

D/S = 0.17

D/S = 0.5

D/S = 0.83

D/S = 2

D/S = 5

Figure 4.5: Aswe increase the fibre thicknessW from 0 to its maximumvalue

ofD, the length L of the film, as measured on the top plate, increases from ∼

0.42S to S. The shape of the curve between these endpoints depends strongly

on the aspect ratio D/S.

Fig. 4.5 shows the variation of L/S withW/D, as obtained from our Sur-

face Evolver simulations, along with experimental data from various fibre

widths and aspect ratios. Indeed, the theoretical endpoints are recovered.

The form of the variation of L/S withW/D between the endpoints depends

greatly on the aspect ratio D/S; however, for all three aspect ratios used ex-

perimentally, our simulation accurately predicts the variation of film length

with fibre thickness.

We look to link the various curves obtained for differing aspect ratios. It

turns out that the curves obtained from simulation in Fig. 4.5 can be fairly

well approximated by empirical equations of the form

L

S
= k1 + k2

exp(βW/D) − 1
exp(β) − 1 , (4.2)

with one free parameter β, and constants k1 = 1 − 1/
√
3 and k2 = 1/

√
3.

The theoretical endpoints are fixed by this form, and in the limit β → 0 we

recover a straight line between these endpoints. In Fig. 4.6 we show such fits
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Figure 4.6: For various aspect ratiosD/S, the variation of the film lengthwith

fibre thickness as obtained from simulations (points) can be approximated by

the empirical form (4.2) (solid lines), with only one free parameter β. These

curves represent, β ≈ 0.3, 2.5, 16 respectively.

for three values of D/S. These fits are satiscfactory, especially considering

we only have one free parameter.

Fig. 4.7 shows the variation of the parameter βwith aspect ratioD/S. We

see a roughly linear relationship over the range of aspect ratios we consider.

We note that the limit β→ 0 represents a straight line, supporting our obser-

vation that smaller aspect ratios produce a more linear form.

Despite the initially large number of variables involved, we see that the

response of the central film to the presence of fibres can be fairly well de-

scribed in terms of a single parameter. However we note that the setup is

somewhat artificial, and perhaps not truly representative of the geometry of

films in a foam.

4.2.2 The effect of fibres on a single Plateau border

For amore realistic model system for soap films in a dry foam, wemustmove

to three dimensions. Plateau’s third rule states that in a dry foam, Plateau
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Figure 4.7: The free parameter β which characterizes the variation of film

length with fibre thickness depends on the ratio of plate separation to pin

separation,D/S. Over the range of aspect ratioswe consider here,β increases

approximately linearly with D/S.

borders meet in fours at vertices. We want to look at a single Plateau border

as it appears in a foam, i.e. running from a fourfold node to a fourfold node.

The simplest experimental model system to set up for such a Plateau bor-

der is based on a wire frame in the shape of an equilateral triangular prism:

a familiar model system [82]. Such wire frames have long been used to study

dry foams, dating back to Plateau’s work of 1873. More recently, a cubic wire

frame was used to investigate the stability of eightfold vertices in micrograv-

ity [83].

When the wire frame is dipped into a surfactant solution, a single central

Plateau border is formed, connecting two fourfold Plateau border junctions,

similarly to Plateau borders in a bulk foam. The wire frame is fed from the

top with a burette containing the surfactant solution to prevent drainage of

the film and hence its breakup. This arrangement is shown in Fig. 4.8(a), with

the relevant lengths (the triangle side length C, the height A and the Plateau

border length L0) labelled.

From here on we will normalize lengths by the side length C of the tri-
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(a)

(b)

(c)

Figure 4.8: (a) Ourwire frame apparatus for creating a single isolated Plateau

border. The central Plateau border, of length L0, joins two vertices. (b) Pho-

tograph of our experimental setup; a cylindrical fibre has been introduced

into the central Plateau border. (c) Simulation of experimental setup. Here

one can see that the surface Plateau borders on the fibre are longer than the

original Plateau border length (dashed lines).
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Figure 4.9: The normalized Plateau border length l0 as a function of the frame

aspect ratio a, as obtained experimentally, from simulation, and the theoret-

ical relationship (4.3). The error bars for the experimental data are too small

to be visible here.

angle, defining our aspect ratio a = A/C and a normalized Plateau border

length l0 = L0/C. According to Plateau’s third rule, the Plateau borders meet

at angles of arccos(−1/3) ≈ 109◦. Hence via simple geometry we can deter-

mine the normalized length l0 of the central Plateau border as a function of

the aspect ratio a,

l0 = a−
1√
6
≈ a− 0.41. (4.3)

In Fig. 4.9we plot l0 vs. a as obtained experimentally for several frames, as

obtained from Surface Evolver simulation of the same geometry, along with

the linear relationship (4.3). The Surface Evolver values are all accurate to

the theoretical values to within 10−5, and the experimental data lie within

experimental error of the theoretical values.
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4.2.3 Variation of surface Plateau border lengthwith fibre di-
ameter

When a cylindrical fibre is introduced into the central Plateau border, ash

shown in Fig. 4.8(c) three surface Plateau borders form where the three films

meet the fibre. Surface Plateau borders meet Plateau borders at angles of 90◦,

rather than 109◦. Hence the length of these surface Plateau borders (once

again, normalized by the side length C of the triangle), which we denote l, is

greater than the length l0 of the original central Plateau border. This can be

seen in Fig. 4.8(c).

We find that the surface Plateau border length l depends on the normal-

ized diameter d of the fibre which is introduced into the central Plateau bor-

der, as well as on the aspect ratio a of the frame. However, we can eliminate

the effects of varying aspect ratios by considering the quantity ∆l = l − l0,

i.e. the increase in the length of the Plateau border compared to the length of

the Plateau border in the absence of a fibre.

As before, we compare our experimental data with results from the Sur-

face Evolver program. Details of the simulation are given in Appendix C.2.

In Fig. 4.10 we plot ∆l as a function of d, as obtained from experiments

using a variety of aspect ratios and fibre diameters, along with results from

Surface Evolver simulations (these collapse onto a single line in the plot).

Within experimental error, our simulations correctly predict the length of

the surface Plateau borders.

4.2.4 Variation of Plateau border length with fibre position

We now wish to investigate the behaviour of the surface Plateau borders as

the fibre is perturbed from this central position. To avoid having to deal with

an overwhelming number of variables, from here on we use a frame with

C = 46 mm and A = 69 mm , and use a fibre of diameter 1 mm, giving

a = 1.5, and d ≈ 0.022. We move the fibre along the axis of symmetry of
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Figure 4.10: As fibres with diameter d are introduced into the central Plateau

border, its length increases by an amount ∆l. For various aspect ratios, Sur-

face Evolver simulations accurately predict the variation of ∆lwith d.

the equilateral triangle by a distance x (again normalized by C), as shown in

cross section in Fig. 4.11.

Moving the fibre breaks the threefold rotational symmetry, and so the

surface Plateau borders are not of equal length. We denote the two different

surface Plateau border lengths by l1 and l2. Similarly to before, we define

∆l1 = l1 − l0 and ∆l2 = l2 − l0 to denote their respective increases relative to

the length of the Plateau border when no fibre is present.

Figure 4.11: Wemove the fibre (•) a distance x from the centre of the triangle

(×), normalized by the triangle side length C.
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(a) (b)

Figure 4.12: (a) Moving the fibre from the centre of the triangle (dashed line),

to x = 0.2 here, changes the lengths of the surface Plateau borders: l1 de-

creases and l2 increases. (b) When the fibre is moved beyond a point x > xb
the arrangement of films becomes unstable and the fibre no longer lies in the

Plateau border.

100



CHAPTER 4. THE INTERACTION OF FIBRES AND FOAMS

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

-0.2 -0.15 -0.1 -0.05  0  0.05  0.1  0.15  0.2

C
h

a
n

g
e

 i
n

 P
B

 l
e

n
g

th

Fibre position x

∆l1
∆l2

Figure 4.13: Variation of the normalized change in surface Plateau border

lengths∆l1 and∆l2 as the fibre is moved along the central axis of the triangle.

The datapoints represent experimental data; the solid lines are results from

Surface Evolver. Note that when x = 0, ∆l1 = ∆l2 due to symmetry.

Fig. 4.12(a) shows, for our simulation, the effect of moving the fibre in the

positive x direction, away from its initial central position: the Plateau border

on the leading edge lengthens while those on the trailing edge shorten. In

simulation, when the displacement x exceeds some ‘breaking point’, xb ≈

0.23, the arrangement of films becomes unstable, prompting a topological

change, as shown in Fig. 4.12(b). In our experiments this instability is reached

earlier: the surface Plateau borders begin to ‘pinch off’ preferentially at one

end, implying that this preempting of the transition is due to the fact that the

fibre is not truly perfectly aligned with the frame. In the negative x direction,

the arrangement of films remains stable even as the fibre reaches the edge of

the frame.

In Fig. 4.13 we plot the variation of∆l1 and∆l2 as the fibre is moved in the

x direction, as obtained from Surface Evolver simulations as described above,

and from experiments using the setup shown in Fig. 4.8b. The experimental
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results are the combination of two runs using the same frame and fibre as

before: triangle side C = 46 mm, height A = 69 mm, fibre diameter 1 mm.

The fibre is held in place by a clamp which allows the position of the fibre to

be varied from the central position by ±30 mm.

l2, the length of the ‘leading edge’ as in Fig. 4.12(a), increases monoton-

ically with x: the simulation describes this variation to within experimental

error over the full range of motion of the fibre. Generally, l1 tends to decrease

as the fibre is moved away from its central position. Over most of the range

of xwe see a good approximation of l1; however, it is systematically overesti-

mated for large x. In practical terms, this represents the films peeling off the

fibre earlier for the experiment than for the simulation due to asymmetry, as

discussed above. The simulation data also shows an ‘uptick’ for very large x,

near xb. We have not been able to see this effect in experiment, since we have

not been able to reach such a large value of xwithout the films breaking off.

4.2.5 Variation of energy with fibre position

Having seen that our Surface Evolver simulations have been successful in

modelling the shape of the films as they interact with the fibre in the cases

we examined, we now use the same simulations to compute the area of the

soap films in the presence of fibres: the curvature of the films means that

this quantity is not directly measurable from experiment. We define a di-

mensionless energy E as the total surface area of free films, as reported by

Surface Evolver for each fibre position, normalized by C2, where C is the tri-

angle side length, as before.

In Fig. 4.14 we plot the variation of normalized energy E with fibre posi-

tion x. The minimum value of E is achieved at x = 0, meaning that force acts

to pull the fibre back towards its central position when it is perturbed in the

x direction.

The variation of E with x near x = 0 is quadratic: for small x we have

E(x) ≈ 3.27 + 1.96x2. In other words, for small displacements the action of

the films is comparable to a Hookean spring.
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Figure 4.14: Variation of the total normalized surface area E of the system

with fibre position. The points are data obtained from Surface Evolver; the

line is a quadratic fit for small x. The energy takes aminimum at x = 0mean-

ing that the system is in equilibrium when the fibre is in its central position.

We now turn our attention to x → xb: the breaking point, at which the

films peel off the fibre (as shown in Fig. 4.12(b)). From our simulation, we

have xb ≈ 0.23. We can take a numerical derivative of our dimensionless

E(x) curve to compute the force necessary to induce this transition: we have

E ′(xb) ≈ 0.67, which corresponds to a force of 0.67Cγ (C = 46 mm here).

We can also compute the total energy necessary to move the fibre from

its equilibrium position to xb. E(xb) − E(0) ≈ 0.084, corresponding to an

energy requirement of 0.084C2γ. Note that experimentally the films break off

before the theoretical breaking point is reached, and so the force and energy

required will be somewhat lower than these values.

Wemay compare the magnitude of the force necessary to detach the fibre

from the films to the forces experienced as a result of coarsening. We know

that the Laplace pressure across the surface of a bubble is

∆p =
4γ
R

(4.4)
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whereR is the bubble radius. Ifwe approximate the area of the contact as 1/13

the surface area of the bubble (using here the often-cited ‘ideal’ number of

contacts 〈Z〉 ≈ 13.4, as described in Section 1.1.7), we obtain a corresponding

force

F =
4γ
R
· 4πR

2

13 ≈ 4γR. (4.5)

Our simulations gave a value for the force of 0.67Cγ for the force necessary

for detachment of the fibre. We may assume that C (the side length of the

triangle in the experiment) is of the same order of magnitude as R.

This suggests that the local force due to coarsening is greater than, but of

a similar order of magnitude to, the force necessary to detach the fibre from

a Plateau border. This would suggest that there is some degree of ‘pinning’

of Plateau borders to fibres in a fibre-laden foam, to the extent that the rate of

coarsening is impeded, but not prevented entirely. This is in line with what

has been observed in experiments.

4.3 The interaction of fibres and liquid drops

4.3.1 Motivation

Fig. 4.15 shows the structure of paper on the microscopic level. We see that

the paper consists of long narrow criss-crossing cellulose fibres surrounded

by a perhaps surprising amount of empty space. In the manufacturing pro-

cess, these fibres are dispersed in a liquid mixture which is then dried by

heating. The resultant network of fibres is stabilized by the small amount of

liquid which was not evaporated in this process. This liquid is distributed

throughout the paper in the form of small drops situated at the fibre–fibre

contacts. These drops ‘bridge’ the gaps between pairs of fibres, and the effect

of surface tension acts to hold the fibres together.

Using Surface Evolver, we can simulate a model system which is an ap-

proximation to these fibre–liquid–fibre bridges: namely, a pair of infinitely

long cylinders bridged by a liquid drop. We can vary a multitude of param-

eters in this system and probe the resultant energies, forces, etc. involved.
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Figure 4.15: Bright-field micrograph of paper. At this scale we see that paper

consists of a network of thin fibres surrounded bymostly empty space. Image:

Richard Wheeler

4.3.2 Contact angle

The shape of the liquid drop will depend strongly on the contact angle θc
between the liquid and the fibre. Different forms of cellulose have different

contact angles with water [84]: the kinds used for the manufacture of paper

tend to have 15◦ . θc . 30◦ [85]. Here, we will use θc = 30◦ for the sake of

improved stability of simulations.

In our simulations, we impose the contact angle by introducing a solid–

Figure 4.16: The contact angle θc is measured at the line where a liquid–

vapour interface (here, water and air) is in contact with a solid (here, cellu-

lose). Here we show a low contact angle: the liquid is said to wet the surface

in this case.
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Figure 4.17: We impose the contact angle θc in Surface Evolver by introduc-

ing a solid–liquid surface tension γsl to facets which lie on the cylinders. By

balancing forces here we see that γsl = −γ cos θc. Since this tension is nega-

tive, we can picture the lower film as ‘pushing’ the contact line outwards.

liquid surface tension to those facets which lie on the cylinders. This surface

tension is given by

γsl = −γ cos θc, (4.6)

as shown in Fig. 4.17. Since we use a value of 1 for our liquid–air surface

tension γ, the tension we assign to these facets is − cos(30◦) ≈ −0.866. This

is negative, which means that the liquid preferentially spreads out on the

cylinders.

We define the total energy E as

E =
∑
facets

γA, (4.7)

where A is the area of a facet, and γ its surface tension. Note that by this

definition, E can be negative.

4.3.3 Variation of energy with fibre separation

Fig. 4.18 shows a schematic of our simulation setup. We model the fibres as

two cylinders of radius rwith their central axes separated by a distance s+2r,

giving a separation s between the cylinder surfaces. From here on, we will

fix the cylinder radius r = 1 — one can think of all distances here as being

normalized by r, energies by r2 and volumes by r3.
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Figure 4.18: We model cellulose fibres as cylinders. Initially we orient a pair

of cylinders perpendicularly, and vary their separation s. We set the radius r

to 1.

For now, we orient the cylinders at right angles to one another. We add a

liquid drop of volume V , initially in the shape of a cube, with opposite faces

constrained to lie on each cylinder.

In Fig. 4.19 we plot the variation of total energy E with cylinder separa-

tion for a range of drop volumes. We see that the energy increases steadily as

we increase the separation between the fibres, gradually ‘levelling off’ with

increasing separation. At low separations, the forces involved (i.e. the deriva-

tive of the energy with respect to separation) are roughly equal: at s = 0,

dE/ds ≈ 7 for all three drop volumes.

4.3.4 Variation of energy with angle

The variation of energy with separation seems to be relatively stable with

varying volumes. Hence, for simplicity, from here we will set V = 4. We

now vary the angle ϕ between the cylinders, as shown in Fig. 4.21, between

0◦ to 90◦, representing the full range of angles by symmetry.

In Fig. 4.22 we plot the variation of energy E with angle ϕ for a range of

separations s. We see that for high separations, the angle has very little ef-

fect on the total energy: this is intuitively understood by inspection of e.g.
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Figure 4.19: Total energy E as a function of separation s for perpendicular fi-

bres, for various drop volumes V . The equilibrium position is s = 0, i.e. fibres

in contact, for all volumes. The forces dE/ds slowly decrease as separation

increases.

(a) s = 0 (b) s = 1 (c) s = 2

Figure 4.20: A drop of volume V = 4 bridging two fibres oriented in per-

pendicular directions (ϕ = 90◦). As we increase the separation s from its

minimum value of 0 the energy increases steadily.
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Figure 4.21: We vary the angle ϕ between the axes of the cylinders, for vari-

ous separations s.

Fig. 4.20(d). The profile of the drop is such that there is little interaction be-

tween the angles of the two cylinders: the ‘neck’ is close to circular in cross

section.

For s > 0.25 the energy increases monotonically with angle, such that

0◦ is the lowest energy configuration: in other words, torque acts to align

the fibres. This is not the case for s = 0, i.e. fibres in contact, in which the

equilibrium angle is ∼ 24◦ (or, equivalently, 156◦).

The fact that the energy takes a minimum at ϕ = 0, i.e. parallel fibres,

for most separations may be understood intuitively: we have a positive con-

tact angle, so the liquid preferentially wets the fibres, as we discussed earlier.

When they are oriented in a parallel direction, the liquid can coat fairly long

sections of each fibre without requiring a significant increase in the surface

area of the drop.

We note that this is not the case for s = 0: two fibres in contact. In this

case, the energy is minimized atϕ ≈ 24◦. The reason for this may be best un-

derstood by inspection of Fig. 4.23(a). When parallel fibres are in contact, the

liquid drop is ‘pinched’ at its edges: the 30◦ contact angle means that there

is a high degree of curvature near these points, resulting in an increased sur-

face area. As we increaseϕ, as in Fig. 4.23(b), this deformation of the surface

can relax, lowering the energy. When ϕ exceeds 24◦, the energy begins to
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Figure 4.22: The variation of total energy E with angle ϕ for various separa-

tions s. Here we set the drop volume V = 4. This range ofϕ captures the full

behaviour: by symmetry α is equivalent to −α, and to 180◦ − α, for any α.

increase once again.

4.3.5 Parallel and perpendicular fibres

Fig. 4.22 shows that the total energy of the fibre–liquid–fibre system varies

quite strongly with angle at low separations. For higher separations we do

not see much of a change in energy over the full range ofϕ, raising the ques-

tion as to at what separation does the angle between the fibres become a sig-

nificant factor?

To investigate this, we compare the variation of energy with separation

for pairs of fibres which are oriented in parallel and perpendicular directions

respectively. We plot this, once again for V = 4, in Fig. 4.24.

As we already saw in Fig. 4.19, the curve for ϕ = 90◦ increases monoton-

ically with s. In contrast, however, when the fibres are parallel, the energy

takes a minimum at s ≈ 0.1. As the separation increases, the difference be-

tween the two curves becomes much smaller, as we noted earlier.
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(a) ϕ = 0◦ (b) ϕ = 24◦

Figure 4.23: For fibres which are parallel in contact, the liquid drop is

‘pinched’ at that part of its surface near the axes of the cylinders. As ϕ is

increased, the surface can relax, lowering its energy.
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Figure 4.24: The variation of total energy E with separation s takes different

forms for parallel (ϕ = 0◦) and perpendicular (ϕ = 90◦) fibres, again for

V = 4.
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Figure 4.25: For a drop between perpendicular fibres in contact, the surface

area S increases steadily with volume V .

This again due to the ‘pinching’ effect, which comes into play at very low

separations. As the distance between the cylinders is slightly increased, this

effect is lessened, and so we arrive at a minimum of energy at s = 0.1 here.

4.3.6 Surface area and evaporation

We can compute the surface area S of the drop, i.e. the area of the facetswhich

are exposed to the air, not counting those on the cylinders, as a function of

the drop volume. We plot S as a function of V in Fig. 4.25 for a range of

drop volumes V for perpendicular fibres in contact: ϕ = 90◦; s = 0. As

we may expect, the surface area increases monotonically with the volume.

For V . 0.5 the simulations become unstable as we are dealing with a very

narrow sliver of liquid.

As we discussed earlier, liquid evaporates as paper is heated during the

paper manufacturing process. As a first approximation, wemay take the rate

of evaporation as being proportional to the surface area exposed to air, i.e.

dV
dt ∝ −S(t) (4.8)
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Figure 4.26: Evaporation curve for a drop between two perpendicular fibres

in contact. We assume that the rate of change of volume is proportional to

the surface area of the drop.

Hence from our S(V) data we can approximate the decrease in volume as

a function of time, for some rescaled time τ, where we set V(τ = 0) = 4. The

scale of τwill depend on the temperature and humidity of the air.

We plotV as a function of τ in Fig. 4.26. We see that the rate of evaporation

slows down gradually over time. This is to be expected, since the surface area

S decreases with volume, as above.

4.3.7 Varying contact angle

As we mentioned, the contact angle between water and cellulose can vary

depending on the particular makeup of the cellulose used. Bartell and Ray

[84] determined the advancing and receding contact angles for various cel-

lulose derivatives and water. Using a formula from Tadmor [86] we can de-

rive the static contact angle θc from these. Their measurements yield a value

θc ≈ 60◦.

In Fig. 4.27 we plot the total energy as a function of separation using both

values of θc. For the sake of clarity, we shift the θc = 60◦ curves vertically so
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Figure 4.27: Total energy E as a function of separation s for various drop

volumes V . Solid lines are for a contact angle θc = 30◦; dotted lines are for

θc = 60◦.

that they match their θc = 30◦ counterparts at s = 0.

In all cases, we see that the rate of increase of energy E with separation

s is significantly lower when a 60◦ contact angle is used: in other words, the

more hydrophilic the fibres are, the greater the forces are which hold them

together.

4.4 Conclusion

4.4.1 Fibres and soap films

We see that the introduction of a fibre into an arrangement of soap films alters

its geometry from the equilibrium described by Plateau’s laws. The response

of the soap films to the presence of a fibre in both a film and a Plateau border

can be accurately modeled using the Surface Evolver, at least in these simple

model systems.

When a fibre introduced into a Plateau border is moved, the effect is that

the Plateau border tends tomovewith it; in otherwords, the Plateau border is
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pinned to the fibre until it pinches off at a large enough displacement. Surface

Evolver simulations recreate the response of the surface Plateau borders to

the displacement of the fibre, and hence we can use the same simulations to

calculate the forces involved.

This effect is relevant to the phenomenon of coarsening in a fibre-laden

foam. This pinning of Plateau borders by fibres will act to reduce the rate of

coarsening: for bubbles to change in size, motion of films and hence Plateau

borders is necessary. This pinning effect has previously been seen to signifi-

cantly reduce coarsening in experiments on 2d foams [87], inwhich fixedpins

were used. Recent experiments on 3d foams [88] similarly show a reduction

in the rate of coarsening in fibre-laden foams. Pinning of fibres to Plateau

borders may represent a considerable contribution to this observation.

4.4.2 Fibres and liquid drops

Our simulations, which are a very simpilified representation of fibre–liquid–

fibre bridges present in paper, broadly confirm that the drops act to pull the

fibres together. This is somewhat unsurprising in view of the fact that the

contact angle used, θc = 30◦, means the fibres are quite hydrophilic. Using

a larger contact angle we see the same effect, but weaker.

The variation of energy with angle ϕ is more subtle: generally once the

fibres have been drawn sufficiently close together they preferentially achieve

a mutual angle of ∼ 24◦. This fact may help to explain the structure of paper:

if the fibres preferentially aligned at ϕ = 0◦, i.e. parallel, perhaps a criss-

crossing network as seen in Fig. 4.15 would not be achievable.

4.5 Conclusion

Using foam forming in papermaking has been seen to produce lighter and

stronger yields, meaning it is of interest not just commercially but also en-

vironmentally. However, the technique has thus far only been explored in
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smaller ‘pilot’ paper plants. In order to fully understand this complex pro-

cess one must consider the behaviour of foam–fibre mixtures at both the wet

and dry limits. The work described in this chapter concerns very idealized

model systems, and represents a first step towards understanding this dry

limit.
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Conclusion

5.1 Summary

In this thesiswe have analyzed various aspects of foam structure. We have in-

terpreted experimental data, considered the shape of bubbles in an ideal the-

oretical ordered foam, and run countless Surface Evolver simulations, with

a view to understanding the shapes and energies of soap films, bubbles, and

foams.

In this section I will summarize our most significant findings.

U

We have successfully employed the method of bond-orientational order pa-

rameter analysis to quantify the structure of an experimentally produced

foam. We observed a preference for fcc over hcp throughout the foam, in line

with previous simulations and optical experiments. Intriguingly, the num-

ber of fcc bubbles and the number of hcp bubbles increased over the course

of the experiment.

Using a simple geometric argument, we have proven that for an ideal

foam between the wet and dry limits, the hcp structure has a lower energy

than the fcc structure. Accordingly, the preference for fcc over hcp must ul-

timately derive from some other source than energetic considerations. We

have confirmed this energy difference using Surface Evolver simulations.

U
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Through various simulations, we have tested the accuracy of the analytic pre-

dictions of the cone model in its various forms. In the initial case of equiv-

alent flat contacts, its extension to curved contacts, and the adapted model

which deals with the bcc foam, our simulations confirm that its expressions

for energy are accurate over wide ranges of liquid fraction.

Furthermore, we have used the analytic predictions of the cone model

to derive expressions for measurable properties of foams, and found remark-

ably good agreementwith experiments—even, in some cases, for disordered

or polydisperse foams.

U

We have presented simulations and experiments on simple model systems

which represent the interaction of fibres with dry foams. We see that our

simulations reliably predict film and Plateau border lengths, and hence we

can compute the force necessary to ‘unpin’ a fibre from a Plateau border. We

see that this force is comparable in size to those experienced in coarsening.

Our preliminary simulations of cellulose fibres bridged by liquid drops

suggest that the drops act to hold the fibres together and, interestingly, ideally

hold them at an angle which is neither parallel nor perpendicular.

U

In the following section I will address questions which arose in the course of

this work which remain unanswered. I offer my own suggestions as to the

direction of possible future work: starting points which I believe represent

logical continuations of the research discussed in this thesis.

5.2 Outlook

5.2.1 Prevalence of fcc and hcp

The amount of ordering in the lifetime experimentwas seen to increase steadily

over the seven days. The natural question is for how long and how far this

trend would continue. A similar experiment simply allowed to run for a

118



CHAPTER 5. CONCLUSION

longer period would surely shed some light on this question. While the per-

fluorohexane vapour used in the lifetime experiment reduced the coarsening

rate significantly, there was some small change in bubble volumes over the

length of the experiment. The gas phase would need to be chosen carefully

in a longer experiment to ensure that the bubble sizes remained close to con-

stant.

Another questionwhichmaybe addressed by a longer experiment iswhether

the ratioNfcc/Nhcp evolves significantly, in analogy to the molecular dynam-

ics simulations of Luchnikov et al. [40]. Having more than 7 data points (of

which 6 or, perhaps, 5 are reliable) would allow for a more extensive treat-

ment of the evolution of this ratio.

5.2.2 Relative energy of fcc and hcp

The fact that fcc and hcp have different energies is an important consideration

if one wants to build an expansion of the energy of a foam of the form

E = Edry + EPBs + Enodes + . . . , (5.1)

as described in e.g. [8], where Edry is the energy of the foam in the dry limit,

EPBs represents the contribution of Plateau borders and goes as
√
φ, andEnodes

accounts for Plateau border junctions and goes as φ.

The fcc and hcp structures have the same energy in the dry limit, the same

total line length per dry bubble, and the same number of nodes. Furthermore

they have the same numbers of types of nodes (fourfold and eightfold) in the

dry limit.

Yet, they have different energies for φ > 0. Hence, if such an expansion

were to fully describe the variation of the energy of a foam with liquid frac-

tion, a further term is necessary which reflects the interaction of the nodes.

Fig. 5.1 shows the shape of fcc and hcp cells in the dry limit: we note that

while the total length of edges (Plateau borders) is the same for the two poly-

hedra, the individual lengths differ. For φ > 0 the shorter Plateau borders
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(a) (b)

Figure 5.1: Plateau border lengths for fcc and hcp in the dry limit. (a) the

rhombic dodecahedron has 24 edges, all of equal length. (b) the equivalent

trapezo-rhombic dodecahedron retains the same length for 16 of the edges.

3 (red) are lengthened; 3 (blue) are shortened.

Figure 5.2: The cross section of a Plateau border varies along its length. Its

radius of curvature rc goes approximately as a hyperbolic cosine..

are thicker, i.e. have a greater cross-sectional area, and a greater radius of

curvature, than the longer ones.

In order to derive a termwhich accounts for the interaction betweennodes,

onemust consider the profile of a Plateau border: i.e. the variation of its radius

of curvature rc along its length: see Fig. 5.2. For a Plateau border which pos-

sesses reflectional symmetry, as is the case for the ‘long’ and ‘short’ Plateau

borders in the hcp structure, the property of constantmean curvature (Plateau’s

first law) implies that the radius of curvature varies approximately as rc ∝

cosh(kx), for some constant k. These profiles can be obtainedwith high accu-

racy from Surface Evolver simulations for each of the three types of Plateau

border.

We note that the practical usefulness of such a term as a contribution to
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the total energy is limited: the difference between the energies of the fcc and

hcp structures is very small, aswe have seen, andwhen comparing structures

which do differ in edge lengths, node types, etc., the ‘interaction term’ will be

dwarfed by the contributions of the leading terms.

5.2.3 The cone model

The cone model as it stands, strictly speaking, applies to ordered foams. Ini-

tially we dealt with the case where all contacts were equivalent (such as an

fcc foam).

The model was quite successfully extended to capture the more complex

properties of the Kelvin foam, in which contacts differ in size and shape, and

are gained and lost at φ = φ∗. Such an extension required careful consider-

ation of the shape of the dry cell and is not directly applicable to the more

general case of a bubble with contacts of differing size. However the impli-

cations of its predictions of the behaviour of dε/dφ, the derivative of excess

energy with liquid fraction, at φ = φ∗ may be worth pursuing. We see loga-

rithmic behaviour, but not of the same form seen at the wet limitφ = φc. The

precise nature of the link between the loss of square contacts and the insta-

bility of the Kelvin foam is not fully understood: the Surface Evolver cannot

provide curves of high enough resolution for such derivatives to be closely

examined, and so an analytic treatment such as the cone model may be of

use.

The eventual goal of the cone model was for it to deal with bubbles with

arbitrary contacts, to model e.g. a disordered foam. Whether this is achiev-

able is uncertain. However, as saw in Section 3.5.5, using the Z-cone model

for some carefully chosen value of Z can produce results which are remark-

ably close to experimental data for disordered foams, despite the derivation

of the model hinging on all contacts being equivalent. In view of this, there

may be many other physical properties of foams which can be computed an-

alytically using the Z-cone model, even in the case of disordered foams.
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5.2.4 Fibres and soap films

From our wire frame experiment, we see that Surface Evolver simulations

predict the length of the surface Plateau borders on a fibre fairly well as it is

moved from its equilibrium position. For that reason we are confident that

it faithfully represents the geometry of the surfaces involved, and hence the

total energy of the configuration.

However it must be noted that for simplicity we restricted our analysis to

motion in a single direction, in both experiments and simulations. Perhaps

more notably, we held the fibre parallel to the axis of the frame and to the

Plateau border in all cases. As we noted, misalignment of the fibre and the

Plateau border leads to an earlier breaking off of the films. Amore advanced

set of simulations encompassing various directions ofmotion and fibre orien-

tationswould build a fuller picture of the nature of this topological transition,

and the energies involved.

Our comparison of the forces required for unpinning of the Plateau bor-

der from the fibres to those involved in coarsening is of course very approx-

imate. A more quantitative understanding could be obtained from simula-

tions which, in place of bare soap films on a wire frame, implemented com-

plete bubbles. The bubble volumes could be varied as well as the fibre posi-

tion, and minimum-energy configurations found. This would still of course

be a highly idealized representation of a real foam.

5.2.5 Fibres and liquid drops

These simulations of drops on fibres are very much a first step towards a

fuller understanding of the dynamics of fibres held together by liquid drops.

Modelling fibres as infinitely long rigid cylinders is a natural starting

point for any treatment of such systems, and it is convenient computation-

ally. Future work must consider the fact that such fibres can bend, and the

energies associated with bending. Duprat and Protiere [89] present a simple

experiment in which two parallel silicone fibres are clamped at either end
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Figure 5.3: Depending on the bending energies involved, the presence of a

liquid drop on two parallel fibres may cause the fibres to buckle inwards, as

illustrated here.

and bridged by a drop of mineral oil, causing the fibres to buckle inwards to

facilitate wetting, as sketched in Fig. 5.3.

Such a setup would be a very sensible first step to understanding the in-

teraction of bendable fibreswith liquid drops; however, implementing such a

setup in Surface Evolver would require amuchmore sophisticated definition

of the fibres than the simple cylindrical constraints used in Section 4.3.

The fibres could themselves be implemented as full free surfaces, with

custom energy integrals defined over their surfaces to account for bending

energies.

Alternatively one could attempt a ‘trial-and-error’ type method, in which

the cylinder axis is specified in terms of some free parameters. Running such

a simulation for various combinations of parameters would, somewhat te-

diously, eventually yield ones whichminimized the total energy of the setup.

However this approach would fail to replicate the strongly hysteretic curves

in [89].

Our modelling of the drop shrinking upon evaporation, with the contact

line moving freely, is a very idealized approximation. Experimental results

from Birdi et al. [90] concerning the evaporation of water drops on glass sug-

gest that pinning of the contact line plays an important role, and that the

evaporation rate is hence not exactly proportional to surface area.
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Appendix A

Bond-orientational order
parameters

A.1 Definition

For a bubble with Z nearest neighbours, we first compute the mean value

of the spherical harmonic Y`m as evaluated in the direction of each of the

bubble’s nearest neighbour bonds.

Y`m =
1
Z

∑
i∈nns

Y`m(θi,ϕi). (A.1)

The boop Q` for any ` is defined as

Q` =

√√√√ 4π
2`+ 1

∑̀
m=−`

∣∣∣Y`m ∣∣∣2. (A.2)

This combination over m gives us rotational invariance. This is extremely

important — we want, for example, an fcc lattice to maintain its boop signa-

ture if it is rotated! The factor 4π/(2`+ 1) arises from the spherical harmonic

addition identity (sometimes called Unsöld’s theorem)

∑̀
m=−`

∣∣Y`m(θ,ϕ)∣∣2 = 2`+ 1
4π , (A.3)

and ensures thatQ` is normalized such that 0 6 Q` 6 1 for any set of neigh-

bours.
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A.2 Choice of `

This definition of Q` works for any integer ` > 0. Not all of these are useful

quantities however. Under the central symmetry transformation r → −r the

spherical harmonics transform as Y`m → (−1)` Y`m. This means that for

structures which possess central symmetry, Q` = 0 for any odd `. For this

reason, only even ` tend to be considered.

Furthermore, we find that Q0 = 0 for all sets of bonds, and that Q2 = 0

for any set of bonds that possesses a degree of reflectional symmetry. This

leaves us with Q4,Q6,Q8, . . . as the only ‘useful’ boops.

Of these, one only tends to see Q4 and Q6. One reason for this may be

to do with the oscillatory nature of the spherical harmonics. Mapping the

angles where Re(Y`m) = 0 yields nodal lines, as shown in Fig. A.1 for Y6 3.

In general these take the form of 2|m| lines of longitude and ` − |m| lines of

latitude. This means that for large `, Y`m varies greatly for small changes in

angle — this effect is not desirable when dealing with experimental data, in

which bond angles will naturally not be perfect.

Figure A.1: Nodal lines for Y6 3, i.e. the angles for which Re(Y6 3) = 0. These

take the form of 6 lines of longitude (blue) and 3 lines of latitude (red).

It is worth noting that Steinhardt also describes an averaged boop, Q`,

which is similar to Q` except that it takes into account all bonds in the sys-

tem, rather than computing on a bubble-by-bubble basis. This is not useful

for our case, since the sample contains a mixture of different structures.
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A.3 Selection of nearest neighbours

A bubble’s boops depend only on the positions of its nearest neighbours. Un-

fortunately, there is no one universally accepted defition of “nearest neigh-

bour”; however there are several which are commonly used.

Figure A.2: 2D illustration of the cutoff distance method. Any two bubbles

whose centres are separated by less than the cutoff distance are considered

to be nearest neighbours.

The simplest way is to define a cutoff distance. We consider two particles

as nearest neighbours if their centres are separated by a distance less than this

cutoff distance, as illustrated in Fig. A.2. Steinhardt et al. use a cutoff distance

of 1.2r0, where r0 was the minimum of the Lennard-Jones potential. In the

case of experimental data, setting r0 as the position of the first minimum of

the radial distribution function ensures that the first shell is captured asmuch

as possible, while minimizing false positives in the form of next-to-nearest

neighbours.

The other commonly usedmethod is to construct the Voronoi cell around

each particle and consider particles as nearest neighbours if their Voronoi

cells are in contact. This method is slower, and in the case of relatively or-

dered structures (as we are dealing with) will give very similar results.

More recently, there have been several attempts at constructing more so-

phisticated and efficient schemes [91, 92]. However these are too computa-
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tionally intensive to consider here, especially in view of how cleanly sepa-

rated the first two peaks in g(r) are, as described in Section 2.3.2.
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Mathematics of the cone model

B.1 A note

These expressions were derived by Robert Murtagh. I include them here for

the sake of completeness.

B.2 Z-cone model

The total surface area per contact, A, can be written as

A = Af + 2π
∫h
0
r(z)

√
1+

(
dr(z)
dz

)2

dz, (B.1)

whereAf is the area of the bubble-bubble contact; Af = πδ2 here.The second

term in this equation is the general expression for the area of the surface of

revolution of r(z). The volume under this curve is given by

V = π

∫h
0
r(z)2dz+

πr(0)3 cot θ
3 . (B.2)

To minimize A under the constraint of constant V requires the integrated

form of the Euler–Lagrange equation:

dr(z)

dz

dL

d
(
dr(z)
dz

) − L = C, (B.3)

with the Lagrangian function

L

(
r(z), dr(z)

dz

)
= 2r(z)

√
1+

(
dr(z)

dz

)2

− λr(z)2, (B.4)
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and its derivative to obtain

−
2r(z)√

1+
(
dr(z)
dz

)2 + λr(z)2 = C. (B.5)

We determine the unknown constants λ and C are from the boundary con-

ditions

dr(z)

dz

∣∣∣∣
z=h

= ∞ (B.6)

dr(z)

dz

∣∣∣∣
z=0

= cot θ, (B.7)

Thefirst of these ensures that the bubble surfacemeets the flat contact smoothly

while the second ensures that the bubble surfacemeets the cone at a right an-

gle: θ is the opening angle of the cone, given by

θ = arccos
(
1− 2

Z

)
. (B.8)

After imposing these boundary conditions we have

r(z)√
1+

(
dr(z)
dz

)2 =
r(0)

(
r(z)2 − δ2

)
(r(0)2 − δ2)

√
1+ (Z−2)2

4(Z−1)

. (B.9)

Rescaling this equation in terms of the dimensionless quantities ρ(z) = r(z)/r(0)

and ρδ = δ/r(0) yields√
1+

(
dr(z)

dz

)2

=
ρ(z) Z

2
√
Z−1(1− ρ

2
δ)

ρ(z)2 − ρ2δ
. (B.10)

This is a dimensionless first-order differential equation which can be solved

by integration between the limits of ρδ and ρ(z). Rearranging for dz and

noting that dr(z) = r(0)dρ(z), we find that∫z
−h

dz = z+ h = r(0)I(ρ(z), ρδ,Z) (B.11)

and so

z = −h+ r(0)I(ρ(z), ρδ,Z). (B.12)

where I(ρ(z), ρδ,Z) is a definite elliptic integral defined below.
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By considering ρ(z = 0) = 1 in equation B.12, we obtain the important

identity

r(0) = h

I(ρδ,Z)
, (B.13)

allowing us to express the bubble profile as

z(ρ(z), ρδ,Z) = h
[
I(ρ(z), ρδ,Z)
I(ρδ,Z)

− 1
]
. (B.14)

The elliptic integrals I(ρ(z), ρδ,Z) and I(ρδ,Z) are given by

I(ρ(z), ρδ,Z) =
∫ρ(z)
ρδ

(x2 − ρ2δ)f(x, ρδ,Z)dx (B.15)

and

I(ρδ,Z) =
∫ 1

ρδ

(x2 − ρ2δ)f(x, ρδ,Z)dx, (B.16)

with

f(x, ρδ,Z) =
[

Z2

4(Z− 1)x
2(1− ρ2δ)2 −

(
x2 − ρ2δ

)2]− 1
2

. (B.17)

The volume V of our single cone is equal to 1/Z of the volume of a spherical

bubble, giving

V =
4πR3

0
3Z . (B.18)

Inserting this expression into equation B.2 and solving for r(0) yields

r(0) = h

I(ρδ,Z)
= R0

[ ( 4
Z

)
3J(ρδ,Z) + Z−2

2
√
Z−1

] 1
3

(B.19)

where J(ρδ,Z) is another elliptic integral given by

J(ρδ,Z) =
∫ 1

ρδ

x2
(
x2 − ρ2δ

)
f(x, ρδ,Z)dx. (B.20)

Making use of equations B.10, B.11 and B.19, we can re-express the surface

area per contact A as

A(ρδ,Z) = πR2
0

( ( 4
Z

)
3J(ρδ,Z) + Z−2

2
√
Z−1

) 2
3 [
ρ2δ +

Z√
Z− 1

(
1− ρ2δ

)
K(ρδ,Z)

]
(B.21)

where K(ρδ,Z) is further elliptic integral given by

K(ρδ,Z) =
∫ 1

ρδ

x2f(x, ρδ,Z)dx. (B.22)
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The dimensionless excess surface energy is defined as

ε(ρδ,Z) =
A(ρδ,Z)
A0(Z)

− 1 (B.23)

whereA0(Z) is the surface area of the top of a spherical sector corresponding

to our undeformed cone. From simple geometry, this is

A0(Z) = 2πR2
0(1− cos θ) = 4πR2

0
Z

. (B.24)

Combining Z of these spherical sectors recovers the total surface area of a

spherical bubble of 4πR2
0, as expected.

Therefore, the dimensionless excess energy is

ε(ρδ,Z) =
ρ2δ +

Z√
Z−1

(
1− ρ2δ

)
K(ρδ,Z)

Z− 1
3

(
6J(ρδ,Z) + Z−2√

Z−1.

) 2
3

− 1 (B.25)

The dimensionless deformation is defined, to the middle of the flat contact,

as

ξ = 1− h+ hc
R0

(B.26)

where the height of a cone hc is given by

hc = r(0)
Z− 2

2
√
Z− 1

. (B.27)

Using equation B.19, this dimensionless deformation is

ξ(ρδ,Z) = 1−
( ( 4

Z

)
3J(ρδ,Z) + Z−2

2
√
Z−1

) 1
3 [

Z− 2
2
√
Z− 1

+ I(ρδ,Z)
]
. (B.28)

The plots of dimensionless excess energy as a function of dimensionless de-

formation, e.g. Fig. 3.5, etc., are produced by plotting equations B.25 and B.28

parametrically as a function of ρδ.

B.3 Curved interfaces

We can extend this model to deal with curved interfaces, as in the case of

bubbles of unequal sizes.
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Beginning with the smaller of the contacting bubbles, the radius of our

neighbouring bubbles Rn can be written as Rn = aR with a > 1. Our cone

has a smaller radius than its neighbour, meaning a higher Laplace pressure

and, hence, the interfaces between the bubbles are curved “outwards”. The

radius of curvature Rc of the interfaces between the bubbles is obtained from

the difference in Laplace pressures of the undeformed bubbles. The intro-

duction of curved interfaces introduces two new angles θmin and α into our

model. The angle θmin corresponds to the angle made between the axis of

symmetry and a line from the edge of the curved contact to the apex of the

cone. The angle α corresponds to the angle made at the edge of the curved

contact between the contact and a plane perpendicular to the axis of symme-

try.

For each Z and a, there are unique values of θmin and α obtained by nu-

merically solving

Îδ(ρδ, θmin,Z) =
ρδ

tan θmin
−

Z− 2
2
√
Z− 1

(B.29)

and

sinα = ρδ

(
a− 1
a

)[( 4
Z

)
−
(
a
a−1

)3 (2− 3 cosα+ cos3 α
)

3̂Jδ(ρδ, θmin,Z) + (Z−2)
2
√
Z−1

] 1
3

. (B.30)

The dimensionless excess energy for the small bubble ε(ρδ, θmin,α,Z,a)

is written as

ε(ρδ, θmin,α,Z,a) =
Z

4

(( 4
Z

)
−
(
a
a−1

)3 (2− 3 cosα+ cos3 α
)

3̂Jδ(ρδ, θmin,Z) + (Z−2)
2
√
Z−1

) 2
3

×

ρ2δ + ( a

a− 1

)2

(1− cosα)2
(( 4

Z

)
−
(
a
a−1

)3 (2− 3 cosα+ cos3 α
)

3̂Jδ(ρδ, θmin,Z) + (Z−2)
2
√
Z−1

)− 2
3

+

Z√
Z− 1

(1− ρ2δ)K̂δ(ρδ, θmin,Z)

− 1.

(B.31)
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The dimensionless deformation for the small bubble ξ(ρδ, θmin,α,Z,a),

measured to the middle of the curved contact, is expressed as

ξ(ρδ, θmin,α,Z,a) = 1−
(( 4

Z

)
−
(
a
a−1

)3 (2− 3 cosα+ cos3 α
)

3̂Jδ(ρδ, θmin,Z) + (Z−2)
2
√
Z−1

) 1
3

(B.32)

×
[
Z− 2

2
√
Z− 1

+ Îδ(ρδ, θmin,Z)
]
−

(
a

a− 1

)
(1− cosα) .

The definite elliptic integrals Îδ(ρδ, θmin,Z), Ĵδ(ρδ, θmin,Z) and K̂δ(ρδ, θmin,Z)

are given by:

Îδ(ρδ, θmin,Z) =
∫ 1

ρδ

[(
x2 − ρ2δ

)
− ρδ sin θmin

Z

2
√
Z− 1

(
x2 − 1

)]
f̂(x, ρδ, θmin,Z)dx,

(B.33)

Ĵδ(ρδ, θmin,Z) =
∫ 1

ρδ

x2
[(
x2 − ρ2δ

)
− ρδ sin θmin

Z

2
√
Z− 1

(
x2 − 1

)]
f̂(x, ρδ, θmin,Z)dx,

(B.34)

K̂δ(ρδ, θmin,Z) =
∫ 1

ρδ

x2f̂(x, ρδ, θmin,Z)dx, (B.35)

with

f̂(x, ρδ, θmin,Z) =
[

Z2

4(Z− 1)x
2(1− ρ2δ)2

−

[(
x2 − ρ2δ

)
− ρδ sin θmin

Z

2
√
Z− 1

(
x2 − 1

)]2 ]− 1
2

. (B.36)

For the large bubble we need to determine the dimensionless ratios ρmin

and ρmax by numerically solving

ρmin = (a− 1)−1 sinα

 ( 4
Z

)
+ (a− 1)−3 (2− 3 cosα+ cos3 α

)
3
[̃
Jδ(ρmax,Z) + J̆δ(ρmin, ρmax, θmin,Z)

]
+ Z−2

2
√
Z−1

− 1
3

(B.37)

for the paired values of ρmin and ρmax which give the smallest excess en-

ergy provided ρmin < ρδ and ρmin < ρmax.
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Thedimensionless excess energy for the large bubble ε(ρmin, ρmax, θmin,α,Z,a)
is written as

ε(ρmin, ρmax, θmin,α,Z,a) =
Z

4

 ( 4
Z

)
+ (a− 1)−3 (2− 3 cosα+ cos3 α

)
3
[̃
Jδ(ρmax,Z) + J̆δ(ρmin, ρmax, θmin,Z)

]
+ Z−2

2
√
Z−1

 2
3
ρ2min+

+ (a− 1)−2

( ( 4
Z

)
+ (a− 1)−3 (2− 3 cosα+ cos3 α

)
3
[
J̃δ(ρmax,Z) + J̆δ(ρmin, ρmax, θmin,Z)

]
+ Z−2

2
√
Z−1

)− 2
3

(1− cosα)2+

+2(ρ2max − ρ
2
min)K̆δ(ρmin, ρmax, θmin,Z) +

Z√
Z− 1

(1− ρ2max)K̃δ(ρmax,Z)

− 1.

(B.38)

Thedimensionless deformation for the small bubble ξ(ρmin, ρmax, θmin,α,Z,a),

again measured to the middle of the curved contact, is expressed as

ξ(ρmin, ρmax, θmin,α,Z,a) = 1+ 1− cosα
a− 1 −

−

 ( 4
Z

)
+ (a− 1)−3 (2− 3 cosα+ cos3 α

)
3
[̃
Jδ(ρmax,Z) + J̆δ(ρmin, ρmax, θmin,Z)

]
+ Z−2

2
√
Z−1

 1
3

× (B.39)

×
[
Z− 2

2
√
Z− 1

+ Ĭδ(ρmin, ρmax, θmin,Z) + Ĩδ(ρmax,Z)
]
.

The definite elliptic integrals defined for the large bubble are given by

Ĭδ(ρmin, ρmax, θmin,Z) =
∫ρmax

ρmin

sin θminρmin
(
x2 − ρ2max

)
f̆(x, ρmin, ρmax, θmin,Z)dx,

(B.40)

J̆δ(ρmin, ρmax, θmin,Z) =
∫ρmax

ρmin

sin θminρminx
2 (x2 − ρ2max

)
f̆(x, ρmin, ρmax, θmin,Z)dx,

(B.41)

K̆δ(ρmin, ρmax, θmin,Z) =
∫ρmax

ρmin

x2f̆(x, ρmin, ρmax, θmin,Z)dx, (B.42)

Ĩδ(ρmax,Z) =
∫ 1

ρmax

(
x2 − ρ2max

)
f̃(x, ρmax,Z)dx, (B.43)
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J̃δ(ρmax,Z) =
∫ 1

ρmax

x2(x2 − ρ2max)f̃(x, ρmax,Z)dx, (B.44)

K̃δ(ρmax,Z) =
∫ 1

ρmax

x2f̃(x, ρmax,Z)dx, (B.45)

with

f̆(x, ρmin, ρmax, θmin,Z) =
[
x2(ρ2min − ρ

2
max)

2 − sin2 θminρ
2
min
(
x2 − ρ2max

)2]− 1
2 ,

(B.46)

and

f̃(x, ρmax,Z) =
[

Z2

4(Z− 1)x
2(1− ρ2max)

2 −
(
x2 − ρ2max

)2]− 1
2

. (B.47)

B.4 The bcc foam

While the total volume of the bubble,V0, is constant, the volume of each of the

cones is no longer required to be constant. The constraint on the individual

cone volumes is now given by

8Vh + 6Vs = V0,

where Vs and Vh denote the volumes of the cones associatedwith square and

hexagonal bubble contact areas, respectively.

The second additional complication is the determination of the opening

angles θh and θs of each type of cone (see Fig. B.1). We choose to retain the

values of the solid angles subtended by each type of face in the “dry" Kelvin

structure. This ensures that the sum of the solid angles subtended by the

eight hexagonal and six square faces is equal to the 4π steradian solid angle

of our bubble.

Two cones which meet each other are required to have a common slant

height rs (see Fig. B.1) so that their curved caps match. In the original Z-cone

model (with identical cones) we required each of the curved caps to meet
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Figure B.1: In the extended cone model we deal with two types of cones: (a)

for the hexagonal 〈1 1 1〉 contacts and (b) for the square 〈1 0 0〉. They share a

common slant height rs. The ratio δ/r(0) = ρδ (where δ is the radius of the

contact, and r(0) the maximum width of the cone, as shown) features in the

derivation of the cone model expressions.

their respective cones at right angles. In the case of the bcc bubble, this is

more subtle. As can be seen in Fig. 3.24(a), a square cone joins only with

four hexagonal cones (with corresponding angle γs), whereas a hexagonal

cone joins with three square cones and three hexagonal (with corresponding

angles γhs and γhh respectively). Smoothness requires γhh = π/2, and that

γs + γhs = π (B.48)

The cone model requires a single angle, γh, which we define as an average

γh = (γhh + γhs)/2. Hence we can rewrite (B.48) as

2γh + γs =
3π
2 .

Similarly to the generalized volume condition above, the angles γh and γs
are no longer fixed, as in theZ-conemodel. We canmake use of the following

constraints to uniquely determine Vh, θh and γh for any given liquid fraction

φ.

The first constraintwe impose is that the ratio ν of cone heights is constant

with respect to liquid fraction. Adopting the solid angles from the dry Kelvin

structure, and requiring that cone slant heights match, fixes this ratio:

ν =
Hh

Hs
=

cos θh
cos θs

= 0.8644. (B.49)
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Note that for a real Kelvin foam the corresponding ratio is
√
3/2 ≈ 0.866.

The final constraint on our problem is that the internal pressure p in each

of the neighbouring cones should be equal. This is simply the statement that

pressure does not depend on the position in the bubble. The internal pres-

sure of a bubble is responsible for the curvature of its surface and, by consid-

ering the work done to increase the volume of each cone by a small amount

∆Vi, while keeping the size of the contact constant (i.e. blowing it up slightly),

we arrive at the following expression for the internal pressure of a cone,

pi =
∆Ei

∆V∗i
− 2πrsi cosγi cos θi

∆rsi
∆V∗i

, (B.50)

where ∆rsi is the slant height change of a cone, ∆Ei is the surface energy

change and∆V∗i the change in the volume associatedwith the curved surface

of the bubble. The first term represents the work necessary to increase the

free surface of the cone by an amount∆V∗i , while the second is thework done

by the surface tension σ in changing the surface energy of the cone to account

for the increase in slant height. It can be thought of in terms of reduction of

curvature:

Wσi = 2πrsi∆rsi cos θi cosγi.

The above constraints are sufficient to determine all of the variables in our

problem and to write the excess surface energy ε for the Kelvin cone model

as

ε(ρδh , ρδs , θh, θs, Γh, Γs,qh,qs) =
8Ah(ρδh , θh, Γh,qh) + 6As(ρδs , θs, Γs,qs)

4π −1.

Here, the area of each face is given by

Ai(ρδi , θi, Γi,qi) = πR2
0

(
4qi

3J(ρδi , Γi) + cot θi

) 2
3 [
ρ2δi + 2(1− ρ2δi)K(ρδi , Γi)

]
,

and the angles Γh and Γs are related to γh and γs via

Γi = γi + θi −
π

2 .
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The quantities qs and qh are fractions of the total volume V0 taken up by any

one of the square or hexagonal cones:

qs =
Vs

V0
; qh =

Vh

V0
,

and ρδ is given by the ratio of lengths δ/r(0) as shown in Fig. B.1(a).

The liquid fraction can be similarly expressed in these terms as

φ(ρδh , θh, θs, Γh,qh) = 1− 3J(ρδh , Γh) + cot θh
2qh [I(ρδh , Γh) + cot θh]3

(
4 tan2 θh

( 3
υ3

)
+ tan2 θs

)
The elliptic integrals are given explicitly by:

I(ρδ, Γi) =
∫ 1

ρδi

sin Γi
(
x2 − ρ2δi

)
f(x, ρδi , Γi)dx,

J(ρδ, Γi) =
∫ 1

ρδi

sin Γix2
(
x2 − ρ2δi

)
f(x, ρδi , Γi)dx, and

K(ρδ, Γi) =
∫ 1

ρδi

x2f(x, ρδi , Γi)dx,

with

f(x, ρδi , Γi) =
[
x2(1− ρ2δi)

2 − sin Γ 2i
(
x2 − ρ2δi

)2]− 1
2 .
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Appendix C

Simulation details

C.1 fcc and hcp bubbles

For simplicity, and ease of visualization, wedo not use full periodic boundary

conditions to simulate fcc and hcp bubbles. Rather, we take a single bubble

and impose one-sided constraint planes on every vertex, edge and facet of

the bubble. These are perhaps best visualized as plates which compress the

bubble in its nearest-neighbour directions.

The nearest-neighbour directions for an fcc bubble are (±1,±1, 0) plus

permutations, to give 12 directions in total. We use these directions to con-

struct the constraints. For the plate in the (1, 1, 0) direction, for example we

write:

constraint 1 nonpositive

formula: x + y = limit

where limit is defined as 1/
√
2 times the bubble–bubble distance. Hence,

for a bubble of diameter 1, we begin with a value of limit = 1/sqrt(2) to

represent the wet limit, recovering an undeformed sphere as expected. We

decrease the value of limit to deform the bubble.

For hcp, 9 out of the 12 directions are the same. For the three which dif-

fer, we replace (1, 1, 0) with (1/3, 1/3, 4/3), (1, 0, 1) with (1/3, 4/3, 1/3), and

(0, 1, 1) with (4/3, 1/3, 1/3). Otherwise the process is identical.
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(a) (b)

Figure C.1: (a) The equilibrium structure for a Kelvin foam, including all

surfaces within the conventional cell. The 〈1 1 1〉 contact faces are shown in

red, and the 〈1 0 0〉 faces in blue. (b) We exploit reflectional symmetries to

obtain a representative cell one eighth the size of (a). The full foam can be

built from reflected and translated copies of the representative cell.

C.2 Kelvin foam

Amethod using constraint planes, as above, does not suffice for the bcc foam.

We know that at φ = 0 the hexaonal 〈1 1 1〉 faces cannot be flat, as this would

violate Plateau’s third and fourth laws. By contrast, we know that the square

〈1 0 0〉 faces must be flat, by the symmetries of the lattice.

Fig. C.1(a) shows the conventional bcc cell for a foam. The Kelvin foam

consists of repeated translated copies of this cell. However, for simplicity

we can exploit some of the symmetries of the conventional cell: namely, re-

flectional symmetry in the x, y and z directions (Brakke and Sullivan [93]

exploit even more symmetries to yield a minimal representation of the fully

dry Kelvin foam). Hence we arrive at a reduced cell (Fig. C.1(b)), which has

one eighth of the volume of the conventional cell, and is composed of a cube

containing one eighth of a bubble at each of two opposite corners. This in-
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Figure C.2: Initial configuration of films for the quasi-2d simulation. The

shaded film has a surface tension of 0. This is iteratively refined and relaxed

to arrive at an arragement of minimal surface area.

creases the speed of computation considerably.

We begin with a very roughly triangulated approximation of the config-

uration in Fig. C.1(b), with appropriate film edges constrained to lie within

the faces of the cube, i.e. planes of reflection. Minimisation of energy results

in films meeting the faces of the cube at 90◦, which ensures that the result-

ing foam structure is smooth. We note that in order to faithfully represent

the full foam, films which lie within these planes (in this case, the blue 〈1 0 0〉

faces) are given half of their ‘real’ surface tension. Hence we give the red

〈1 1 1〉 contact face a tension of 2 and all other facets a tension of 1. Iterated

mesh refinements and gradient-descent minimisations yield the configura-

tion shown in Fig. C.1(b): the same surface is visualized as a single bubble in

Fig. 3.23(a).

C.3 Quasi-2d fibre setup

Fig. C.2 shows the initial configuration of facets input into Surface Evolver for

the quasi-2d setup. Edgeswhich lie on the topplate are constrained to remain

within that plane, and similarly for the bottomplate. The edges located at the

pins are fixed in place. The shaded facet is assigned a surface tension of 0 to
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Figure C.3: Initial configuration of films for the Plateau border simulation.

The shaded films have a surface tension of 0. The upper films have been

rendered semi-transparent for ease of visualization.

represent the absence of a soap film in the region between the plates spanned

by the fibre; all other surfaces have tension 1. The top edge of the shaded facet

is also constrained to remain at its assigned height.

C.4 Single Plateau border

For this simulation we exploit a symmetry of the experiment. The setup has

reflectional symmetry in the direction of the axis of the prism, and sowe only

need to simulate half of the films.

Fig. C.3 shows the initial configuration of facets we used in this case. The

fibre is represented initially by three facets of surface tension 0 which are

constrained to liewithin a cylindrical shell, whose radius is specified tomatch

the radius of the fibre in the experiment, and whose position can be varied

in the x direction, in line with the experiment. The edges which represent

the wires of the wireframe are fixed in place, and those edges which lie in

the plane of symmetry (the bottom, as viewed here) we constrain to remain

in that plane.

Hereweuse the quadraticmodel, inwhich edges are represented by quadratic

splines. We found that the default linearmodel resulted inmuch noisier l1(x)
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and l2(x) curves as the fibre wasmoved, despite attaining energies very close

to the quadratic case.
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