MA3431: Classical Field Theory

David Whyte dawhyte@tcd.ie

February 13, 2011

Contents

1	Lag	rangian & Hamiltonian mechanics	4				
	1.1	Fundamentals	4				
		1.1.1 The Lagrangian	4				
		1.1.2 Hamilton's principle	4				
		1.1.3 Euler–Lagrange equations	4				
		1.1.4 Symmetry and conservation laws	4				
		1.1.5 The Hamiltonian	5				
		1.1.6 Hamilton's dynamical equations	5				
	1.2	The wave equation	5				
		1.2.1 Derivation	5				
		1.2.2 Notation	6				
	1.3	The Lagrangian density	6				
	1.4	Deriving the Euler–Lagrange Equations	7				
2	Rela	Relativistic field theory 8					
	2.1	Lorentz transformations	8				
		2.1.1 Rapidity	8				
		2.1.2 Hyperbolic angles	9				
		2.1.3 Matrix form	9				
	2.2	Tensors	10				
		2.2.1 Light rays	10				
		2.2.2 Metric tensor	10				
		2.2.3 Lorentz transformations and tensors	10				
		2.2.4 Lorentz scalars	11				
		2.2.5 Invariant tensors	11				
		2.2.6 Proper and improper Lorentz transformations	12				
		2.2.7 4-velocity and 4-momentum	12				
		2.2.8 Volume element	13				
3	Fiel	d theories	14				
	3.1	Covariant field theory	14				
		3.1.1 Formulation	14				
		3.1.2 Example	14				
	3.2	Vector field theories	16				
	3.3	Free field	16				

	3.3.1	Formulation	16
	3.3.2	Interaction with a vector field	16
3.4	The el	ectromagnetic tensor	18
	3.4.1	3-dimensional equations	18
	3.4.2	Gauge invariance	19
3.5	Equat	ion of motion for a free vector field	19
	3.5.1	Particle and field interaction	21
	3.5.2	Four-current for particles	21
3.6	Dual t	ensor	22
	3.6.1	Maxwell's equations	24
	3.6.2	Charge conservation	24
	3.6.3	Bianchi identity	25
	3.6.4	Parity of electromagnetic tensor and dual tensor	26
3.7	Canor	ical stress tensor	26
	3.7.1	Construction	26
	3.7.2	Properties	27
	3.7.3	Angular momentum of a field	28
	3.7.4	Relation to electromagnetic field	29
3.8	Intera	cting vector field	30

Chapter 1

Lagrangian & Hamiltonian mechanics

1.1 Fundamentals

1.1.1 The Lagrangian

The **Lagrangian** *L* of a system is given by T - V, the difference between its kinetic energy and its potential energy.

1.1.2 Hamilton's principle

Hamilton's principle states that

$$\delta \int_{t_1}^{t_2} L \, dt = 0$$

for a trajectory.

1.1.3 Euler–Lagrange equations

Hamilton's principle leads to the Euler-Lagrange equations:

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}_i} - \frac{\partial L}{\partial q_i} = 0 \text{ for each } i = 1, 2, ..., N$$

(Derivation in Section 1.4)

1.1.4 Symmetry and conservation laws

If for some particular q_i , $\frac{\partial L}{\partial q_i} = 0$, then from EL equations $\dot{p}_i = 0$, so p_i is independent of t. In other words, 'spatial translation symmetry \rightarrow momentum conservation'.

Other examples include 'rotational symmetry \rightarrow angular momentum conservation' and 'time transformation \rightarrow energy conservation'.

1.1.5 The Hamiltonian

Defining p_i as $\frac{\partial L}{\partial \dot{q}_i}$, the **Hamiltonian** *H* of a system is given by $p_i q_i - L$ (summing over *i*). Its time derivative is:

$$\frac{dH}{dt} = \frac{d}{dt}(p_i\dot{q}_i - L)$$

$$= \frac{dp_i}{dt}\dot{q}_i + p_i\frac{d\dot{q}_i}{dt} - \frac{\partial L}{\partial q_i}\frac{\partial q_i}{\partial t} - \frac{\partial L}{\partial \dot{q}_i}\frac{\partial q_i}{\partial t} - \frac{\partial L}{\partial t}$$

$$= \dot{p}_i\dot{q}_i + p_i\ddot{q}_i - \dot{p}_i\dot{q}_i - p_i\ddot{q}_i - \frac{\partial L}{\partial t} \text{ (by EL equations)}$$

$$= \frac{\partial L}{\partial t}$$

So *H* is conserved if *L* has no explicit time dependence.

1.1.6 Hamilton's dynamical equations

From the definition of the Hamiltonian, we have:

$$\delta H = \dot{q}_i \delta p_i - \dot{p}_i \delta q_i$$

and considering $H = H(p_i, q_i)$, we have

$$\delta H = \frac{\partial H}{\partial p_i} \delta p_i + \frac{\partial H}{\partial q_i} \delta q_i.$$

Comparing terms gives Hamilton's dynamical equations:

$$\frac{\partial H}{\partial p_i} = \dot{q}_i \quad \& \quad \frac{\partial H}{\partial q_i} = -\dot{p}_i$$

1.2 The wave equation

1.2.1 Derivation

Consider a 1D system of *N* masses *m* connected by springs of spring constant *k*. The displacement of each mass is denoted by $\phi_i(t)$ and at equilibrium they are separated by a distance *a*. The force on mass *i* is

$$\underbrace{-k(\phi_i - \phi_{i-1})}_{\text{from left spring}} + \underbrace{k(\phi_{i+1} - \phi_i)}_{\text{from right spring}}$$

The Lagrangian for the system is:

$$L = T - V$$

= $\sum_{i=1}^{N} \frac{1}{2}m\dot{\phi}_{i}^{2} - \frac{1}{2}k(\phi_{i+1} - \phi_{i})^{2}$

EL equations give equations of motion for the system:

$$m\ddot{\phi}_i = -k\left[(\phi_i - \phi_{i-1}) - (\phi_{i+1} - \phi_i)\right]$$

Taking the limit as $N \rightarrow \infty$, keeping *mN* and *a*(*N* – 1) constant gives:

$$\mu \frac{d}{dt}(\dot{\phi}) - ka \frac{\partial^2 \phi}{\partial x^2} = 0$$

where $\mu \equiv \frac{m}{a}$. We let $\nu \equiv ka$, so:

$$\mu \frac{\partial^2 \phi}{\partial t^2} - \nu \frac{\partial^2 \phi}{\partial x^2} = 0$$

This is the 1D wave equation; the physical interpretation is that any perturbation will propagate through the system as a wave.

1.2.2 Notation

The 1D wave equation can be more conveniently expressed as:

$$\mu \partial_t^2 \phi - \nu \partial_x^2 \phi = 0.$$

In general, the wave equation in 3D is:

$$\partial_t^2 \phi - (\partial_x^2 + \partial_y^2 + \partial_z^2)\phi = 0$$

or, more conveniently:

$$\partial_t^2 \phi - (\nabla^2) \phi = 0$$

or, even more conveniently:

$$\Box \phi = 0.$$

 ∇^2 is called the **Laplacian operator** and \Box is called the **d'Alembertian operator**.

The Lagrangian density 1.3

The Lagrangian of the discrete 1D system discussed in Section 1.2.1 can be written as a sum of parts:

$$L = \sum_{i=1}^{N} a\mathcal{L}$$

where $\mathcal{L} = \frac{1}{2}\mu\dot{\phi}_i^2 - \frac{1}{2}\frac{k}{a}(\phi_{i+1} - \phi_i)^2$. \mathcal{L} is called the **Lagrangian density** of the system. As $a \to 0$,

$$L = \int \mathcal{L} \, dx$$

and $\phi_i(t) \to \phi(t, x)$, $\frac{\phi_{i+1} - \phi_i}{a} \to \partial_x \phi$. In the simple linear case.

$$\mathcal{L} = \frac{1}{2}\mu(\partial_t\phi)^2 - \frac{1}{2}\nu(\partial_x\phi)^2$$

Recall the EL equations:

$$\partial_t \left(\frac{\partial \mathcal{L}}{\partial (\partial_t \phi)} \right) + \partial_x \left(\frac{\partial \mathcal{L}}{\partial (\partial_x \phi)} \right) - \frac{\partial \mathcal{L}}{\partial \phi} = 0$$

substituting \mathcal{L} into the EL equations reveals:

$$\mu\partial_t(\partial_t\phi)-\nu\partial_x(\partial_x\phi)=0$$

$$\Rightarrow \mu \partial_t^2 \phi - \nu \partial_x^2 \phi = 0.$$

Generally \mathcal{L} refers to a 3D Lagrangian density. In the 3D version of the 'masses connected by springs' example, \mathcal{L} would be given by:

$$\mathcal{L} = \frac{1}{2}\mu(\partial_t\phi)^2 - \frac{1}{2}\nu(\nabla\phi)^2$$

1.4 Deriving the Euler–Lagrange Equations

We will derive the EL equations for a scalar field $\phi(t, x)$. Given $\mathcal{L}(\partial_t \phi, \partial_x \phi, \phi, t, x)$, we use the variational principle $\delta S = \delta \int_{\Gamma} \mathcal{L} dt dx = 0$.

Since \mathcal{L} is invariant under time translation $t \mapsto t + \tau$ and space translation $x \mapsto x + \alpha$, there is no explicit dependence on t or x. Hence $\mathcal{L} = \mathcal{L}(\partial_t \phi, \partial_x \phi, \phi)$, and:

$$\delta \mathcal{L} = \frac{\partial \mathcal{L}}{\partial (\partial_t \phi)} \delta(\partial_t \phi) + \frac{\partial \mathcal{L}}{\partial (\partial_x \phi)} \delta(\partial_x \phi) + \frac{\partial \mathcal{L}}{\partial \phi} \delta \phi$$

So returning to the variational principle:

$$\delta S = \int_{\Gamma} \delta \mathcal{L} \, dt \, dx$$

= $\int \left[\int \frac{\partial \mathcal{L}}{\partial(\partial_t \phi)} \partial_t (\delta \phi) \, dt \right] dx + \int \left[\int \frac{\partial \mathcal{L}}{\partial(\partial_x \phi)} \partial_x (\delta \phi) \, dx \right] dt + \iint \frac{\partial \mathcal{L}}{\partial \phi} \delta \phi \, dt \, dx.$

Integrating by parts gives the first term:

$$\int \frac{\partial \mathcal{L}}{\partial (\partial_t \phi)} \partial_t (\delta \phi) \, dt = \left[\frac{\partial \mathcal{L}}{\partial (\partial_t \phi)} \delta \phi \right]_{t_1}^{t_2} - \int_{t_1}^{t_2} \partial_t \left[\frac{\partial \mathcal{L}}{\partial (\partial_t \phi)} \right] \delta \phi \, dt$$

and a similar expression for the second term.

The boundary variations, i.e. $\delta \phi(t_1, x)$, $\delta \phi(t_2, x)$, $\delta \phi(t, x_1)$, $\delta \phi(t, x_2)$, are zero, which means that the $\begin{bmatrix} t_1 \\ t_1 \end{bmatrix}_{x_1}^{x_2}$ terms vanish. This gives:

$$\delta S = \int \left(-\partial_t \left[\frac{\partial \mathcal{L}}{\partial(\partial_t \phi)} \right] \delta \phi - \partial_x \left[\frac{\partial \mathcal{L}}{\partial(\partial_x \phi)} \right] \delta \phi \right) dt \, dx$$

Since $\delta S = 0$ for any $\delta \phi$, the integrand multiplying $\delta \phi$ must be zero, i.e.

$$\partial_t \left(\frac{\partial \mathcal{L}}{\partial (\partial_t \phi)} \right) + \partial_x \left(\frac{\partial \mathcal{L}}{\partial (\partial_x \phi)} \right) - \frac{\partial \mathcal{L}}{\partial \phi} = 0,$$

the Euler–Lagrange equations for a scalar field $\phi(t, x)$.

In 1+3 dimensions, y and z terms appear. We can write:

$$\partial_{\mu}\left(\frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\phi)}\right) - \frac{\partial\mathcal{L}}{\partial\phi} = 0$$

where ∂_{μ} is the operator $\left(\frac{1}{c}\frac{\partial}{\partial t}, \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$.

The field can have many components: ϕ^{α} , $\alpha \in \{1, 2, ..., n\}$ and EL equations may be written for each α .

Chapter 2

Relativistic field theory

2.1 Lorentz transformations

For an event (t, x) in frame *S*, its coordinates (t', x') in frame *S'* which moves relative to *S* with velocity *v* in the *x* direction are obtained by **Lorentz transformation**:

$$t' = \gamma(t - vx/c^2)$$
$$x' = \gamma(x - vt)$$

where $\gamma^{-2} = 1 - v^2 / c^2$.

2.1.1 Rapidity

The Lorentz transformations can be rewritten:

$$ct' - x' = \sqrt{\frac{1 + v/c}{1 - v/c}}(ct - x)$$

$$ct' + x' = \sqrt{\frac{1 - v/c}{1 + v/c}}(ct + x)$$

Or, defining the **rapidity** ζ as $\log \sqrt{\frac{1+v/c}{1-v/c}}$,

$$ct' - x' = e^{\zeta}(ct - x)$$

$$ct' + x' = e^{-\zeta}(ct + x)$$

Note that for successive Lorentz transformations,

$$ct'' - x'' = e^{\zeta(v')}(ct' - x') = e^{\zeta(v')}e^{\zeta(v)}(ct - x) = e^{\zeta(v') + \zeta(v)}(ct - x)$$

i.e. one can ADD RAPIDITIES, by contrast with velocities.

2.1.2 Hyperbolic angles

We let $\beta = v/c$. Expanding ζ gives:

$$\begin{split} \zeta(\beta) &= \frac{1}{2} \log \left(\frac{1+\beta}{1-\beta} \right) = \frac{1}{2} \big[\log(1+\beta) - \log(1-\beta) \big] \\ &= \frac{1}{2} \big[(\beta - \frac{1}{2}\beta^2 + \frac{1}{3}\beta^3 - \ldots) - (-\beta - \frac{1}{2}\beta^2 - \frac{1}{3}\beta^3 - \ldots) \big] \text{ for } |\beta| < 1 \\ &\Rightarrow \zeta(\beta) = \beta + \frac{1}{3}\beta^3 + \frac{1}{5}\beta^5 + \ldots \text{ for } |\beta| < 1. \end{split}$$

So when $v \ll c$, $\zeta \approx v/c$.

How does β depend on ζ ? Working from the definition of ζ ,

$$\begin{split} e^{2\zeta} &= \frac{1+\beta}{1-\beta} \\ 1+\beta &= (1-\beta)e^{2\zeta} \\ \beta(1+e^{2\zeta}) &= e^{2\zeta}-1 \\ \beta &= \frac{e^{\zeta}-e^{-\zeta}}{e^{\zeta}+e^{-\zeta}} = \frac{2\sinh\zeta}{2\cosh\zeta} = \tanh\zeta. \end{split}$$

This of course means that $\zeta = \operatorname{arctanh} \beta$.

2.1.3 Matrix form

From the definition of γ ,

$$v = c \tanh \zeta$$

$$\gamma^{-2} = 1 - \tanh^2 \zeta$$

$$= \operatorname{sech}^2 \zeta$$

$$\gamma^2 = \cosh^2 \zeta$$

$$\gamma = \cosh \zeta$$

We rewrite the Lorentz transformations as:

$$ct' = \gamma(ct - \beta x)$$

 $x' = \gamma(x - \beta ct)$

and, noting that $\beta \gamma = \tanh \zeta \cosh \zeta = \sinh \zeta$, this gives:

$$ct' = ctch\zeta - x \sin \zeta$$
$$x' = xch\zeta - ctsh\zeta$$
$$y' = y$$
$$z' = z$$

where $ch \equiv cosh$ and $sh \equiv sinh$.

We now write (ct, x, y, z) as the vector (x^0, x^1, x^2, x^3) , allowing the Lorentz boost along the x^1 axis with velocity v to be expressed as a matrix Λ operating on the vector:

$$\Lambda = \begin{bmatrix} ch\zeta & -sh\zeta & 0 & 0\\ -sh\zeta & ch\zeta & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

This is a *hyperbolic rotation* in the x^0 - x^1 plane.

Any proper Lorentz transformation can be written as a product of a rotation $\Lambda^{(R)}$ which aligns *z*-axis with direction of motion, a boost along the new *z*-direction Λ^{B} , and another rotation $\Lambda^{(R')}$, i.e. $\Lambda = \Lambda^{(R')} \Lambda^{B} \Lambda^{(R)}$.

2.2 Tensors

2.2.1 Light rays

A light ray passing through the origin has coordinates which obey:

$$c^2 t^2 - x^2 - y^2 - z^2 = 0$$

A 4-vector x^{μ} is called:

- time-like if $x^{\mu}x_{\mu} > 0$
- light-like if $x^{\mu}x_{\mu} = 0$
- space-like if $x^{\mu}x_{\mu} < 0$

where $x^{\mu} = (x^0, x^1, x^2, x^3)$ and $x_{\mu} = (x^0, -x^1, -x^2, -x^3)$.

2.2.2 Metric tensor

For the purposes of this course, $g^{00} = 1$, $g^{11} = -1$, $g^{22} = -1$, $g^{33} = -1$, and 0 otherwise. The indices ensure that signs are accounted for; to raise index x_{μ} for $\mu \in \{0, 1, 2, 3\}$:

$$x_{\mu} = g^{\mu\nu}x_{\nu} = g^{\mu0}x_0 + g^{\mu1}x_1 + g^{\mu2}x_2 + g^{\mu3}x_4$$

(summing over repeated index ν on the left). This gives $x^0 = x_0$ and $x^{1,2,3} = -x_{1,2,3}$.

2.2.3 Lorentz transformations and tensors

For x'^{μ} in *S*', x^{μ} in *S*:

$$x'^{\mu} = \Lambda^{\mu}_{\alpha} x^{\alpha}$$

A light-ray obeys both:

$$g_{\mu\nu}x^{\prime\mu}x^{\prime\nu} = 0$$
 and
 $g_{\alpha\beta}x^{\alpha}x^{\beta} = 0.$

So for all x^{α} and x^{β} ,

$$g_{\mu\nu}\Lambda^{\mu}_{\alpha}\Lambda^{\nu}_{\beta}x^{\alpha}x^{\beta} = g_{\mu\nu}x^{\mu}x^{\nu}$$
$$= g_{\alpha\beta}x^{\alpha}x^{\beta}$$

So the **Lorentz group** is defined by matrices which obey:

$$g_{\mu\nu}\Lambda^{\mu}_{\alpha}\Lambda^{\nu}_{\beta}=g_{\alpha\beta}.$$

Examples:

- Any 4-vector A^{μ} transforms the same way as x^{μ} : $A'^{\mu} = \Lambda^{\mu}_{\nu} A^{\nu}$.
- The EM tensor $F^{\mu\nu}$ transforms as $F'^{\mu\nu} = \Lambda^{\mu}_{\alpha} \Lambda^{\nu}_{\beta} F^{\alpha\beta}$.
- The angular momentum tensor $M^{\lambda\mu\nu}$ transforms as: $M^{\prime\lambda\mu\nu} = \Lambda^{\lambda}_{\alpha}\Lambda^{\mu}_{\beta}\Lambda^{\nu}_{\gamma}M^{\alpha\beta\gamma}$

Note: Must observe 'grammar' of indices; i.e. one lower λ on left \Rightarrow one lower λ on right; lower *and* upper μ on left \Rightarrow no μ on right, etc. For example:

$$g_{\lambda\mu}g^{\mu\nu} = g^{\nu}_{\lambda}$$

2.2.4 Lorentz scalars

$$g_{\alpha\beta}a^{\alpha}b^{\beta}=a^{\alpha}b_{\alpha}$$

and

$$a^{\prime\mu}b^{\prime}_{\mu}=a^{\mu}b_{\mu},$$

which is a *scalar*, and invariant under LT. We call $a^{\mu}b_{\mu}$ a **Lorentz scalar**.

Analogous to $\vec{a} \cdot \vec{b}$, which is invariant under rotation in 3D.

2.2.5 Invariant tensors

Scalar time increment: $d\tau$ is defined:

$$c^2 d\tau^2 \equiv g_{\mu
u} dx^\mu dx^
u$$

 $(= dx^\mu dx_\mu)$

 $c^2 d\tau^2$ is invariant under LT, and can be used to construct a **4-velocity**:

$$V^{\mu} = \frac{dx^{\mu}}{d\tau}$$

Metric tensor: $g'^{\mu\nu} = \Lambda^{\mu}_{\alpha}\Lambda^{\nu}_{\beta}g^{\alpha\beta} = g^{\mu\nu}$

Levi–Civita tensor: An important tensor, defined as:

$$\epsilon^{\alpha\beta\gamma\delta} = \begin{cases} +1 & \text{if } \alpha\beta\gamma\delta \text{ is an even permutation} \\ -1 & \text{if } \alpha\beta\gamma\delta \text{ is an odd permutation} \\ 0 & \text{otherwise.} \end{cases}$$

Under LT, ϵ transforms:

$$\epsilon^{\prime\mu\nu\rho\sigma} = \Lambda^{\mu}_{\alpha}\Lambda^{\nu}_{\beta}\Lambda^{\rho}_{\gamma}\Lambda^{\sigma}_{\delta}\epsilon^{\alpha\beta\gamma\delta}$$
$$= \epsilon^{\alpha\beta\gamma\delta} \det \Lambda$$

(by definition of the determinant.)

2.2.6 Proper and improper Lorentz transformations

If det $\Lambda = 1$, Λ is called a *proper* LT, and if det $\Lambda = -1$, Λ is called an *improper* LT. So ϵ is invariant under a proper LT, and for an improper LT, $\epsilon' = -\epsilon$.

The **parity transformation** Λ^{P} flips the sign of all spatial coordinates:

$$\Lambda^P = \operatorname{diag}(1, -1, -1, -1)$$

and the **time reversal transformation** Λ^T flips the sign of the time coordinate:

$$\Lambda^T = \operatorname{diag}(-1, 1, 1, 1)$$

Any LT can be written as the product of a proper LT and one of $\{1, \Lambda^P, \Lambda^T, \Lambda^{PT}\}$. The Lorentz group O(1,3) has four disconnected subsets corresponding to LTs of the form $\Lambda, \Lambda\Lambda^P, \Lambda\Lambda^T, \Lambda\Lambda^{PT}$ for Λ proper.

The subgroup consisting of *orthochronous* LTs (i.e. those which preserve time direction) is denoted $O^+(1,3)$.

2.2.7 4-velocity and 4-momentum

Recall:

$$c^{2}d\tau^{2} = dx_{\mu}dx^{\mu}$$

$$d\tau^{2} = dt^{2} - \frac{d\vec{x}^{2}}{c^{2}}$$

$$d\tau^{2} = dt^{2} \left(1 - \frac{1}{c^{2}}(\frac{d\vec{x}}{dt})^{2}\right)$$

$$= dt^{2} \left(1 - \frac{v^{2}}{c^{2}}\right)$$

$$= dt^{2} \left(1 - \beta^{2}\right)$$

$$\Rightarrow dt = \gamma dt$$

$$\frac{d}{d\tau} = \gamma \frac{d}{dt}$$

4-velocity is defined as:

$$\begin{aligned} \frac{dx^{\mu}}{d\tau} &= \gamma \frac{dx^{\mu}}{dt} \\ &= \gamma \frac{d}{dt} (ct, \vec{x}) \\ &= \gamma (c, \vec{v}). \end{aligned}$$

4-momentum of a particle with mass *m* is defined as:

$$p^{\mu} = m \frac{dx^{\mu}}{d\tau}$$

and it transforms under LT as: $p'^{\mu} = \Lambda^{\mu}_{\nu} p^{\nu}$.

The time component of p^{μ} is p^0 , with expansion: $p^0 = m\gamma c = mc(1 - \vec{v}^2/c^2)^{\frac{1}{2}}$.

$$cp^{0} = mc^{2} \left[1 + \left(-\frac{1}{2} \right) \left(-\frac{\vec{v}^{2}}{c^{2}} \right) + \frac{1}{2!} \left(-\frac{1}{2} \right) \left(-\frac{3}{2} \right) \left(-\frac{\vec{v}^{2}}{c^{2}} \right)^{2} + \dots \right]$$

$$cp^{0} = mc^{2} + \frac{1}{2}m\vec{v}^{2} \left(1 + \frac{3}{4}\frac{\vec{v}^{2}}{c^{2}} + \dots \right)$$

$$= \text{rest energy} + \frac{1}{2}m\vec{v}^{2} + \text{higher powers.}$$

The constant mc^2 has no dynamical effect, since EL equations only depend on partial derivatives.

If we denote cp^0 by \mathcal{E} , the relativistic energy of a particle with mass *m*:

$$\mathcal{E} = mc^2 + \frac{1}{2}m\vec{v}^2 + \frac{3}{8}m\frac{\vec{v}^2}{c^4} + \dots$$

Thus $p^0 = \frac{\mathcal{E}}{c}$, and $p^{\mu} = (\frac{\mathcal{E}}{c}, \vec{p})$. Recall $x^{\mu} = (ct, \vec{x})$. Then $x^{\mu}p_{\mu} = \mathcal{E} - \vec{x} \cdot \vec{p}$, a Lorentz scalar. Another scalar is:

$$p^{\mu}p_{\mu} = m\gamma(c, \vec{v}) \cdot m\gamma(c, \vec{v})$$

= $m^{2}\gamma^{2}(c^{2} - \vec{v}^{2})$
= $m^{2}\frac{c^{2}(1 - \vec{v}^{2}/c^{2})}{1 - \vec{v}^{2}/c^{2}}$
 $p^{\mu}p_{\mu} = m^{2}c^{2}.$

which means that for massless particles, $p^{\mu}p_{\mu} = 0$. In 1+3 dimensions this describes a **light** cone:

$$p^{\mu}p_{\mu} = (p^{0})^{2} - (p^{1})^{2} - (p^{2})^{2} - (p^{3})^{2} = 0.$$

For m > 0, we have $c^2 p^{\mu} p_{\mu} = \mathcal{E}^2 - c^2 p^2 = m^2 c^4$, giving:

$$\mathcal{E} = \pm c \sqrt{p^2 + m^2 c^4}$$

where $p^2 = (p^1)^2 + (p^2)^2 + \dots$

2.2.8 Volume element

The volume element $d^4x = cdt dx^1 dx^2 dx^3$ in 1+3 dimensions is invariant under Lorentz transformation:

$$\int d^4x' = \int |J| \, d^4x$$

where $J^{\alpha}_{\beta} = \frac{\partial x'^{\alpha}}{\partial x^{\beta}}$. For a LT, $|J| = ch^2 \zeta - sh^2 \zeta = 1$, so $d^4 x' = d^4 x$.

Chapter 3

Field theories

3.1 Covariant field theory

3.1.1 Formulation

Formulation in terms of a variational principle is useful; to do this we need a **Lorentz scalar action**:

$$S = \frac{1}{c} \mathcal{L} \, d^4 x.$$

If \mathcal{L} is scalar, this ensures *S* is scalar.

We consider a scalar field $\phi(x^{\mu})$ and a scalar Lagrangian density $\mathcal{L}(\phi, \partial_{\mu}\phi)$, e.g. $\phi, \phi^2, \partial_{\mu}\partial^{\mu}\phi$, $\partial_{\mu}\phi\partial^{\nu}\phi$, etc. (These are all scalars since indices are saturated.)

The EL equations for a scalar field are:

$$\partial_{\mu}\left[rac{\partial\mathcal{L}}{\partial(\partial_{\mu}\phi)}
ight]-rac{\partial\mathcal{L}}{\partial\phi}=0.$$

3.1.2 Example

 $\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi + f(\phi)$, then first term in EL equations reads:

$$\begin{split} \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi)} &= \frac{\partial}{\partial_{\mu}\phi} \left[\frac{1}{2} \partial_{\nu}\phi \partial^{\nu}\phi + f(\phi) \right] \\ &= \frac{\partial}{\partial_{\mu}\phi} \left(\frac{1}{2} \partial_{\nu}\phi \partial^{\nu}\phi \right) \\ &= \frac{1}{2} \frac{\partial(\partial_{\nu}\phi)}{\partial(\partial_{\mu}\phi)} \partial^{\nu}\phi + \frac{1}{2} \partial_{\nu}\phi \frac{\partial(\partial^{\nu}\phi)}{\partial(\partial_{\mu}\phi)} \\ &= \frac{1}{2} \delta^{\mu}_{\nu} \partial^{\nu}\phi + \frac{1}{2} \partial^{\nu}\phi \frac{\partial(\partial_{\nu}\phi)}{\partial(\partial_{\mu}\phi)} \\ &= \frac{1}{2} \partial^{\mu}\phi + \frac{1}{2} \partial^{\nu}\phi \delta^{\mu}_{\nu} \\ &= \frac{1}{2} \partial^{\mu}\phi + \frac{1}{2} \partial^{\mu}\phi \\ &= \partial^{\mu}\phi. \end{split}$$

so the EL equations give:

$$\partial_{\mu}(\partial^{\mu}\phi) - \frac{\partial f}{\partial\phi} = 0$$

or in other words,

$$\Box \phi - \frac{\partial f}{\partial q} = 0$$

If $f = -\frac{1}{2}\sigma\phi^2$, for some constant σ , then the EL equations give:

$$\Box \phi - \frac{\partial}{\partial \phi} \left(-\frac{1}{2} \sigma \phi^2 \right) = 0$$
$$\Box \phi + \sigma \phi = 0$$
or simply $(\Box + \sigma) \phi = 0.$

Solutions are of the form $\phi = A \exp(-ik_{\mu}x^{\mu})$. Noting that:

$$\partial_{\mu}\phi = A\partial_{\mu}\exp(-ik_{\nu}x^{\nu})$$

= $-iAk_{\mu}\exp(-ik_{\nu}x^{\nu})$

this gives:

$$\frac{1}{2}\partial_{\mu}\partial^{\mu}\phi = (-i)^{2}Ak_{\mu}k^{\mu}\exp(-ik^{\nu}x_{\nu})$$

Substituting into $\partial_{\mu}\partial^{\mu}\phi + \sigma\phi = 0$:

$$-A(k_{\mu}k^{\mu}-\sigma)\exp(-ik_{\nu}x^{\nu})=0.$$
$$k_{\mu}k^{\mu}=\sigma.$$

This means that k_{μ} is $\begin{cases} \text{time-like} & \text{if } \sigma > 0. \\ \text{light-like} & \text{if } \sigma = 0. \\ \text{space-like} & \text{if } \sigma < 0. \end{cases}$

For $k^{\mu} = (\frac{\omega}{c}, \vec{k})$, we write $\exp(-ik_{\nu}x^{\nu}) = e^{-i(\omega t - \vec{k} \cdot \vec{x})}$ where $k^0 = \omega/c$. ω is the angular frequency of a wave moving in the direction indicated by \vec{k} .

In quantum field theory, σ has a natural interpretation. $E = \hbar \omega = \hbar c k^0$ and $\vec{p} = \hbar \vec{k}$, so $p^{\mu} = \hbar k^{\mu}$.

$$p^{\mu}p_{\mu} = m^{2}c^{2} = \hbar^{2}k^{\mu}k_{\mu}$$
$$m^{2}c^{2} = \hbar^{2}\sigma$$
$$\sigma = \left(\frac{mc}{\hbar}\right)^{2}$$
$$\sigma^{-1/2} = \frac{\hbar}{mc} = \lambda_{C}.$$

where $\lambda_C = \lambda_C / 2\pi = \hbar / mc$ is the *reduced Compton wavelength* of the particle.

So the equation of motion $\partial_{\mu}\partial^{\mu}\phi + \sigma\phi = 0$ in quantum mechanics reads:

$$\left[\Box + \frac{1}{\lambda_C^2}\right]\phi = 0$$

In more realistic theories, $f(\phi)$ would involve other terms, e.g.

$$f(\phi) = -\frac{1}{2} \left(\frac{c}{\hbar}\right)^2 m^2 \phi^2 + \lambda \phi^4$$

for an interaction of the ϕ^4 form. Setting m = 0 for massless particles (e.g. photons) gives wave-like solutions with velocity of light.

3.2 Vector field theories

There are many more examples of vector field theories than scalars so far.

In a vector field theory, the field ϕ may have components ϕ^{α} , where $\alpha \in \{1, ..., N\}$. We need Lorentz scalars for \mathcal{L} to provide a scalar action:

$$S = \frac{1}{c} \int \mathcal{L} \, d^4 x.$$

An obvious scalar is $p^{\mu}p_{\mu} = m^2c^2$; and for a 4-vector A^{μ} , another scalar is $p^{\mu}A_{\mu}$, or $A_{\mu}A^{\mu}$.

3.3 Free field

3.3.1 Formulation

Relativistic action = $\int L dt = \int L\gamma d\tau$.

In order to have a covariant theory, we need $L\gamma$ to be a Lorentz scalar (since $d\tau$ is scalar). $L \propto 1/\gamma$ will work.

$$\frac{1}{\gamma} = \left(1 - \frac{\vec{v}^2}{c^2}\right)^{\frac{1}{2}} = 1 - \frac{1}{2}\frac{\vec{v}^2}{c^2} - \frac{\frac{1}{2}\left(-\frac{1}{2}\right)}{2!}\left(\frac{\vec{v}^2}{c^2}\right)\dots$$

And in order for *L* to have dimension of energy, we multiply by mc^2 :

$$mc^2\gamma^{-1} = mc^2 - \frac{1}{2}m\vec{v}^2 - \frac{1}{8}m\frac{\vec{v}^4}{c^2}\dots$$

and we flip the signs so that the $\frac{1}{2}m\vec{v}^2$ term is positive, as in the non-relativistic case.

$$L = -\frac{mc^2}{\gamma} = \frac{1}{2}m\vec{v}^2 - mc^2 + \frac{1}{8}m\frac{\vec{v}^4}{c^2}\dots$$

3.3.2 Interaction with a vector field

Lorentz scalars which can be added to *L* include $p_{\mu}A^{\mu}$, $(p_{\mu}A^{\mu})^2$, $A_{\mu}A^{\mu}$, ... where A^{μ} is a 4-vector field which depends on x^{μ} .

To begin, we will use the simplest form, $p_{\mu}A^{\mu}$. To connect this with electromagnetism, we re call that $e\Phi$ and $e\vec{A}$ must have dimension of energy and so $p_{\mu}A^{\mu}$ should too. We choose *mc* as a denominator. So *L* should include $\frac{q}{mc}p_{\mu}A^{\mu}$. Again, we flip the sign to align this theory with known properties of EM. So we choose:

$$L = -\frac{m^2 c^2}{\gamma} - \frac{q}{\gamma m c} p_{\mu} A^{\mu}.$$

The action for a particle of mass *m* located at $x^{\mu}(\tau)$ for invariant time τ with momentum $p^{\mu} = m \frac{dx^{\mu}}{dt}$ interacting with a 4-vector potential A^{μ} of strength q is:

$$S = -\int \left(mc^2 + \frac{q}{mc}A_{\mu}p^{\mu}\right)d\tau$$

But since $p_{\mu}p^{\mu} = m^2c^2$, this gives:

$$S = -\int \left(p_{\mu} + \frac{q}{c} A_{\mu} \right) dx^{\mu}.$$

We can use the variational principle:

$$\delta S = -\int \left(p_{\mu} + \frac{q}{c} A_{\mu} \right) \delta(dx^{\mu}) - \int \left(\delta p_{\mu} + \frac{q}{c} \delta A_{\mu} \right) dx^{\mu} \\ = -\int \left(p_{\mu} + \frac{q}{c} A_{\mu} \right) d(\delta x^{\mu}) - \int \frac{q}{c} \delta A_{\nu} dx^{\nu}$$

Note: $p^{\mu}\delta p_{\mu} = 0$ since $p_{\mu}p^{\mu} = m^2c^2 = \text{constant.}$ Noting that $\delta A_{\nu} = \frac{\partial A_{\nu}}{\partial x^{\mu}}\delta x^{\mu}$, we can integrate the first term by parts:

$$\delta S = -\left[\left(p_{\mu} + \frac{q}{c}A_{\mu}\right)\delta x^{\mu}\right]_{\tau_{1}}^{\tau_{2}} + \int \left(dp_{\mu} + \frac{q}{c}dA_{\mu}\right)\delta x^{\mu} - \int \frac{q}{c}\delta A_{\nu}dx^{\mu}$$

But, $\frac{dA_{\mu}}{d\tau} = \frac{\partial A_{\mu}}{\partial x^{\nu}} \frac{\partial x^{\nu}}{\partial \tau}$, and $\delta x^{\mu}(\tau_1) = \delta x^{\mu}(\tau_2) = 0$. So:

$$\delta S = \int \left(\frac{dp_{\mu}}{dt} + \frac{q}{c} \frac{dA_{\mu}}{dt} \right) \delta \tau \, \delta x^{\mu} - \int \frac{q}{c} \frac{\partial A_{\nu}}{\partial x^{\mu}} \delta x^{\mu} \, dx^{\nu}$$
$$= \int \left(\frac{dp^{\mu}}{d\tau} + \frac{q}{c} \frac{\partial A_{\mu}}{\partial x^{\nu}} \frac{dx^{\nu}}{d\tau} - \frac{q}{c} \frac{\partial A_{\nu}}{\partial x^{\mu}} \frac{dx^{\nu}}{d\tau} \right) dt \, \delta x^{\mu}$$

We want $\delta S = 0$ for all possible variations of the path, so we want integrand = 0, so:

$$\frac{dp_{\mu}}{d\tau} + \frac{q}{c} \left(\frac{\partial A_{\mu}}{\partial x^{\nu}} - \frac{\partial A_{\nu}}{\partial x^{\mu}} \right) \frac{dx^{\nu}}{d\tau} = 0$$

or

$$\frac{dp_{\mu}}{d\tau} = \frac{q}{c} \left(\frac{\partial A_{\nu}}{\partial x^{\mu}} - \frac{\partial A_{\mu}}{\partial x^{\nu}} \right) \frac{dx^{\nu}}{d\tau}$$
$$= \frac{q}{c} F_{\mu\nu} \frac{dx^{\nu}}{dt}$$

where

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} \tag{3.1}$$

is the antisymmetric field tensor.

Another form of the equation of motion is:

$$\frac{dp^{\mu}}{d\tau}=\frac{q}{mc}F^{\mu\nu}p_{\nu},$$

the Lorentz force in 4D.

3.4 The electromagnetic tensor

To link this with \vec{E} and \vec{B} , we arrange $F^{i0} = E^i$ i = 1, 2, 3 and $F^{ij} = -\epsilon^{ijk}B^k$. The sum over ν is replaced by a sum over i:

$$\frac{dp_0}{d\tau} = \frac{q}{c} F_{0i} \frac{dx^i}{d\tau}.$$

But noting that raising a *spatial* index changes the sign, we know that $F_{0i} = -F_{i0} = F^{i0}$, giving us:

$$\frac{dp^{0}}{d\tau} = \frac{q}{c}E^{i}\frac{dx^{i}}{d\tau}$$
$$\frac{dp^{0}}{\gamma dt} = \frac{q}{c}E^{i}\frac{dx^{i}}{\gamma dt}$$
$$\frac{dp^{0}}{dt} = \frac{q}{c}E^{i}\frac{dx^{i}}{dt}$$

Recalling that $p^{\mu} = (\frac{\mathcal{E}}{c}, \vec{p}) \Rightarrow p^0 = \frac{\mathcal{E}}{c}$, we have:

$$\frac{d\mathcal{E}}{dt} = q\vec{E}\cdot\vec{v}$$

where $\vec{v} = \frac{d\vec{x}}{dt}$ is the 3-velocity, $q\vec{E}$ is the electric force and $q\vec{E} \cdot \vec{v}$ is the rate of work done. The spatial components of the Lorentz equation of motion are:

$$\begin{aligned} \frac{dp_i}{dt} &= \frac{q}{c} F_{i\nu} \frac{dx^{\nu}}{d\tau} \\ &= \frac{q}{c} \left(F_{i0} \frac{dx^0}{dt} + F_{ij} \frac{dx^j}{d\tau} \right) \\ -\frac{dp^i}{dt} &= \frac{q}{c} \left(-F^{i0} \frac{dx^0}{d\tau} - (-1)^2 F^{ij} \frac{dx^j}{dt} \right) \\ \frac{dp^i}{dt} &= \frac{q}{c} \left(E^i \frac{d(ct)}{dt} + \epsilon^{ijk} B^k \frac{dx^j}{dt} \right) \\ \frac{dp^i}{dt} &= q E^i + \frac{q}{c} \epsilon^{ijk} v^j B^k. \end{aligned}$$

or, in 3-vector form:

$$\frac{d\vec{p}}{dt} = q\vec{E} + \frac{q}{c}\vec{v} \times \vec{B}$$
$$\frac{d\mathcal{E}}{dt} = q\vec{E} \cdot \vec{v}.$$

3.4.1 3-dimensional equations

We assumed:

$$E^{i} = F^{i0} = \partial^{i} A^{0} - \partial^{0} A^{i}$$
$$= -\partial_{0} A^{i} - \partial_{i} A^{0}$$
$$E^{i} = \frac{1}{c} \frac{\partial}{\partial t} A^{i} - \frac{\partial}{\partial x^{i}} A^{0}$$

In other words, $\vec{E} = -\frac{1}{c}\partial_t \vec{A} - \vec{\nabla}\Phi$, where $A^{\mu} = (\Phi, \vec{A})$. For a magnetic induction field \vec{B} , if *ijk* is an even permutation, $B^k = -F^{ij}$. Then:

$$B^{k} = -\partial^{i} A^{j} + \partial^{j} A^{i}$$

= $\partial_{i} A^{j} - \partial_{j} A^{i}$ (lowering spatial index)
= $(\vec{\nabla} \times \vec{A})^{k}$ (*k*th component.)

So we have

 $\vec{E} = -\partial_0 \vec{A} - \vec{\nabla} \Phi, \quad \vec{B} = \vec{\nabla} \times \vec{A},$

the 3-dimensional versions of (3.1), given that $F^{i0} = E^i$, and $F^{ij} = -\epsilon^{ijk}B^k$.

3.4.2 Gauge invariance

If another potential, $A'_{\mu} = A_{\mu} + \partial_{\mu}\phi$ is introduced, the equations of motion are unaltered:

$$egin{aligned} F'_{\mu
u} &= \partial_{\mu}A'_{
u} - \partial_{
u}A'_{\mu} \ &= \partial_{\mu}(A_{
u} + \partial_{
u}\phi) - \partial_{
u}(A_{\mu} + \partial_{\mu}\phi) \ &= \partial_{\mu}A_{
u} - \partial_{
u}A_{\mu} \ &= F_{\mu
u}. \end{aligned}$$

Adding a 4-gradient of some $\phi(x^{\lambda})$ does not alter $F_{\mu\nu}$, so obviously it does not alter \vec{E} or \vec{B} . This is analogous to a change in potential V' = V + C for constant *C* not altering the force in 1-dimensional classical mechanics.

Gauge invariance is very closely linked to conservation of charge.

3.5 Equation of motion for a free vector field

We seek a Lagrangian density for a **free field** (i.e. no interaction with charge/current) which is a Lorentz scalar.

Remember that we used $p_{\mu}p^{\mu}$ for the free particle case without interaction (where q = 0). Recall also that for a scalar field $\phi(x^{\mu})$ we used $\mathcal{L} = \frac{1}{2}(\partial_{\mu}\phi \partial^{\mu}\phi - \lambda^{2}\phi^{2})$.

Derivatives appear quadratically to yield linear equations of motion. For a field $F^{\mu\nu}$, the obvious suggestion is:

$$\mathcal{L} = C F_{\mu\nu} F^{\mu\nu}.$$

Also, we could include a term $m^2 A_{\mu} A^{\mu}$ which, like $F_{\mu\nu} F^{\mu\nu}$, is a Lorentz scalar. In fact, $m^2 A_{\mu} A^{\mu}$ corresponds to a vector field with mass *m* (in appropriate units, using \hbar/c).

For simplicity's sake, we assume m = 0, and use \mathcal{L} with a constant C = -1/4, to agree with the equation of motion for EM fields in Heaviside-Lorentz units, so that;

$${\cal L}=rac{1}{4}F^eta_lpha \, F^lpha_eta \quad \left(=-rac{1}{4}F_{\mu
u}F^{\mu
u}
ight)$$

So the Euler–Lagrange equations of motion are:

$$rac{\partial}{\partial x^{\mu}}\left[rac{\partial \mathcal{L}}{\partial(\partial_{\mu}A_{
u})}
ight] - rac{\partial \mathcal{L}}{\partial A_{
u}} = 0.$$

where we replace ϕ from before with A_{ν} .

There are four EL equations, $\nu \in \{0, 1, 2, 3\}$.

$$\begin{aligned} 4\mathcal{L} &= -F_{\mu\nu}F^{\mu\nu} \\ &= -(\partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu})(\partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}) \end{aligned}$$

Use $\mu \rightarrow \rho$ and $\nu \rightarrow \sigma$, since μ and ν already feature in EL equations:

$$4\mathcal{L} = -(\partial_{\rho}A_{\sigma})(\partial^{\rho}A^{\sigma}) - (\partial_{\sigma}A_{\rho})(\partial^{\sigma}A^{\rho}) + (\partial_{\sigma}A_{\rho})(\partial^{\rho}A^{\sigma}) + (\partial_{\rho}A_{\sigma})(\partial^{\sigma}A^{\rho})$$

or, exchanging $\sigma \longleftrightarrow \rho$ in second and third terms:

$$egin{aligned} \mathcal{L} &= -2(\partial_
ho A_\sigma)(\partial^
ho A^\sigma) + 2(\partial_
ho A_\sigma)(\partial^\sigma A^
ho) \ &= -2(\partial_
ho A_\sigma)(\partial^
ho A^\sigma - \partial^\sigma A^
ho); \end{aligned}$$

so in EL equations we have:

$$2rac{\partial \mathcal{L}}{\partial (\partial_{\mu}A_{
u})} = -rac{\partial (\partial_{
ho}A_{\sigma}}{\partial (\partial_{\mu}A_{
u})} (\partial^{
ho}A^{\sigma} - \partial^{\sigma}A^{
ho}) - \partial_{
ho}A_{\sigma}rac{\partial (\partial^{
ho}A^{\sigma} - \partial^{\sigma}A^{
ho})}{\partial (\partial_{\mu}A_{
u})}.$$

In the second term, we raise ρ and σ and lower ρ and σ to leave the value unchanged. In the first term, there is a nonzero contribution only when $\rho = \mu$ and $\sigma = \nu$:

$$\begin{aligned} 2\frac{\partial\mathcal{L}}{\partial(\partial_{\mu}A_{\nu})} &= -\delta^{\mu}_{\rho}\delta^{\nu}_{\sigma}(\partial^{\rho}A^{\sigma} - \partial^{\sigma}A^{\rho}) - \partial^{\rho}A^{\sigma}\frac{\partial(\partial_{\rho}A_{\sigma} - \partial_{\sigma}A_{\rho})}{\partial(\partial_{\mu}A_{\nu})} \\ &= -(\partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}) - \partial^{\rho}A^{\sigma}(\delta^{\mu}_{\rho}\delta^{\nu}_{\sigma} - \delta^{\mu}_{\sigma}\delta^{\nu}_{\rho}) \\ &= -F^{\mu\nu} - (\partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}) \\ &= -F^{\mu\nu} - F^{\mu\nu} \\ &= -2F^{\mu\nu} \\ \frac{\partial\mathcal{L}}{\partial(\partial_{\mu}A_{\nu})} = -F^{\mu\nu}. \end{aligned}$$

Since \mathcal{L} does not depend on A_{μ} explicitly, $\frac{\partial \mathcal{L}}{\partial A_{\nu}} = 0$, as in the case of a free field. So EL equations read:

 $\partial_{\mu}\left[-F^{\mu
u}
ight]-0=0,$

or:

$$\partial_{\mu}F^{\mu\nu} = 0 \tag{3.2}$$

the **dynamical equation** of a free vector field.

In 3D, space these are the Maxwell equations for an electromagnetic field with no charge and no 3-current:

 $\nu = 0$: $\partial_{\mu} F^{\mu 0} = 0$. And since $F^{00} = 0$,

$$\partial_i F^{i0} = 0$$

 $\Leftrightarrow \partial_i E^i = 0$
 $\Leftrightarrow \vec{\nabla} \cdot \vec{E} = 0,$

Maxwell's first equation for free space.

 $\nu = j$:

$$\partial_0 F^{0j} + \partial_i F^{ij} = 0$$

$$-\frac{1}{c} \frac{\partial}{\partial t} E^j - \partial_i \epsilon^{ijk} B^k = 0$$

$$-\frac{1}{c} \frac{\partial}{\partial t} E^j - \epsilon^{ijk} \partial_i B^k = 0$$

$$-\frac{1}{c} \frac{\partial \vec{E}}{\partial t} - \vec{\nabla} \times \vec{B} = 0,$$

Maxwell's second equation for free space.

3.5.1 Particle and field interaction

The Lagrangian density requires an interaction term \mathcal{L}_{int} :

$$\mathcal{L} = rac{1}{4} F^
u_\mu F^\mu_
u + \mathcal{L}_{
m int}.$$

(Note that $F^{\nu}_{\mu}F^{\mu}_{\nu} = -F_{\mu\nu}F^{\mu\nu}$)

 \mathcal{L}_{int} should be a Lorentz scalar. Recall for particle case,

$$S_{
m int} = -rac{q}{c}\int A_{\mu}rac{dx^{\mu}}{dt}d au,$$

but we need $\int d^3x \, d\tau = \int d^4x$.

3.5.2 Four-current for particles

Four-current density is:

$$J^{\mu}(t,\vec{x}) = q \frac{dx^{\mu}}{dt} \delta^3(\vec{x} - \vec{x}_q(t))$$

Current = charge × velocity. 3D Dirac delta function has dimension volume⁻¹, and provides current density.

In J^{μ} , $\vec{x}_q(t)$ is the 3-location of the charge q at time t. The zero-component $J^0(t, \vec{x}) = c\rho$, where ρ is the charge density in a region. For a volume Ω , the total charge is:

$$\frac{1}{c} \int_{\Omega} J^0 d^3 x = \frac{q}{c} \int_{\Omega} \frac{dx^0}{dt} \delta^3(\vec{x} - \vec{x}_q(t)) d^3 x$$
$$= \frac{q}{c} \int_{\Omega} \delta^3(\vec{x} - \vec{x}_q(t)) d^3 x$$
$$= q.$$

 $J^{i}(t, \vec{x})$ is the 3-current associated with the moving charge *q*.

Since $-\frac{q}{c}A_{\mu}\frac{dx^{\mu}}{d\tau}$ was the interaction for the Lagrangian *L*, and action $S_{\text{int}} = \int L dt$ the generalisation for density \mathcal{L} ,

$$\mathcal{L}_{\rm int} = \frac{1}{c} A_{\mu} J^{\mu}$$

so that spatial integration gives a term like L_{int} . \mathcal{L}_{int} is a Lorentz scalar as μ is summed, and \mathcal{L}_{int} is reference frame-independent.

So,

$$\mathcal{L} = \frac{1}{4} F^{\nu}_{\mu} F^{\mu}_{\nu} - \frac{1}{c} A_{\mu} J^{\mu}.$$

The Euler–Lagrange equations of motion are:

$$\partial_{\mu}\left[rac{\partial \mathcal{L}}{\partial(\partial_{\mu}A_{
u})}
ight]-rac{\partial \mathcal{L}}{\partial A_{
u}}=0.$$

In the first term, $A_{\mu}J^{\mu}$ does not contribute; only $\partial_{\mu}A_{\nu}$ terms do. For the second term, only $A_{\mu}J^{\mu}$ contributes, and so:

$$-\frac{\partial \mathcal{L}}{\partial A_{\nu}} = \frac{\partial}{\partial A_{\nu}} \left[\frac{1}{c} A_{\mu} J^{\mu} \right]$$
$$= \frac{1}{c} J^{\nu},$$

or simply:

$$\partial_{\mu}F^{\mu\nu} = c^{-1}J^{\nu}$$

$$\nu = 0$$
: $\partial_0 F^{00} + \partial_i F^{i0} = \frac{1}{c} J^0$. But $F^0 0 = 0$, so we have $\partial_i E^i = \frac{1}{c} (c\rho)$:
 $\vec{\nabla} \cdot \vec{E} = \rho$,

Maxwell's first equation.

 $\nu = i$:

$$\partial_0 F^{0i} + \partial_j F^{ji} = \frac{1}{c} J^i$$
$$-\partial_0 F^{i0} - \partial_j \epsilon^{jik} B^k = \frac{1}{c} J^i$$
$$-\frac{1}{c} \frac{\partial}{\partial t} E^i + \epsilon^{ijk} \partial_j B^k = \frac{1}{c} J^i,$$

giving:

$$\frac{\partial E}{\partial t} + c\vec{\nabla} \times \vec{B} = \vec{J},$$

Maxwell's second equation (using Heaviside–Lorentz units).

The remaining two Maxwell equations follow from $\partial_{\mu}\epsilon^{\mu\nu\rho\sigma}F_{\rho\sigma} = 0$.

3.6 Dual tensor

We saw that $e^{\mu\nu\rho\sigma}$ was Lorentz invariant. The dual tensor of $F^{\mu\nu} = \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}$ is:

$$\tilde{F}^{\mu\nu} = \frac{1}{2} \epsilon^{\mu\nu\rho\sigma} F_{\rho\sigma}.$$

For example,

$$\begin{split} \tilde{F}^{01} &= \frac{1}{2} \epsilon^{0123} F_{23} + \frac{1}{2} \epsilon^{0132} F_{32} \\ &= \frac{1}{2} \epsilon^{0123} F_{23} - \frac{1}{2} \epsilon^{0123} F_{23} \\ &= \frac{1}{2} \epsilon^{0123} F_{23} + \frac{1}{2} \epsilon^{0123} F_{23} \\ &= \epsilon^{0123} F_{23} \\ &= F_{23} \quad \left[= F^{23} \right]. \end{split}$$

Recall that Maxwell's first and second equations involved $\partial_{\mu}F^{\mu\nu}$. The 4-divergence of $\tilde{F}^{\mu\nu}$ is:

$$\begin{split} \partial_{\mu}\tilde{F}^{\mu\nu} &= \partial_{\mu}(\frac{1}{2}\epsilon^{\mu\nu\rho\sigma}F_{\rho\sigma}) \\ &= \frac{1}{2}\partial_{\mu}\epsilon^{\mu\nu\rho\sigma}(\partial_{\rho}A_{\sigma} - \partial_{\sigma}A_{\rho}). \end{split}$$

Swapping $\rho \leftrightarrow \sigma$ in negative term:

$$\begin{aligned} \partial_{\mu}\tilde{F}^{\mu\nu} &= \frac{1}{2}\partial_{\mu}(\epsilon^{\mu\nu\rho\sigma}\partial_{\rho}A_{\sigma} - \epsilon^{\mu\nu\sigma\rho}\partial_{\rho}A_{\sigma}) \\ &= \frac{1}{2}\partial_{\mu}(\epsilon^{\mu\nu\rho\sigma}\partial_{\rho}A_{\sigma} + \epsilon^{\mu\nu\rho\sigma}\partial_{\rho}A_{\sigma}) \\ &= \epsilon^{\mu\nu\rho\sigma}\partial_{\mu}(\partial_{\rho}A_{\sigma}). \end{aligned}$$

But for functions like A_{σ} , second derivatives are symmetric: $\partial_{\mu}\partial_{\rho} = \partial_{\rho}\partial_{\mu}$. So, swapping $\mu \leftrightarrow \sigma$,

$$\partial_{\mu}\tilde{F}^{\mu\nu} = \epsilon^{\rho\nu\mu\sigma}\partial_{\rho}(\partial_{\mu}A_{\sigma})$$

$$= \epsilon^{\rho\nu\mu\sigma}\partial_{\mu}\partial_{\rho}A_{\sigma}$$

$$= -\epsilon^{\mu\nu\rho\sigma}\partial_{\mu}\partial_{\rho}A_{\sigma}$$

$$= -\partial_{\mu}\tilde{F}^{\mu\nu}$$

$$\Rightarrow \partial_{\mu}\tilde{F}^{\mu\nu} = 0.$$
(3.3)

Recall that $F^{i0} = E^i$ and $F^{ij} = -\epsilon^{ijk}B^k$. We want the dual elements in terms of \vec{E} and \vec{B} . \tilde{F}^{i0} :

$$\begin{split} \tilde{F}^{i0} &= \frac{1}{2} \epsilon^{i0jk} F_{jk} \\ &= -\frac{1}{2} \epsilon^{0ijk} (-1)^2 F^{jk} \\ &= -\frac{1}{2} \epsilon^{ijk} (-\epsilon^{jkl} B^l) \\ &= \frac{1}{2} \epsilon^{ijk} \epsilon^{jkl} B^l. \end{split}$$

But $\epsilon^{ijk}\epsilon^{jkl} = 2\delta^{il}$. Thus,

$$\tilde{F}^{i0} = \delta^{il} B^l$$
$$\tilde{F}^{i0} = B^i.$$

 \tilde{F}^{ij} :

$$\begin{split} \tilde{F}^{ij} &= \frac{1}{2} \epsilon^{ij\rho\sigma} F_{\rho\sigma} \\ &= \frac{1}{2} (\epsilon^{ijk0} F_{k0} + \epsilon^{ij0k} F_{0k}) \\ &= \frac{1}{2} (\epsilon^{ijk0} F_{k0} + (-1)^2 \epsilon^{ijk0} F_{k0}) \\ &= \epsilon^{ijk0} F_{k0} \\ &= (-1)^3 \epsilon^{ijk} (-F^{k0}) \\ &= \epsilon^{ijk} F^{k0} \\ &\tilde{F}^{ij} &= \epsilon^{ijk} E^k. \end{split}$$

So, to summarise, we have:

$$F^{i0} = E^{i} \qquad F^{ij} = -\epsilon^{ijk}B^{k}$$

$$\tilde{F}^{i0} = B^{i} \qquad \tilde{F}^{ij} = -\epsilon^{ijk}E^{k}$$

Now consider the components of $\tilde{F}^{\mu\nu}$ in (3.3).

 $\nu = 0$: We have $\partial_{\mu}\tilde{F}^{\mu 0} = 0$. Like $F_{\rho\sigma}$, $\tilde{F}^{\mu\nu}$ is antisymmetric, i.e. $\tilde{F}^{\mu\nu} = -\tilde{F}^{\nu\mu}$. Thus, the diagonal elements of \tilde{F} are 0, so the sum over $\mu \in \{0, 1, 2, 3\}$ can be replaced by a sum over $i \in \{1, 2, 3\}$.

$$\partial_i \tilde{F}^{i0} = 0$$

 $\partial_i B^i = 0$
 $\vec{\nabla} \cdot \vec{B} = 0,$

Maxwell's third equation.

v = i: We have $\partial_{\mu} \tilde{F}^{\mu i} = 0$, i.e.

$$\partial_{0}\tilde{F}^{0i} + \partial_{j}\tilde{F}^{ji} = 0$$
$$-\partial_{0}\tilde{F}^{i0} + \partial_{j}\epsilon^{jik}E^{k} = 0$$
$$-\partial_{0}B^{i} - \epsilon^{ijk}\partial_{j}E^{k} = 0$$
$$\partial_{0}B^{i} + \left(\vec{\nabla}\times\vec{E}\right)^{i} = 0$$
$$\partial_{0}\vec{B} + \vec{\nabla}\times\vec{E} = 0,$$

Maxwell's fourth equation.

3.6.1 Maxwell's equations

We have now derived all four of Maxwell's equations:

1.
$$\vec{\nabla} \cdot \vec{E} = \rho$$

2. $-\frac{\partial}{\partial t}\vec{E} + c\vec{\nabla} \times \vec{B} = \vec{J}$
3. $\vec{\nabla} \cdot \vec{B} = 0$
4. $\frac{\partial}{\partial t}\vec{B} + c\vec{\nabla} \times \vec{E} = 0$

_

In other words,

$$c\partial_{\mu}F^{\mu
u} = J^{
u}$$

 $\partial_{\mu}\tilde{F}^{\mu
u} = 0$

Here, J^{μ} is the four-current density with components $(c\rho, \vec{J})$.

3.6.2 Charge conservation

For *N* charges q_l , we have

$$J^{\mu}(t, \vec{x}) = \sum_{l=1}^{N} q_l \frac{dx^{\mu}}{dt} \delta^3 \left(\vec{x} - \vec{x}_l(t) \right).$$

Integrating over a spatial region Ω containing all the charges,

$$\int_{\Omega} J^{\mu}(t,\vec{x}) d^3x = \sum_{l=1}^{N} q_l \frac{dx_l^{\mu}}{dt},$$

the sum of (charge \times 4-velocity) for the *N* particles.

Note that for $\mu = 0$, $J^0 = c\rho$:

$$\int_{\Omega} c\rho \, d^3x = \sum_{l=1}^N q_l c$$

since $x_1^0 = ct$.

Recall that $c\partial_{\mu}F^{\mu\nu} = J^{\nu}$. Observe that ∂_{ν} acting here reveals $c\partial_{\nu}\partial_{\mu}F^{\mu\nu} = \partial_{\nu}F^{\nu}$. But $\partial_{\nu}\partial_{\mu}$ is symmetric and $F^{\mu\nu}$ is antisymmetric, so:

$$\partial_{\mu}J^{\mu}=0,$$

i.e. conservation of charge.

$$\partial_0 J^0 + \partial_i J^i = 0$$
$$\frac{1}{c} \frac{\partial}{\partial t} (c\rho) + \vec{\nabla} \cdot \vec{J} = 0$$
$$\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot \vec{J} = 0.$$

Consider a 3-volume Ω bounded by surface $\partial \Omega$ with charge density ρ and 3-current \vec{J} .

$$\int_{\Omega} \left(\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot \vec{J} \right) d^3 x = 0$$
$$\int_{\Omega} \frac{\partial \rho}{\partial t} d^3 x + \int_{\partial \Omega} \vec{J} \cdot d\vec{A} = 0$$

(The 3D integral of a divergence $\vec{\nabla} \cdot \vec{J}$ is a surface integral of the dot product of \vec{J} with directed element $d\vec{A}$ over $\partial\Omega$.)

So,

$$\frac{\partial}{\partial t} \left(\int_{\Omega} \rho \, d^3 x \right) = - \int_{\partial \Omega} \vec{J} \cdot d\vec{A}.$$

If current flows *out* of region Ω according to $\vec{J} \cdot d\vec{A}$, then the total carge inside Ω decreases. Charge is conserved: $\partial_{\mu}J^{\mu} = 0$; the idea generalises: $\partial_{\mu}T^{\mu\nu} = 0$ means $T^{\mu\nu}$ is conserved.

3.6.3 Bianchi identity

An alternate form of the equation $\partial_{\mu}\tilde{F}^{\mu\nu} = 0$ is $\partial_{\nu}\tilde{F}^{\mu\nu} = 0$, since \tilde{F} is symmetric. Suppose $\mu = 0$. Then $\partial_{\nu}\tilde{F}^{0\nu} = \partial_{\nu}\frac{1}{2}\epsilon^{0\nu\rho\sigma}F_{\rho\sigma} = 0$, so we have $\epsilon^{0\nu\rho\sigma}\partial_{\nu}F_{\rho\sigma} = 0$, i.e.

$$\left(\epsilon^{0123}\partial_1F_{23} + \epsilon^{0132}\partial_1F_{32}\right) + \left(\epsilon^{0231}\partial_2F_{31} + \epsilon^{0213}\partial_2F_{13}\right) + \left(\epsilon^{0312}\partial_3F_{12} + \epsilon^{0321}\partial_3F_{21}\right) = 0.$$

But the two terms in each bracket are equal, and $e^{0123} = e^{0231} = e^{0312} = 1$. Thus:

$$2\partial_1 F_{23} + 2\partial_2 F_{31} + 2\partial_3 F_{12} = 0.$$

In general,

$$\partial_{\lambda}F_{\mu\nu} + \partial_{\mu}F_{\nu\lambda} + \partial_{\nu}F_{\lambda\mu} = 0$$
 ($\lambda, \mu, \nu \text{ not summed.}$)

This is called the **Bianchi identity** and is meaningful for $\lambda \neq \mu \neq \nu$.

3.6.4 Parity of electromagnetic tensor and dual tensor

Recall the parity transformation $P : (x, y, z)^T \mapsto (-x, -y, -z)^T$. The field at location \vec{x} of a charge *a* at origin is:

The field at location \vec{r} of a charge q at origin is:

$$\vec{E} = \frac{q}{4\pi r^2} \frac{\vec{r}}{r}.$$

Under $P, \vec{r} \to -\vec{r}$, but $r^2 = \vec{r} \cdot \vec{r}$ is unchanged. So $\vec{E} \to -\vec{E}$ under parity; \vec{E} is a **polar vector**.

The magnetic field for a charge *q* moving at a low velocity \vec{v} is:

$$\vec{B} = \frac{1}{4\pi c} \frac{q}{r^3} \vec{v} \times \vec{r}.$$

As $\vec{v} = \frac{d\vec{r}}{dt}$, \vec{v} changes sign under *P*. But $\vec{B} \to (-1)^2 \vec{B}$, since $\vec{v} \times \vec{r} \to (-\vec{v}) \times (-\vec{r}) = \vec{v} \times \vec{r}$. So \vec{B} is unchanged under parity; \vec{B} is an **axial vector**.

How do $F_{\mu\nu}F^{\mu\nu}$, $F_{\mu\nu}\tilde{F}^{\mu\nu}$ and $\tilde{F}_{\mu\nu}\tilde{F}^{\mu\nu}$ behave under *P*? These are Lorentz scalars and could be in \mathcal{L} .

$$\begin{split} F^{\mu\nu}F_{\mu\nu} &= F^{0j}F_{0j} + F^{ij}F_{ij} + F^{i0}F_{i0} + F^{00}F_{00} \\ &= (-f^{j0})((-1)^2F^{j0}) + (-1)^2F^{ij}F^{ij} - F^{i0}F^{i0} + 0 \\ &= -F^{j0}F^{j0} + F^{ij}F^{ij} - F^{i0}F^{i0} \\ &= -F^{j0}F^{j0} - F^{i0}F^{i0} + \epsilon^{ijk}B^k\epsilon^{ijl}B^l \\ &= -2E^iE^i + 2\delta^{kl}B^kB^l \\ &= -2\vec{E}^2 + 2B^kB^k \\ F^{\mu\nu}F_{\mu\nu} &= -2\vec{E}^2 + 2\vec{B}^2. \end{split}$$

$$\begin{split} F_{\mu\nu}\tilde{F}^{\mu\nu} &= F_{0j}\tilde{F}^{0j} + F_{i0}\tilde{F}^{i0} + F_{ij}\tilde{F}^{ij} \\ &= -2E^iB^i - \epsilon^{ijk}B^k\epsilon^{ijl}E^l \\ &= -2\vec{E}\cdot\vec{B} - 2\delta^{kl}B^kE^l \\ &= -2\vec{E}\cdot\vec{B} - 2\vec{B}\cdot\vec{E} \\ F_{\mu\nu}\tilde{F}^{\mu\nu} &= -4\vec{E}\cdot\vec{B}. \end{split}$$

So $F^{\mu\nu}F_{\mu\nu}$ is *even* under parity, and $F_{\mu\nu}\tilde{F}^{\mu\nu}$ is *odd* under parity. A $F_{\mu\nu}\tilde{F}^{\mu\nu}$ term in \mathcal{L} violates parity; there is no evidence that electromagnetic interaction can violate parity (although weak interaction does.)

Note: The form $\tilde{F}_{\mu\nu}\tilde{F}^{\mu\nu}$ is not used, since $\tilde{F}_{\mu\nu}\tilde{F}^{\mu\nu} = -F_{\mu\nu}F^{\mu\nu}$.

3.7 Canonical stress tensor

3.7.1 Construction

Recall in classical mechanics,

$$H = \frac{\partial l}{\partial \dot{q}_i} \dot{q}_i - L.$$

Generalise this to:

$$T^{
u}_{\mu} = rac{\partial \mathcal{L}}{\partial (\partial^{\mu} \phi)} \partial^{
u} \phi - \delta^{
u}_{\mu} \mathcal{L}.$$

Here $q_i \to \phi(x^{\rho})$, and $\frac{d}{dt} \to \frac{\partial}{\partial x^{\mu}}$ for a scalar field $\phi(x^{\rho})$. For a vector field $A_{\lambda}(x^{\rho})$, we generalise again, $\phi \to A_{\lambda}$.

$$T^{\mu\nu} = \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} A_{\lambda})} \partial^{\nu} A_{\lambda} - g^{\mu\nu} \mathcal{L}_{\lambda}$$

the canonical stress tensor.

For a free electromagnetic field with $\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu}$,

$$T^{\mu\nu} = -\frac{1}{4} \frac{\partial (F_{\rho\sigma}F^{\rho\sigma})}{\partial (\partial_{\mu}A_{\lambda})} \partial^{\nu}A_{\lambda} + \frac{1}{4}g^{\mu\nu}F_{\rho\sigma}F^{\rho\sigma}$$

From an earlier calculation, we have:

$$T^{\mu
u} = -rac{1}{4}(4F^{\mu\lambda})\partial^{
u}A_{\lambda} + rac{1}{4}g^{\mu
u}F_{
ho\sigma}F^{
ho\sigma}
onumber \ = -F^{\mu\lambda}\partial^{
u}A_{\lambda} + rac{1}{4}g^{\mu
u}F_{
ho\sigma}F^{
ho\sigma},$$

the canonical stress tensor for a free electromagnetic field.

There are a number of difficulties with this $T^{\mu\nu}$:

- It is not gauge invariant as A_{λ} appears explicitly. Recall, $F_{\rho\sigma}$ is gauge invariant.
- $T^{\mu\nu} \neq T^{\nu\mu}$, i.e. it is not symmetric.

Rewrite:

$$T^{\mu\nu} = -g^{\mu\rho}F_{\rho\lambda}\partial^{\nu}A^{\lambda} + \frac{1}{4}g^{\mu\nu}F_{\rho\sigma}F^{\rho\sigma}$$

(obtained by lowering and raising λ and using $g^{\mu\rho}$ to lower ρ in first term)

Recall $F^{\nu\lambda} = \partial^{\nu}A^{\lambda} - \partial^{\lambda}A^{\nu}$, so that $\partial^{\nu}A^{\lambda} = F^{\nu\lambda} + \partial^{\lambda}A^{\nu}$. Substitute in $T^{\mu\nu}$:

$$T^{\mu\nu} = -g^{\mu\rho}F_{\rho\lambda}F^{\nu\lambda} - g^{\mu\rho}F_{\rho\lambda}\partial^{\lambda}A^{\nu} + \frac{1}{4}g^{\mu\nu}F_{\rho\sigma}F^{\rho\sigma}$$

Write $F^{\nu\lambda}$ as $-F^{\lambda\nu}$ and change λ to σ , and omit the second term to define a new tensor:

$$\Theta^{\mu\nu} = g^{\mu\rho}F_{\rho\sigma}F^{\sigma\nu} + \frac{1}{4}g^{\mu\nu}F_{\rho\sigma}F^{\rho\sigma},$$

the **symmetric stress tensor** (now manifestly gauge invariant since it only involves $F_{\mu\nu}$ and not A_{μ} explicitly.)

3.7.2 Properties

 Θ is symmetric ($\Theta^{\mu\nu} = \Theta^{\nu\mu}$).

The second term is in Θ is clearly symmetric, so to prove symmetry we will start by subtracting it from $\Theta^{\nu\mu}$:

$$\Theta^{\nu\mu} - \frac{1}{4}g^{\mu\nu}F_{\rho\sigma}F^{\rho\sigma} = g^{\nu\rho}F_{\rho\sigma}F^{\rho\sigma}$$

$$= F^{\nu}_{\sigma}F^{\sigma\mu}$$

$$= (-F^{\mu}_{\sigma})(-F^{\sigma\nu})$$

$$= F^{\mu}_{\rho}F^{\sigma\nu}$$

$$= g^{\mu\rho}F_{\rho\sigma}F^{\sigma\nu}$$

$$\Rightarrow \Theta^{\mu\nu} = \Theta^{\nu\mu}.$$

 $\Theta^{\mu\nu}$ is traceless:

$$\Theta^{\nu}_{\mu} = F^{\sigma}_{\mu}F^{\nu}_{\sigma} + \frac{1}{4}\delta^{\nu}_{\mu}F_{\rho\sigma}F^{\rho\sigma}$$
$$= F^{\sigma}_{\mu}F^{\sigma}_{\sigma} - \frac{1}{4}\delta^{\nu}_{\mu}F^{\sigma}_{\rho}F^{\rho}_{\sigma}.$$
$$\operatorname{tr} \Theta = \Theta^{\mu}_{\mu} = F^{\sigma}_{\mu}F^{\mu}_{\sigma} - \frac{1}{4}\delta^{\mu}_{\mu}F^{\sigma}_{\rho}F^{\rho}_{\sigma}$$
$$= F^{\sigma}_{\mu}F^{\mu}_{\sigma} - F^{\sigma}_{\rho}F^{\rho}_{\sigma},$$

since $\delta^{\mu}_{\mu} = 4$. Notice that these are all dummy indicies, so:

$$\operatorname{tr} \Theta = \Theta^{\mu}_{\mu} = F^{\sigma}_{\mu} F^{\mu}_{\sigma} - F^{\sigma}_{\mu} F^{\mu}_{\sigma}$$
$$= 0.$$

The trace relates to the mass of the vector field (see Proca equation later).

Also, $\partial_{\mu}\Theta^{\mu\nu} = 0$; the tensor is conserved.

Note: Θ^{00} is energy density and Θ^{0i} is momentum density. These will be discussed in detail later.

3.7.3 Angular momentum of a field

Recall clasically, $\vec{L} = \vec{x} \times \vec{p}$. Generalise to 1+3 dimensions:

$$M^{\mu\nu\sigma} = T^{\mu\nu}x^{\sigma} - T^{\mu\sigma}x^{\nu}.$$

Is *M* conserved?

$$\begin{aligned} \partial_{\mu}M^{\mu\nu\sigma} &= \partial_{\mu}(T^{\mu\nu}x^{\sigma} - \partial_{\mu}(T^{\mu\sigma}x^{\nu})) \\ &= (\partial_{\mu}T^{\mu\nu})x^{\sigma} + T^{\mu\nu}(\partial_{\mu}x^{\sigma}) - (\partial_{\mu}T^{\mu\sigma})x^{\nu} - T^{\mu\sigma}(\partial_{\mu}x^{\nu}) \\ &= 0 + T^{\mu\nu}\delta^{\sigma}_{\mu} - 0 - T^{\mu\sigma}\delta^{\nu}_{\mu} \\ &= T^{\sigma\nu} - T^{\nu\sigma} \\ &\neq 0, \quad \text{since } T^{\sigma\nu} \neq T^{\nu\sigma}. \end{aligned}$$

But $\Theta^{\sigma\nu} = \Theta^{\nu\sigma}$, so we define field angular momentum as:

$$M^{\mu\nu\sigma} = \Theta^{\mu\nu}x\sigma - \Theta^{\mu\sigma}x^{\nu}.$$

This is conserved: $\partial_{\mu}M^{\mu\nu\sigma} = 0$. Many conservation laws are implied here.

3.7.4 Relation to electromagnetic field

 Θ has 10 independent components: 4 of these relate to energy-momentum density. Recall:

$$\Theta^{\mu\nu} = g^{\mu\rho}F_{\rho\sigma}F^{\rho\nu} + \frac{1}{4}g^{\mu\nu}F_{\rho\sigma}F^{\rho\sigma}$$

and:

$$F_{\rho\sigma}F^{\rho\sigma} = -2(\vec{E}^2 - \vec{B}^2)$$

So when $\mu = \nu = 0$:

$$\begin{split} \Theta^{00} &= g^{0\rho} F_{\rho\sigma} F^{\rho\sigma} - \frac{1}{2} (\vec{E}^2 - \vec{B}^2) \\ &= g^{00} F_{0j} F^{j0} - \frac{1}{2} (\vec{E}^2 - \vec{B}^2) \\ &= (-1)^2 F^{j0} F^{j0} - \frac{1}{2} (\vec{E}^2 - \vec{B}^2) \\ &= E^j E^j - \frac{1}{2} \vec{E}^2 + \vec{B}^2 \\ &= \frac{1}{2} (\vec{E}^2 + \vec{B}^2) \quad \equiv U. \end{split}$$

U is the **energy density** of the field (in Heaviside–Lorentz units).

 $\mu = i, \nu = 0$:

$$\begin{split} \Theta^{i0} &= g^{i\rho} F_{\rho\sigma} F^{\rho\sigma} + 0 \\ &= (-1)^2 F_{i\sigma} F^{0\sigma} \\ &= -F_{i\sigma} F^{\sigma 0} \\ &= -F_{ij} F^{j0} \\ &= \epsilon^{ijk} B^k E^j \\ &= \epsilon^{ijk} E^j B^k \\ &= (\vec{E} \times \vec{B})^i, \quad \equiv c p^i. \end{split}$$

 \vec{p} is the **momentum density** of the field.

 $\mu = i, \nu = j$:

$$\begin{split} \Theta^{ij} + \frac{1}{2}(\vec{E}^2 - \vec{B}^2) &= g^{i\rho}F_{\rho\sigma}F^{\sigma j} \\ &= (-1)F_{i\sigma}F^{\sigma j} \\ &= -F_{i0}F^{0j} - F_{ik}F^{kj} \\ &= -F^{i0}F^{j0} - F^{ik}F^{kj} \\ &= -E^iE^j - \epsilon^{ikl}B^l\epsilon^{kjm}B^m \\ &= -E^iE^j + \epsilon^{kil}\epsilon^{kjm}B^lB^m. \end{split}$$

But $\epsilon^{kil}\epsilon^{kjm} = \delta^{ij}\delta^{lm} - \delta^{im}\delta^{jl}$, so:

$$\begin{split} \Theta^{ij} + \frac{1}{2}(\vec{E}^2 - \vec{B}^2) &= -E^i E^j + (\delta^{ij} \delta^{lm} - \delta^{im} \delta^{jl}) B^l B^m \\ &= -E^i E^j + \delta^{ij} B^l B^l - B^j B^i \\ &= -E^i E^j - B^j B^i + \delta^{ij} \vec{B}^2 \end{split}$$

Noting that $g^{ij} = -\delta^{ij}$,

$$\begin{split} \Theta^{ij} &= \frac{1}{2} \delta^{ij} (\vec{E}^2 - \vec{B}^2) + \delta^{ij} \vec{B}^2 - E^i E^j - B^i B^j \\ &= \frac{1}{2} \delta^{ij} (\vec{E}^2 + \vec{B}^2) - E^i E^j - B^i B^j \end{split}$$

This is a symmetric tensor, and is equal to $-\mathcal{M}^{ij}$, where \mathcal{M}^{ij} is the **Maxwell stress tensor** (in Heaviside–Lorentz units).

3.8 Interacting vector field

Introduce an external charge and current density $J^{\mu} = (c\rho, \vec{J})$. The Lorentz force is:

$$\partial_{\mu}F^{\mu\nu}=\frac{1}{c}J^{\nu}.$$

For a **free field**, translational invariance leads to $\partial_{\mu}\Theta^{\mu\nu} = 0$ (as we will show.)

Consider:

$$\begin{aligned} \partial_{\mu}\Theta^{\mu\nu} &= \partial_{\mu} (\frac{1}{4}g^{\mu\nu}F_{\rho\sigma}F^{\rho\sigma} + g^{\mu\rho}F_{\rho\sigma}F^{\sigma\nu}) \\ &= \frac{1}{4}\partial^{\mu}(F_{\rho\sigma}F^{\rho\sigma}) + \partial^{\rho}(F_{\rho\sigma}F^{\sigma\nu}) \\ &= \frac{1}{4}(\partial^{\nu}F_{\rho\sigma})F^{\rho\sigma} + \frac{1}{4}F_{\rho\sigma}(\partial^{\nu}F^{\rho\sigma}) + (\partial^{\rho}F_{\rho\sigma})F^{\sigma\nu} + F_{\rho\sigma}(\partial^{\rho}F^{\sigma\nu}) \\ &= \frac{1}{4}F_{\rho\sigma}(\partial^{\nu}F^{\rho\sigma}) + \frac{1}{4}F_{\rho\sigma}(\partial^{\nu}F^{\rho\sigma}) + \frac{1}{c}J_{\sigma}F^{\sigma\nu} + F_{\rho\sigma}\partial^{\rho}F^{\rho\sigma} \\ 2(\partial_{\mu}\Theta^{\mu\nu} - \frac{1}{c}J_{\sigma}F^{\sigma\nu}) = F_{\rho\sigma}(\partial^{\nu}F^{\rho\sigma} + 2\partial^{\rho}F^{\rho\sigma}) \end{aligned}$$

One can write *F*s in terms of *A*s, or write one of the $2F_{\rho\sigma}\partial^{\rho}F^{\sigma\nu}$ as:

$$F_{\rho\sigma}\partial^{\rho}F^{\sigma\nu} = -F_{\sigma\rho}\partial^{\rho}F^{\sigma\nu} = -F_{\rho\sigma}\partial^{\sigma}F^{\rho\nu} = F_{\rho\sigma}\partial^{\sigma}F^{\nu\rho}.$$

So:

$$2(\partial_{\mu}\Theta^{\mu\nu} - \frac{1}{c}J_{\sigma}F^{\sigma\nu}) = F_{\rho\sigma}(\partial^{\nu}F^{\rho\sigma} + \partial^{\rho}F^{\sigma\nu} + \partial^{\sigma}F^{\nu\rho})$$

= 0,

by Bianchi identity.

Hence,

$$\partial_{\mu}\Theta^{\mu\nu}=\frac{1}{c}J_{\sigma}F^{\sigma\nu},$$

Energy-momentum conservation for particles and fields in combination. $\nu = 0$:

$$\begin{aligned} \partial_{\mu} \Theta^{\mu 0} &= \frac{1}{c} J_{\mu} F^{\mu 0} \\ \partial_{0} \Theta^{00} &+ \partial_{i} \Theta^{i0} &= \frac{1}{c} J_{i} F^{i0} \\ \frac{1}{c} \frac{\partial}{\partial t} U &+ \partial_{i} \left(\frac{1}{c} S^{i} \right) &= -\frac{1}{c} J^{i} E^{i} \\ \frac{\partial U}{\partial t} &+ \vec{\nabla} \cdot \vec{S} &= -\vec{J} \cdot \vec{E}. \end{aligned}$$

 $\nu = j$:

$$\begin{split} \partial_{\mu} \Theta^{\mu j} &= \frac{1}{c} (J_0 F^{0j} + J_i F^{ij}) \\ &= -\frac{1}{c} c \rho F^{j0} - \frac{1}{c} J^i F^{ij} \\ &= -\rho E^j + \frac{1}{c} J^i \epsilon^{ijk} B^k \\ &= -\rho E^j - \frac{1}{c} \epsilon^{jik} J^i B^k \\ \partial_{\mu} \Theta^{\mu j} &= \rho E^j - \frac{1}{c} (\vec{J} \times \vec{B}). \end{split}$$

Compare this to:

$$\frac{d\vec{p}}{dt} = q\vec{E} + \frac{q}{c}\vec{v}\times\vec{B},$$

the Lorentz force of an electromagnetic field \vec{E} and \vec{B} on a charge q.

Define a force density f^{μ} :

$$f^{\mu} = \frac{1}{c} F^{\mu\sigma} J_{\sigma}$$
$$= -\frac{1}{c} J_{\sigma} F^{\sigma\mu}$$

A spatial integral of f^{μ} provides the force on the particles:

$$\int_{\Omega} f^{\nu} d^3 x = \sum_{n=1}^{N} \frac{dp_n^{\nu}}{dt},$$

where p_n^{ν} is the 4-momentum of the n^{th} particle.

The space integral of the energy-momentum density for fields and particles is:

$$\int_{\Omega} \left(\partial_{\mu} \Theta^{\mu\nu} + f^{\nu} \right) d^{3}x = \frac{d}{dt} \left(p^{\nu}_{\text{fields}} + p^{\nu}_{\text{particles}} \right) = 0$$

Force $q(\vec{E} + \frac{1}{c}\vec{v} \times \vec{B})$ acts on a charge q. Work is done at a rate $\vec{F} \cdot \vec{v} = q\vec{E} \cdot \vec{v}$ [since $\vec{v} \cdot (\vec{v} \times \vec{B}) = 0$]

For a charge *q* with path $\vec{x}_n(t)$,

$$\vec{J} = \sum_{n} q_n \vec{v}_n \delta^3 (\vec{x} - \vec{x}_n)$$

Rate of work done is the power:

$$\int_{\Omega} \vec{E} \cdot \vec{J} d^3 x = \sum_{n} \int_{\Omega} \vec{E} \cdot q_n \vec{v}_n \delta^3 (\vec{x} - \vec{x}_n) d^3 x$$
$$= \sum_{n} q_n \vec{E}(\vec{x}_n) \cdot \vec{v}_n$$

Where particles convert energy to the fields, one can show from Maxwell's equations (in 3D or 4D):

$$-\vec{E}\cdot\vec{J} = \frac{1}{2}\frac{\partial}{\partial t}(\vec{E}^2 + \vec{B}^2) + \vec{\nabla}\cdot(\vec{E}\times\vec{B}) = \frac{\partial U}{\partial t} + \vec{\nabla}\cdot\vec{S}.$$

Energy is imparted by particles (q_m) to the fields in a volume Ω at rate:

$$-\int_{\Omega} \vec{E} \cdot \vec{J} d^3 x = \int_{\Omega} \frac{\partial U}{\partial t} d^3 x + \int_{\Omega} \vec{\nabla} \cdot \vec{S} d^3 x$$
$$= \frac{\partial}{\partial t} \int_{\Omega} U d^3 x + \int_{\partial\Omega} \vec{S} \cdot d\vec{a}.$$