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Basics

A crystal is a solid in which the constituent atoms, molecules, or ions are packed in a

regularly ordered, repeating pattern extending in all three spatial dimensions.

A lattice is a regular, periodic array of points throughout an area (2D) or a space (3D).

All crystal structures consist of identical copies of the same physical unit, called the

basis, assigned to all the points of the lattice. There is no unique choice of basis.

basis crystal

lattice

If a basis is symmetric with respect to some axis, crystal properties are independent

of the direction of measurement along that axis.

A Bravais lattice is a discrete set of vectors, not all in the same plane, closed under

vector addition or subtraction. Equivalently, it is the set of points with position vec-

tors:

R = n1a1 + n2a2 + n3a3,

where a1, a2 and a3 (the primitive vectors) are not coplanar, and n1, n2 and n3 are

integers. There is no unique choice of primitive vectors.
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All non-Bravais lattices can be created from a Bravais lattice and a basis.

The coordination number of a Bravais lattice is the number of nearest neighbours to

each point in the lattice.

The primitive unit cell is the set of all points:

R = x1a1 + x2a2 + x3a3

where a1, a2 and a3 are primitive vectors, and x1, x2 and x3 range from 0 to 1.

Each primitive unit cell contains exactly one point of the Bravais lattice. Its volume V

is given by V = 1
n

where n is the density of points.

There is no unique choice of primitive unit cell. Two common choices are:

• The Wigner–Seitz cell: the region of space about a lattice point which is closer

to that point than to any other. It is constructed by bisecting the lines which

join each point to its nearest neighbours.

• The conventional unit cell is chosen to display the symmetry of the lattice. It

fills up all the space without any overlap when translated through some subset

of the vectors of the Bravais lattice. It is generally bigger than a primitive cell.
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Symmetry & groups

The symmetry group of a lattice is the set of operations which map the lattice onto

itself.

The point group of a lattice is the set of symmetry operations which hold one point of

the lattice in place and map each remaining point to a point in the lattice: the point

group operations are rotations, reflections and inversions. Every symmetry opera-

tion can be expressed as a translation through a lattice vector combined with a point

group operation.

There are seven crystal systems into which any crystal structure can be categorised

based on the point group of its underlying Bravais lattice:
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When considering the full symmetry group, not just the point groups, some crystal

groups can be subcategorised, giving fourteen distinct types of Bravais lattice:
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Packing

The hexagonal close-packed (hcp) structure can be viewed as two interpenetrating

simple hexagonal lattices.

Simple hexagonal Hexagonal close-packed

hcp and fcc are the two most efficient ways of packing spheres. In hcp, the third layer

A A

C

A
B B

hcp fcc

is identical to the first (giving ABAB... alternance) and in fcc the fourth is identical to

the first (ABCABC... alternance).
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Reciprocal lattice

Consider a 1D crystal lattice described by a function n(x). The Fourier series of n(x)

is:

n(x) =
∑
p

np e
i2πpx/a

We say that 2πp

a
forms a set of points in the reciprocal lattice of the crystal. This is a

set of points which tell us the allowed terms in the Fourier series.

Reciprocal space or k-space is the space in which the Fourier transform of a spatial

function is represented. It is useful in making certain observations about crystals.

In 3D, reciprocal lattice points are now three-dimensional vectors, called wavevec-
tors which yield plane waves with the same periodicity as the Bravais lattice. It can

be defined as the set of all k which satisfy

eik·R = 1

for all R in the Bravais lattice.

The primitive vectors of the reciprocal lattice are:

b1 = 2π
a2 × a3

a1 · (a2 × a3)
, b2 = 2π

a3 × a1

a1 · (a2 × a3)
, b3 = 2π

a1 × a2

a1 · (a2 × a3)

where ai are the primitive vectors of the Bravais lattice.

The reciprocal lattice is also a Bravais lattice: If eik1·R = 1 and eik2·R = 1, then

ei(k1+k2)·R = 1, i.e. the set {k} is closed under vector addition, a sufficient condition

for a Bravais lattice.

The reciprocal of the reciprocal is the original lattice. This is due to the fact that the

definition of a reciprocal lattice is symmetric in R ↔ k.

The Wigner–Seitz primitive cell of the reciprocal lattice is called the first Brillouin
zone. It has volume 2π

V
, where V is the volume of of the primitive cell in the direct

lattice.
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Lattice planes and reciprocal lattice vectors

A lattice plane is any plane which contains at least three non-collinear points of

a Bravais lattice. A family of lattice planes is a set of parallel lattice planes which

contain all the points of the Bravais lattice. Any lattice plane is a member of one

such family. Remember that a plane can be defined by the set of points r for which

r · n = A.

For any family of lattice planes separated by a distance d, there are reciprocal lattice

vectors perpendicular to the planes, the shortest of which has length 2π
d

.

Conversely, for any reciprocal lattice k, there is a family of lattice planes normal to k

and separated by a distance d, where 2π
d

is the length of the shortest reciprocal lattice

vector parallel to k.

Proof 1

d
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d d d d
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Let k = 2πn
d

. Then,

eik·R = eik·R⊥eik·R∥

= const. × 1

So eik·R is constant in any plane.

Furthermore, for two planes 1 and 2 separated by d, eik·R2 = eik·R1ei|k|d, so eik·R

has the same value on planes separated by d if:

k =
2πm

d
.

Putting the origin in a plane gives the result that eik·R = 1 where R is any point on

any plane. In other words, k is a reciprocal lattice vector.
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If |k ′| < |k|, then the wavelength of k ′ is 2π
|k ′ > d, so it cannot take the same value of

any plane, therefore it is not a reciprocal lattice vector. This means that k is indeed

the shortest reciprocal lattice vector.

�

Proof 2

Suppose k is the shortest in a set of parallel reciprocal lattice vectors. Look at the set

of real space planes for which eik·S = 1.

For Bravais lattice planes, eik·R = 1, so they are a subset of these real space planes.

If any of the real space planes are not Bravais lattice planes, then they must have

separation less than that of Bravais lattice planes, i.e. 2π
|k|

< d. But this would mean

that k is not the shortest reciprocal lattice vector.

�
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Miller indices

The Miller indices of a lattice plane are the coordinates of the shortest reciprocal lat-

tice vector normal to the plane, with respect to a specified set of primitive reciprocal

lattice vectors. The most ‘obvious’ choice of ai and bi is used.

A plane with Miller indices (hkℓ) is normal to the reciprocal lattice vectorhb1+kb2+

ℓb3. h, k and ℓ are integers.

The Miller indices of a plane are inversely proportional to its intercepts with the axes.

For example, a plane with intercept points 1
2

, 1, 1
2

has Miller indices (212).

For a negative index, a bar over the index is used, e.g. (11̄1)

x

y
z

(100) (001) (010) 

(101) (110) (111) 
–

For directions written in terms of the lattice vectors, square brackets are used: [UVW].

For a set of symmetrically equivalent directions, angle brackets are used: ⟨UVW⟩.
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Imaging

sample

tip

e– ~6Å

In a scanning tunneling microscope (STM), a tip is brought very near a metallic or

semiconductive surface, and the bias between the two causes electrons to tunnel

through the vacuum between them.

sample
electron gun detector

In reflection high-energy electron diffraction (RHEED), incident electrons are diff-

racted by the surface of the sample, and intefere constructively on a screen.

The structure of a crystal can be determined using X-ray diffraction. X-rays are used

because they have a wavelength of the same order of magnitude as typical inter-

atomic distances.
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Diffraction

θ

d
dsinθ

X-rays

The Bragg condition for constructive interference is nλ = 2d sin θ.

θ

θ′

d cosθ′

d sinθ

= –d · n′

= d · n

d

n

n′

The Laue condition for constructive interference is d · (n − n ′) = mλ locally. For a

lattice, this becomes R · (k− k ′) = 2πm, where R is any Bravais lattice vector.

Rewriting this as ei(k−k ′)·R = 1 shows that constructive interference occurs when

K = k− k ′ is a reciprocal lattice vector.

Since k and k ′ have the same length, this is equivalent to saying that the tip of the

incident wavevector k must lie in a Bragg plane, i.e. one which bisects a reciprocal

lattice vector K.

The Bragg and Laue conditions are equivalent.

Proof

Start with the Laue condition. Because of elastic scattering, |k| = |k ′|, so K = k ′ − k

bisects the angle between k and k ′. k and k ′ make the same angle θ with the lattice

plane perpendicular to K. Can view the scattering as being from a family of lattice

planes which are perpendicular to K.

Write K = nK0, where K0 is the shortest reciprocal lattice vector in that direction.
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k′k

K

θ

θ

θ

k sin θ

Since |K0| =
2π
d

, |K| = 2πn
d

. But K = 2k sin θ, as can be seen on the diagram.

So 2πn
d

= 2k sin θ, i.e. nλ = 2d sin θ, the Bragg condition.

�
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Ewald’s sphere

This is a sphere of radius |k| drawn around the tip of the incident wavevector k. Con-

structive interference occurs only if the sphere intersects a reciprocal lattice vector.

K

k

k′ 

O

If a non-monochromatic X-ray beam is used, there will be a range of wavevectors,

and peaks will be observed for any reciprocal vector which lies between the spheres

of the extreme wavevectors.

k
0

k
1

O

In practise, monochromatic X-rays are used, and the sample is rotated (changing k)

until peaks are found.
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Structure factors

In a monoatomic crystal with an n-atom basis (n > 1), the amplitude of a scattered

ray with wavevector change K contains the geometrical structure factor:

SK =

n∑
j=1

eiK·dj

If the ions in the basis are not identical, the structure factor is:

SK =

n∑
j=1

fj(K)e
iK·dj

where fj is the atomic form factor, which depends on the structure of the ion at

position dj.
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Defects

Point defects do not extend in any direction in space.

vacancy substitutional

impurity

interstitial

impurity self-interstitial

In line defects, the Burgers vector b indicates the size and direction of the distor-

tion. Line defects often occur on grain boundaries; boundaries between unaligned

crystals.

edge dislocation screw dislocation

Crystal twinning occurs when two separate crystals share some of the same lattice

points in a symmetrical manner.
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