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Chapter 1

Lagrangian & Hamiltonian mechanics

1.1 Fundamentals

1.1.1 The Lagrangian

The Lagrangian L of a system is given by T — V, the difference between its kinetic energy and
its potential energy.

1.1.2 Hamilton’s principle

Hamilton’s principle states that

for a trajectory.

1.1.3 Euler-Lagrange equations

Hamilton’s principle leads to the Euler-Lagrange equations:

£87L _oL =0foreachi=1,2,..,N
dtod;  oq

(Derivation in Section 1.4)

1.14 Symmetry and conservation laws

If for some particular g;, g—qL’, = 0, then from EL equations p; = 0, so p; is independent of t. In
other words, ‘spatial translation symmetry — momentum conservation’.

Other examples include ‘rotational symmetry — angular momentum conservation” and
‘time transformation — energy conservation’.



1.1.5 The Hamiltonian

Defining p; as BL the Hamiltonian H of a system is given by p;q; — L (summing over 7). Its
time derivative is:

dH d .
P a(PMz —L)
dp; . dg; 0Ldgq; JLdg; OL

I A TR o TR I TR T

.. . . OdL .
= piqi + pifi — pigi — Pidi — M (by EL equations)
o
ot

So H is conserved if L has no explicit time dependence.

1.1.6 Hamilton’s dynamical equations

From the definition of the Hamiltonian, we have:
OH = 171‘5101‘ — piéqi
and considering H = H(p;, qi), we have

0H = a—H(SPi + oH

api T%éql

Comparing terms gives Hamilton’s dynamical equations:

oH . oH |
8771'_% & T%— Pi

1.2 The wave equation

1.2.1 Derivation

Consider a 1D system of N masses m connected by springs of spring constant k. The displace-
ment of each mass is denoted by ¢;(¢) and at equilibrium they are separated by a distance a.
The force on mass i is

—k(pi — ¢i-1) + k(¢piv1— ¢i)

from left spring from right spring

The Lagrangian for the system is:

L |4

T —
N
Z %m k(¢iv1 — 4’1‘)2

i=1

EL equations give equations of motion for the system:
m$i = —k[(¢i — pi-1) — (Pir1 — ¢1)]
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Taking the limit as N — oo, keeping mN and a(N — 1) constant gives:

d . 0%
P‘E@P) - k“@ =0

where y = . We let v = ka, so:
29 P
o Va0
This is the 1D wave equation; the physical interpretation is that any perturbation will propa-
gate through the system as a wave.

1.2.2 Notation
The 1D wave equation can be more conveniently expressed as:
Hip — vzg = 0.
In general, the wave equation in 3D is:
O — (0 +0; +02)p =0
or, more conveniently:
9%g—(V?)g =0

or, even more conveniently:
U¢ = 0.

V2 is called the Laplacian operator and [ is called the d’Alembertian operator.

1.3 The Lagrangian density
The Lagrangian of the discrete 1D system discussed in Section 1.2.1 can be written as a sum of
parts:

L=Y al

M=

Il
—

1

where £ = Lu¢? — %%(4)1'“ — ¢;)?. L is called the Lagrangian density of the system. Asa — 0,

L:/.cdx

and ¢;(t) — ¢(t,x), 2% 5 5. 0.
In the simple linear case,

L= 3p(0:p)* — 3v(3:9)°

o (2 ) oo (42 ) % o
o)) " \0(0xp)) o
substituting £ into the EL equations reveals:

1#0¢(9:p) — vIx(dxp) =0

6

Recall the EL equations:




= yafcp — 1/832649 =0.

Generally L refers to a 3D Lagrangian density. In the 3D version of the ‘masses connected
by springs” example, £ would be given by:

L= 3pu(3)* — Ju(V)*.

1.4 Deriving the Euler-Lagrange Equations

We will derive the EL equations for a scalar field ¢(t, x). Given L(9:¢, dxp, ¢, t, x), we use the
variational principle S = 6 [ Ldtdx = 0.

Since L is invariant under time translation t +— t 4 T and space translation x — x + a, there
is no explicit dependence on f or x. Hence £ = L(9¢¢, ¢, ¢), and:

oL oL

L= 500" T 50

So returning to the variational principle:

)5(ax¢) + cp

¢

552/5Ldtdx
_/Ua 3:(5¢) dt]der/[/a x}dt—f—//zg&pdtdx_

Integrating by parts gives the first term:

/aatcp (6) dt = [ ] /at[ }&pdt

and a similar expression for the second term.
The boundary variations, i.e. 6¢(t1,x), 6¢(t2, x), 6¢(t, x1), 6¢(t, x2), are zero, which means
that the th and [ ]y terms vanish. This gives:

5S = /(—at [a(%f@} 5 — 0y [ (af¢)] 54>> dt dx

Since 6S = 0 for any J¢, the integrand multiplying é¢ must be zero, i.e.

% (a&a@) o <a(gfq>>> B 35 -0

the Euler-Lagrange equations for a scalar field ¢(t, x).

In 1+3 dimensions, y and z terms appear. We can write:

oL oL
I <a<ayq>>> “ap "

where 9, is the operator (%%, %, %, %) .
The field can have many components: ¢*, « € {1,2,...,n} and EL equations may be written

for each «.



Chapter 2

Relativistic field theory

2.1 Lorentz transformations

For an event (f, x) in frame S, its coordinates (¢, x’) in frame S’ which moves relative to S with
velocity v in the x direction are obtained by Lorentz transformation:

' =y(t—ovx/c?)
x' = y(x —ot)

where 772 =1 —v?/c2.

2.1.1 Rapidity

The Lorentz transformations can be rewritten:

Or, defining the rapidity { as log }fzﬁ,

ot —x' = e (ct — x)

ot +x' =eb(ct+x)
Note that for successive Lorentz transformations,

ot — ! = eg(v’)(ct/ o x/)
— eg(v/)eg(v) (Ct — x)

i.e. one can ADD RAPIDITIES, by contrast with velocities.

8



2.1.2 Hyperbolic angles

We let B = v/c. Expanding ( gives:
1 1+
¢p) = 5 log <1_§> = 3 [log(1 + B) —log(1 - B)]
=3[(B—3F+38 — ) — (-B—3p— 3 —..)] for [B| <1
= {(B) =B+ 3B+ 1B+ ... for |B] < 1.
Sowhenv < ¢, ~v/c.
How does 8 depend on {? Working from the definition of ¢,
20 1t B
1-p
1+6=(1-p)
B(14e*) =e* —1
ef —e ¢  2sinh(
p= el fet 2cosh( -

This of course means that { = arctanh .

tanh C.

2.1.3 Matrix form

From the definition of v,

v =ctanh(
¥2=1- tanh? ¢
— sech? 4
S cosh? ¢
v = cosh {
We rewrite the Lorentz transformations as:
ct' = y(ct — Bx)
x' = (x — Bet)

and, noting that By = tanh { cosh { = sinh , this gives:
ct' = ctch{ — xsin{
x" = xch{ — ctsh{
v =y
7=z
where ch = cosh and sh = sinh.
0,1 ,2

We now write (ct, x,y,z) as the vector (x%, x!,x2, x?), allowing the Lorentz boost along the
x! axis with velocity v to be expressed as a matrix A operating on the vector:

chf —shi 0 0
A_ |-she g 00
0 0 10
0 0 01



This is a hyperbolic rotation in the x°-x! plane.
Any proper Lorentz transformation can be written as a product of a rotation A®) which

aligns z-axis with direction of motion, a boost along the new z-direction AB, and another rota-
tion AR) ie. A = ARIABAR),

2.2 Tensors

2.21 Lightrays
A light ray passing through the origin has coordinates which obey:
A —xr -y — 22 =0
A 4-vector x¥ is called:
o time-like if x"x, > 0
e light-like if x#x, =0
e space-like if x#x, < 0

where x* = (x0,x1, x%, x%) and Xy = (29, —x!, —x2, —x3).

2.2.2 Metric tensor

For the purposes of this course, ¢ = 1, ¢! = —1, g2 = —1, ¢ = —1, and 0 otherwise. The
indices ensure that signs are accounted for; to raise index x, for y € {0,1,2,3}:

xy = 8"x, = g0 + g"x1 + g0 + §°xy

0 123 _

(summing over repeated index v on the left). This gives x” = xp and x —X1.2,3.

2.2.3 Lorentz transformations and tensors

For x*in §’, x* in S:
XM= Ahx"

A light-ray obeys both:

guwx'*xV = 0and

ga/gx“xﬁ =0.
So for all x* and xP,

gw,AZAEx"‘x/5 = guxt'x’

= th‘Bxlx xﬁ
So the Lorentz group is defined by matrices which obey:

gyvAKAlé = Sup-

10



Examples:
e Any 4-vector A* transforms the same way as x*: A'* = Al A,

e The EM tensor F*' transforms as F/*V = A} A‘éF"‘ﬁ .

e The angular momentum tensor M**" transforms as: M = AQAEA%M"‘M

Note: Must observe ‘grammar’ of indices; i.e. one lower A on left = one lower A on right;
lower and upper u on left => no p on right, etc. For example:

S8 = 8a

2.2.4 Lorentz scalars
Qupa"bP = a"b,

and
Ellyb;_ - aybl,[,

which is a scalar, and invariant under LT. We call a*b, a Lorentz scalar.
Analogous to @ - b, which is invariant under rotation in 3D.

2.2.5 Invariant tensors

Scalar time increment: dt is defined:

dt® = gdxtdx’
(= dxtdx,)

c2dt? is invariant under LT, and can be used to construct a 4-velocity:

_dxt

v =2
dt

Metric tensor:  ¢'"' = AﬁAgg"‘ﬁ =g

Levi-Civita tensor: An important tensor, defined as:

+1 if By is an even permutation
€1 = _1  if aByé is an odd permutation

0 otherwise.
Under LT, € transforms:

M7 = ARG NS AGe P

= P10 det A
(by definition of the determinant.)

11



2.2.6 Proper and improper Lorentz transformations

If det A = 1, A is called a proper LT, and if det A = —1, A is called an improper LT. So € is
invariant under a proper LT, and for an improper LT, €’ = —e.
The parity transformation AP flips the sign of all spatial coordinates:

AP = diag(1,-1,-1,-1)
and the time reversal transformation AT flips the sign of the time coordinate:
AT = diag(—1,1,1,1)

Any LT can be written as the product of a proper LT and one of {1, AP AT AP T}. The Lorentz
group O(1,3) has four disconnected subsets corresponding to LTs of the form A, AAT, AAT, AAPT
for A proper.

The subgroup consisting of orthochronous LTs (i.e. those which preserve time direction) is
denoted O™ (1,3).

2.2.7 4-velocity and 4-momentum

Recall:

2dt? = dx,dxV

=
av? = ap — L
c
1 ,dx
2 _ g2 fq_ 1 /4%0
dt> = dt ( c2(dt)>
2
_ g2 v
cae(i-2)
— 4f (1- )
= dt = ydt
4_ 4
ar ~ Var
4-velocity is defined as:
avt __dxt
ac ~ Tar
d, .
= 'y%(ct,x)
= v(c, 7).

4-momentum of a particle with mass m is defined as:

-
=T

and it transforms under LT as: p'* = A} p".

12



The time component of p* is p°, with expansion: p° = myc = mc(1 — 7 /c?)z.

()3 (D)) -

(g )
cp’ = mc® + mv 1—1—7—4—...

cp’ =

1
= rest energy + Emﬁz + higher powers.

The constant mc? has no dynamical effect, since EL equations only depend on partial deriva-
tives.
If we denote cp® by &, the relativistic energy of a particle with mass m:

1 3 2
_ 2 D
E =mc +§mv +§mc—4—|—...

Thus p* = £, and p* = (£, 7).
Recall x?‘ = (ct,X). Then x¥p, = £ — ¥ - , a Lorentz scalar. Another scalar is:

p''p y—mv(c, v) - my(c, )
V(- 7)
2c2(1 7 /c?)
1—-32/c?

2.2
plpu = mc.

which means that for massless particles, p*p, = 0. In 1+3 dimensions this describes a light
cone:

plpn = (") — (p')? = (P*)* — (P°)* =0.

For m > 0, we have ¢?pt'p, = £2 — ¢*p? = m?c*, giving:

E = tcy/p* +m2ct

where p? = (p1)? + (p?*)2 + ...

2.2.8 Volume element

The volume element d*x = cdt dx! dx? dx® in 1+3 dimensions is invariant under Lorentz trans-

/d4’=/|]yd4x

where J§ = ax .ForaLT, |J| = ch®] —sh®] = 1, so d*x' = d*x.

formation:

13



Chapter 3

Field theories

3.1 Covariant field theory

3.1.1 Formulation

Formulation in terms of a variational principle is useful; to do this we need a Lorentz scalar
action:

S = 1,C d*x.
c

If £ is scalar, this ensures S is scalar.

We consider a scalar field ¢(x#) and a scalar Lagrangian density £(¢,9,.¢), e.g. ¢, $?, 0,0 ¢,
0,¢0"¢, etc. (These are all scalars since indices are saturated.)

The EL equations for a scalar field are:

oL oL
% {awm] “ap

3.1.2 Example

L = 33,40 ¢ + f(¢), then first term in EL equations reads:

oL 0 [1
= — | =9,¢d"
9(dup) ¢ [2 ? ¢+f(¢)}
=g (20499)
‘1«[
200,0)° ¢ 2773(3,9)

9(v¢)
(%)

_1]11/ 11/
_25Va¢+28cp
1 1
:7]4 —oY H
28¢+28¢5u

1, 1
= _o# —_oH

59"+ S99
= "¢,

14



so the EL equations give:

or in other words,

of _
O¢ — PP 0
If f = —30¢?, for some constant o, then the EL equations give:
Op— 2 (~1o¢?) =0
op 2
Up+o0¢p =0

or simply (O+0)¢ = 0.
Solutions are of the form ¢ = A exp(—ik,x"). Noting that:

0, = Ady exp(—ik,x")

= —iAky exp(—ik,x")
this gives:
10,01 = (—i)? Ak, k" exp(—ik'x,)
Substituting into d,,0"¢ + c¢ = 0:
—A(ky k" — o) exp(—ik,x") = 0.
k k' = 0.

time-like  if o > 0.
This means that k;, is { light-like if ¢ = 0.
space-like if o < 0.
For k = (%,k), we write exp(—ik,x") = pilwt—Fk) v
frequency of a wave moving in the direction indicated by k.

where k¥ = w/c. w is the angular

In quantum field theory, ¢ has a natural interpretation. E = fiw = hck® and f = Fik, so
pt = hk*.

plpu = m?c? = hzkyky

m2c? = Ho
mc 2
= (%)
o2 = i = Ac.
mc

where Ac = Ac/2m = h/mc is the reduced Compton wavelength of the particle.
So the equation of motion d,,0"¢ + c¢ = 0 in quantum mechanics reads:

1
Ot w2

15
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In more realistic theories, f(¢) would involve other terms, e.g.

£0) = —5 (5) mo? + a0t

for an interaction of the ¢* form. Setting m = 0 for massless particles (e.g. photons) gives
wave-like solutions with velocity of light.

3.2 Vector field theories

There are many more examples of vector field theories than scalars so far.
In a vector field theory, the field ¢ may have components ¢*, where « € {1,..., N}. We need
Lorentz scalars for £ to provide a scalar action:

szl/zfx
C

2¢2. and for a 4-vector A*, another scalar is ptA,, or A AP,

An obvious scalar is p¥p, = m

3.3 Free field

3.3.1 Formulation

Relativistic action = [ Ldt = [ Lydt.
In order to have a covariant theory, we need L7 to be a Lorentz scalar (since dt is scalar).

L « 1/ will work.
1
1: 1_572 2:1_15;2_%(_%) 2122
0% 2 2 2 2! o

And in order for L to have dimension of energy, we multiply by mc?:

-
2 1 o2 1 5, 1 0
me=yTh =me — Smo — om— ...
2 8 ¢

and we flip the signs so that the %m?}z term is positive, as in the non-relativistic case.

2 1 1 4
L= —% = E711272—71162—|—§mzcj—2...
3.3.2 Interaction with a vector field
Lorentz scalars which can be added to L include p,A¥, (p#AV)Z, Ay AY, ... where Al is a

4-vector field which depends on x*.

To begin, we will use the simplest form, p, A”. To connect this with electromagnetism, we
re call that e® and eA must have dimension of energy and so puA¥ should too. We choose mic
as a denominator. So L should include ;L p, A¥. Again, we flip the sign to align this theory
with known properties of EM. So we choose:

m?c? q

1, AR
v gme!

L=—

16



The action for a particle of mass m located at x*(7) for invariant time T with momentum

pt = m% interacting with a 4-vector potential A¥ of strength g is:

S=- /(mc2 + %Ayp") dt

But since p,p# = m?c?, this gives:

s=— [(po+14,) dx.

We can use the variational principle:

65 == [(putTa,) tax) — [ (6p + 6a,) ax

/(PV—F CAV> d(ox) — [Loa.dx

Note: p'ép, = 0 since p,p" = m*c* = constant.

Noting that 6A, = %%(536?‘, we can integrate the first term by parts:

65 =—[(pu+14,) (sxﬂ: + [ (apu+Taa,) oxr - [Ton.ax

M = S and 64(11) = 6x(12) = 0. Sor

A
55:/(‘?:_,_"”) (5T5xﬂ_/zaAV(5xP‘dxv

But

c dt oxH

B dpt  qoA,dx' qoA,dx" “
_/(ch'+caxvch'_cax?’(ir dt ox

We want 4S5 = 0 for all possible variations of the path, so we want integrand = 0, so:

dpu q<aA,4 8Av> dx’

dt " c\ox  oxt) dr
or
dpu _q <8AV B 8A,4> dx’
dt c\ox# oxV /) dt
where
Fu = 0,Ay — 0y Ay 3.1)

is the antisymmetric field tensor.
Another form of the equation of motion is:

ap 4w
dt _mcF P

the Lorentz force in 4D.

17



3.4 The electromagnetic tensor

To link this with E and B, we arrange FO = F' j=1,2,3and F/ = —e/*B*. The sum over v is
replaced by a sum over i:

dpo _ qp dx'

dr ¢ Y%dr’

But noting that raising a spatial index changes the sign, we know that Fy; = —Fy = F?,

giving us:

dpo B qudx’

dt c dt

dp’ _ qpidx’

ydt ¢ ydt

dp’ _ qpidx’

dt c dt’

Recalling that p* = (£, 5) = p° = £, we have:

c’
ae =
S
T
where 7 = % is the 3-velocity, gE is the electric force and gE - 7 is the rate of work done.
The spatial components of the Lorentz equation of motion are:

dpi qp. dx’
dt ¢ "Vdr ‘
(ot 5%
A1)
G- (4 e
”Zf = qE' + Leihtoit,
or, in 3-vector form:
WP _gE+ 758

3.4.1 3-dimensional equations

We assumed:

Ei:FiOZaiAO_aOAi

= —9A' — 9;A°
.10 d

i =Y oAl Y A0
E_catA oxi

18



In other words, E = —%atﬁ — V®, where Al = (O, A)
For a magnetic induction field B, if ijk is an even permutation, BX = —F%. Then:

BY = —9'A/ + 9/ A
= 0,Al — ain (lowering spatial index)
= (V x A (k™ component.)

So we have
E=—-00)A—-V®, B=VxA4,

the 3-dimensional versions of (3.1), given that FO = Ei and F = —€'/kBF,

3.4.2 Gauge invariance

If another potential, A}, = Ay + d,¢ is introduced, the equations of motion are unaltered:

= 0, (Ay +0vp) — (A +9,9)
— a”AV - ayA;[
= F.

Adding a 4-gradient of some ¢(x") does not alter F,,, so obviously it does not alter EorB.
This is analogous to a change in potential V' = V + C for constant C not altering the force in
1-dimensional classical mechanics.

Gauge invariance is very closely linked to conservation of charge.

3.5 Equation of motion for a free vector field

We seek a Lagrangian density for a free field (i.e. no interaction with charge/current) which is
a Lorentz scalar.
Remember that we used p, p* for the free particle case without interaction (where g = 0).
Recall also that for a scalar field ¢(x*) we used £ = (9,4 0"p — 22¢?).
Derivatives appear quadratically to yield linear equations of motion. For a field F*", the
obvious suggestion is:
L = CF,F".

Also, we could include a term mZAP,AV which, like F,, F""¥, is a Lorentz scalar. In fact, mzAHAV
corresponds to a vector field with mass m (in appropriate units, using 1/ c).

For simplicity’s sake, we assume m = 0, and use £ with a constant C = —1/4, to agree
with the equation of motion for EM fields in Heaviside-Lorentz units, so that;

1 1
L= 11—",,’? Fg (: —4P,WF”V>

So the Euler-Lagrange equations of motion are:
J oL ~aL
oxt [9(9,Ay) 0A,

=0.

19



where we replace ¢ from before with A, .
There are four EL equations, v € {0,1,2,3}.

AL = —F, FM
= — (9 Ay — dyA,) (I AV — 3V AF)

Use y — pand v — o, since u and v already feature in EL equations:
4L = —(0pAg)(0F A7) — (05 Ap) (07 AF) + (05 Ap) (0P A7) 4 (0, A) (07 AP)
or, exchanging ¢ <— p in second and third terms:

L= —2(3,As)(FA%) +2(3,A, ) (3" AP)
= —2(3,A,) (P AT — 37 AP);

so in EL equations we have:

L 39y A,
- _ 0 AT _ a7 ALY _
255, 0) a(aHAV)(a A7 — 7 AP) — 3, A,

(P AT — 37 AP)
(0, A,)

In the second term, we raise p and ¢ and lower p and ¢ to leave the value unchanged. In the
first term, there is a nonzero contribution only when p = yand o = v:

oL 3(0pAs — 0 Ap)
2 = —0hou(dP AT — 7 AP) — P AT —F £
(9, Ay) oo ) (04 Ay)
= — (9" A” — 9" AF) — 0P A7(8)6y — 61 5))
= —F" — (9"AY — 9" AM)
— _Fyv _ F}IV
= —2F"
oL
= —FW
3o T

Since £ does not depend on A, explicitly, aaTﬁ, = 0, as in the case of a free field.

So EL equations read:
oy [-F"]—-0=0,

or:
9 F" =0 (3.2)

the dynamical equation of a free vector field.

In 3D, space these are the Maxwell equations for an electromagnetic field with no charge
and no 3-current:

v =20: BVFF‘O = 0. And since F® =0,

% =0
<:>aiEi:
s V-E=0,
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Maxwell’s first equation for free space.
v=7
a()FOj + aiFij =0
10

—~—FE —9,*B" =0
c ot
10 .
2 FJ — €liky. Bk =
3 0;B 0
19E o =
———=— -V xB=0,
c ot

Maxwell’s second equation for free space.

3.5.1 Particle and field interaction

The Lagrangian density requires an interaction term Liny:
1
;C - AIFVFV + ‘Cint-

(Note that F/F}' = —F,, F")
Lint should be a Lorentz scalar. Recall for particle case,

q dx?‘
1nt /Ay dt T,

but we need [dxdt = [d*x.

3.5.2 Four-current for particles

Four-current density is:
dxt

JH(E) = g 28 (2= 5y(1)

Current = charge x velocity. 3D Dirac delta function has dimension volume !

current density.

, and provides

In J#, %,(t) is the 3-location of the charge g at time t. The zero-component J°(t,¥) = cp,

where p is the charge density in a region. For a volume (), the total charge is:

1 03. 4 dx
E./]dx_E/dt
Q Q

=T[5z —x,(t) d
! fo,

Ji(t, %) is the 3-current associated with the moving charge 4.
Since — —A i ‘fix: was the interaction for the Lagrangian L, and action Sint =

alisation for density L,

1
Lint = EAy]y

21
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so that spatial integration gives a term like Lint. Lint is a Lorentz scalar as y is summed, and
Lint is reference frame-independent.

So,
1 1

L= 11?;5” - EA,JV.
The Euler-Lagrange equations of motion are:
5 oL _ oL
In the first term, A, J/ does not contribute; only d,, A, terms do. For the second term, only A, J¥
contributes, and so:

=0.

oL 0 |1
_ N W
0A, JdA, [c w ]
]' 14
= E] ,
or simply:
0, F" = .
v=0: 9F% +9,F0 = 170 But F°0 = 0, so we have 9,E' = 1(cp):
v E=p
Maxwell’s first equation.
V=i
Q0FY + 9;F = L
0 + ] - E]
, y 1.
_aoplo _ ajejszk — E]l
10 i ijkypk_ Lo
_ %9 B = =Tt
c 8tE +€7%9;B C],
giving:

aE =3 = e

= X B =

o +cV I,
Maxwell’s second equation (using Heaviside-Lorentz units).

The remaining two Maxwell equations follow from d,e""*? Fy; = 0.

3.6 Dual tensor

We saw that €#'P? was Lorentz invariant. The dual tensor of FFV = 9*# AV — 9V A* is:
F]/“/ == %GMVPO-FPO—.
For example,
£l _ % 0123 Fos + % 0132 Fz
10123 10123
= 3€ F23 — 5€ F23
10123 10123
=36 “Fs+ 56 “Fy3
— MBE,

=F; [=F7].
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Recall that Maxwell’s first and second equations involved 9, F#'. The 4-divergence of F/
is:
0, F" = 9,,(3€"P7F,y)
= 10,€"P7 (0, Ac — 0r Ap).
Swapping p <+ ¢ in negative term:
0, " = 30, ("9, Ay — €"7PO, Ay)
- %ay(eprgapAg + €HVpUapAU)
= €79, (9pAs).
But for functions like A,, second derivatives are symmetric: 0,0, = d,0,. So, swapping u < o,

9uEM = ef179,(3, A,)

== epv‘uaayapAg'
= —e“"paayapflg
= GHfVV =0. (3.3)
Recall that F© = E/ and F/ = —¢'*B¥. We want the dual elements in terms of E and B.

Fo,
70 1 i0jk .
FO = 1Ok Ey
_ _ 1 _0ijk 2 jk
= — 10k (—1)2F)

ijk (__ jkipl
—1e*(—eMBh)

— %Gijkejlel.
But e//ke/fl = 26 Thus,
FiO — §ilBl
F? =B

Fil — 1eiieop,
= 3 (7R + ™ Fy)
= 3(e"™Fg + (—1)%"F)

— eijkOFkO
— (_1)3€ijk(_FkO)
— €iijk0
Pi — g,
SO, to Summarise, we have:
FiO — Ei Fl] — _eijkBk
ﬁio — Bi IEZ] — _eijkEk
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Now consider the components of E*in (3.3).

v = 0: We have 9,[" = 0. Like F,,, F* is antisymmetric, i.e. F*V = —["#. Thus, the
diagonal elements of F are 0, so the sum over u € 4{0,1,2,3} can be replaced by a sum over
ie€{1,2,3}.

9;F0 =0
9;B =0
V-B=0,

Maxwell’s third equation.
v =1 Wehave BMFP”' =0,ie.

801 4+ 0, — 0
—agﬁio + ajeﬁkEk =0
—aoBi — €ijka]'Ek =0
%E+(%xéyzo

aog + 6 x E = 0,

Maxwell’s fourth equation.

3.6.1 Maxwell’s equations

We have now derived all four of Maxwell’s equations:

1. @-E’:p
2. —gf—i—c@xﬁzf
ot
3. V-B=0
0

In other words,

Here, J# is the four-current density with components (cp, J).

3.6.2 Charge conservation

For N charges g;, we have

Integrating over a spatial region () containing all the charges,

N dxf

it )Py — e 8
[ = ol
4 —
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the sum of (charge x 4-velocity) for the N particles.

Note that for u =0, ]O = cp:

N

/ cod’x =Y g
A 1=1
since x? = ct.

Recall that cd, F#" = J". Observe that d, acting here reveals cd,d,F"" = 9,F". But 9,0, is
symmetric and F*¥ is antisymmetric, so:

9, J" =0,
i.e. conservation of charge.
%)’ +0;]' =0
10 I
LR
i V-J=0

(The 3D integral of a divergence V- J is a surface integral of the dot product of J with directed
element dA over 0).)
So,

a (free) - fran

Q Q)

If current flows out of region () according to J - dA, then the total carge inside () decreases.
Charge is conserved: 9, /" = 0; the idea generalises: d,T"" = 0 means T"" is conserved.

3.6.3 Bianchi identity

An alternate form of the equation 9, F*" = 0is 9,F"” = 0, since F is symmetric. Suppose y = 0.
Then 9, F% = av%eo’/P”Fpa = 0, so we have eOVWaVFW =0,1ie.

( 1239, s + 01329, F32> + < 02319,y + 2139, F13> + ( 129, F), + 9219, F21) -0
But the two terms in each bracket are equal, and €"1?® = ¢"! = %312 = 1. Thus:
2811:23 + 282F31 + 283F12 =0.

In general,
OrFuw 4 0, Fon + 9y Fry =0 (A, , v not summed.)

This is called the Bianchi identity and is meaningful for A # u # v.
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3.6.4 Parity of electromagnetic tensor and dual tensor

Recall the parity transformation P : (x,y,z)T — (—x, -y, —z)T.
The field at location 7 of a charge g at origin is:

- q 7

E= -

4rr?r

Under P, 7 — —7, butr? =7-7is unchanged. So E — —E under parity; Eisa polar vector.
The magnetic field for a charge 4 moving at a low velocity @ is:

As T = Z—f, & changes sign under P. But B — (—1)2B, since ¥ x 7 — (=) x (—F) = ¥ x 7. So B
is unchanged under parity; B is an axial vector.

How do FWFVV, Fwﬁ’“’ and lfw,ﬁw behave under P? These are Lorentz scalars and could
bein L.

F'Fyy = FUFy; + FIE; + FOF + F Ry
= (=) ((=1)2F) + (—1)2FiFi — FOF0 4 o
— _pOpi0 | piipi _ piOFi0
— _PjOFjO _ Fz‘OFiO + €ijkBkeilel
= —2E'E' + 26" B*B
—2E2 + 2B*BF
FMF,, = —2E? 4+ 2B~

FuF" = FyFY + FoF + F;FY
— _2Fi013i0 + Fijliij
— _2EiBi . eijkBkeilel
— —2E . B — 26" BFE!
— 2E-B—2B-E

F F" = —4E -

josll

So FME,, is even under parity, and F,, F*" is odd under parity. A F,,[* term in £ violates
parity; there is no evidence that electromagnetic interaction can violate parity (although weak
interaction does.)

Note: The form Fwﬁw is not used, since 15;,1,15”” = —F, F".

3.7 Canonical stress tensor

3.7.1 Construction

Recall in classical mechanics,



Generalise this to:
v oL

1 - Wav{l) - (SZE.

Here q; — ¢(x°), and 4 — -2 for a scalar field ¢(x).
For a vector field A, (x”), we generalise again, ¢ — A,.

oL
wy YU~ v oMV
T a(ay A)a A/\ g ﬁ,

the canonical stress tensor.

For a free electromagnetic field with £ = — }IFWF w

19(FpoFP7)

w29\ petT )
! 4 9(9,A1)

1
aVA/\ + 1gVVPPgF‘DU

From an earlier calculation, we have:

TH = —1(4FF)9"A) + Lo Fpo FP°
= —FM"9"A) + 1¢" F,oFF,

the canonical stress tensor for a free electromagnetic field.
There are a number of difficulties with this TH":

e It is not gauge invariant as A, appears explicitly. Recall, F,; is gauge invariant.
o TH £ TV je.itis not symmetric.

Rewrite:
T = —glPF, 0" A" + g Fyo FF°

(obtained by lowering and raising A and using g"* to lower p in first term)
Recall F** = 9V A* — 91 AV, so that 9V A = FY} 4+ 91 AV. Substitute in TH':

TH = —gMPF )\ F"* — gMF, 0" AY + 1" Foo FP7
Write F** as —F* and change A to ¢, and omit the second term to define a new tensor:
OH — gﬂpppgpw + %gﬂvlrpapp(f,

the symmetric stress tensor (now manifestly gauge invariant since it only involves F,;, and not
Ay explicitly.)

3.7.2 Properties
© is symmetric (" = O"F).
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The second term is in © is clearly symmetric, so to prove symmetry we will start by sub-
tracting it from ©"#:

O — 1o o FP7 = g"PF,o FP7
= F Fo*
= F"F}
= (=Fo)(=F")
— [k
— FpFU'V
— ¢MF,p F7

= O = "

OM is traceless:

— 1
@ = FFY + 16" Fp FP°

= FJF) — 16,FE L.
tr® = 0} = FF — 16, FFf
= FJF) — F'F/,
since 8}, = 4. Notice that these are all dummy indicies, so:
tr® =0} = F'F/' — FF/
=0.

The trace relates to the mass of the vector field (see Proca equation later).

Also, 9,0" = 0; the tensor is conserved.

Note: @ is energy density and @% is momentum density. These will be discussed in detail
later.

3.7.3 Angular momentum of a field
Recall clasically, L = ¥ x j. Generalise to 1+3 dimensions:
MM = THx7 — THx",
Is M conserved?
0, MM = 9, (TH x" — 9, (TH x")
= (0, TH)x7 + TH (9ux”) — (0, T )x" — TH(9,x")
=0+THs —0—T"9,
_ Tov _ Vo
#0, since T7" # T".
But @7V = @"7, so we define field angular momentum as:
MM = @"Wxo — @M x".

This is conserved: Bﬂ MM = 0. Many conservation laws are implied here.
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3.7.4 Relation to electromagnetic field

O has 10 independent components: 4 of these relate to energy-momentum density. Recall:
@M = gMFyo FPY + 1gM oo FP7

and:
FooF* = —2(E* — B?)

Sowhen y = v = 0:

@0 — gOprUFpU _ %(EZ _ gz)
_ gOOFOijO _ %(EZ — B
= (—1)*F°F° - 1(E*> - B?)
= EFE/ — 1E* + B?
= %(E2+§2) =U.

U is the energy density of the field (in Heaviside-Lorentz units).
=i,v=0:

@ = ¢"F\oF*7 +0
= (—1)°FF"
= _FiUFUO
= —F;F°
= ¢*BFE]
= ¢/kE/Bk
= (Ex B)!, =cp'.

p is the momentum density of the field.
p=1iv=rj
@Y + }(E? — B?) = g Fpo P

= (=1)F,F7

= —FoF% — FyFY

—_ _PiOFjO _ Pikljkj

— _EZE] - eilelekijm
= —E'E/ + " BB,

But ekilekim — siigim _ simsil g

©" + 1(E? — B?) = —E'E/ + (8"5™ — 5™5/")B'B™
— —FE'E/ + §B'B! — B/B!
= —E'El — BIB' + 6B
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Noting that g'/ = —&,
©' = 16'(E* — B?) + 6'B* — E'El - B'BI
= 16Y(E* + B?) — E'E/ — B'B/

This is a symmetric tensor, and is equal to — M, where MY is the Maxwell stress tensor (in
Heaviside-Lorentz units).

3.8 Interacting vector field

Introduce an external charge and current density J# = (cp, J). The Lorentz force is:
1
9, F" = - JV.

For a free field, translational invariance leads to 0,0"" = 0 (as we will show.)
Consider:

8H®W = aﬂ(%gﬂvppappa + gypppgpav)
= 1 (FpoFP) + 0° (Foo )
- %(BVFP‘T)FPU + %PPU(BVFPU) + (apFPU)FUV + Fpo(apFW)
= $For(9FP) o+ 1For (9"F*7) + Lo F™ + Fogd FF
2(8,,@”1/ - %]UFW) = Ppa(avP‘W + 20°FF7)

One can write Fs in terms of As, or write one of the 2F,;0°F?" as:
Fyy0f F7" = —F5p0°F7" = —Fy;0"F*" = F,;0"F*P.
So:
2(0,0" — 1J,F") = F,(9"F*” 4+ 0P F7V + 9 F*F)
=0,

by Bianchi identity.
Hence,
0,0" = 1, F7,

Energy-momentum conservation for particles and fields in combination.
v=0:
0 _ 17 puo
0O = cJuF
ao®00 4 8i®10 — %]iFIO
19 . .
—U+9; (1sT) = -LJE

=

—4+V.§5=-J.E



0,0" = L(JoFY + J;FY)
0 1eini
= —LepP® - 1yFi
= —pE/ + 1]'e/ B
— _pE] _ %ejik]in

0,0" = pE/ — %(Tx B).

Compeatre this to:

dp

E—qE-i-

the Lorentz force of an electromagnetic field Eand Bona charge g.

q-

v><B

Define a force density f*:

f” = %FHUIU
= —1JFon.

A spatial integral of f# provides the force on the particles:
/ f d3 x = dp n

where p!, is the 4-momentum of the n'" particle.
The space integral of the energy-momentum density for fields and particles is:

d
/(a}’@yv + fv) dsx = E (p}/ields + p;arﬁcles> =0
@)

=3

Force q(E + 17 x B) acts on a charge . Work is done at a rate F - & = gE - @ [since 7 - (7 x
B) = 0]
For a charge g with path X, (t),
T: Z Unés )

n

Rate of work done is the power:
/]:f JdPx = Z/E qnT, 8 (X — %) d°x
Q e
=Y quE(%y) - Ty
n

Where particles convert energy to the fields, one can show from Maxwell’s equations (in
3D or 4D):
- - 10 = U = =
—E.J= 78—(E2+BZ)+V (ExB) = = TV-S
Energy is imparted by particles (g,,) to the fields in a volume () at rate:

—/E-Td3x:/égjd3x+/ﬁ-§d3x
QO Q (@]
:a/Ud3x+/§-dﬁ
ot '
Q 0Q)
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