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Chapter 1

Solving electrodynamic equations

1.1 Aim

We seek solutions to the equation:
9, F =17,

where J¥(x) = (cp,]) is a given four-current as a function of spacetime. We need to solve
this in terms of Ay, where F,, = 0,A; — dyA), using a gauge change: A, = A, + "¢ for
some scalar field ¢, to ensure that 0" A, = 0. So we need 9" A}, — 9#9,¢ = 0, or in other words,
= orA,.

[¢ = 9" A), can be solved when given some function A}, (x?). Solving [l = f(x) = oA,
gives the required function ¢(x*).

Using ¢(x*), we have 0" A, = 0, the Lorenz gauge condition. So:

ayFyv = %]v
"9, Ay — 9, Ay = 1,.
But 0" A, = 0, so:
LA, = %]v

Solving this d’Alembertian equation for A, (x?) given J,(x*) eventually provides the elec-
tromagnetic field F,, = 9, A, — 9, A,.

1.2 Green function

1.2.1 Definition

George Green introduced a method for solving equations of the form LJf = g for given g.
Define a Green function:

0G = 5*(x — x'™)
= 6(xg — x) (% — &) (1.1)

/

Jd _ OJ . !
u SO that 3¢ — a7, treating x; as constant.

Write Zy =Xy —X
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Finding a function G(z;,) which obeys (.G = 6*(z) enables a solution to be written as:

fo) = [d%' Glx, = x,)g(x)).

The reason is that:
Of (xu) = /d4x’ OG (x — x,)8(x},)-

But G has been constructed to obey (1.1), so:
Of (xu) = /d4x’ 6*(xy — x,)8(x;,)
= g(xu),

the equation we wished to solve.
We need to evaluate a Green function obeying JG = 6*(x# — x™*). Using ¢ — 1], and
f — Ay, the four-potential is:

1
A,(#) = - [ @ Gx, = xL)Ju(x0)

1.2.2 Calculation

We will study Laplace’s equation V2G = §°(¥ — X’) first, and 0JG later. We will use these
definitions of the Fourier transform and its inverse:

e 1 i —ikx _ 1 i Fd ikx
Flk) = mé f)e ™ dx,  f(x) = mé F(k)e™ dk

The FT of the ¢ function is:

1 i —ikx _
(k) = \/E_é 5(x)e ™ dy = Tt

which means that the ¢ function can be represented as:
17,
6(x) = — [ ™ dk,
(x) 27 / ¢

generalising this to 3 dimensions:

= 1 %
SB(F) = erE / Pk e (1.2)
G(X) obeys:
V2G(X) = 63(%) (1.3)
and has FT:
S0 = L [iG@e ™, 6@ — [ #re @
(k) amp | X (X)e™™%,  G(X) @72 (k)e



Substituting the above expression for G(¥) and (1.2) into (1.3) yields:

[ee] o]

L1 . 1 o
2 3 ik-x 31 ik-X
\% 2n) 7 /d k G(k)e' (27r)3 /d ke™*.
Taking everything inside the integrals and noting that V2eik% = _¢iF¥ this becomes:

R o
3 2 ,ik-X 31 Hik-X
/ d°k G(k)k“e /2 d’ke

—00

This is only true for all x if the integrands agree, thus:

. 1 1
k) = ——5=
Hence,
= 1 T 31 A (7N k¥
C() = ryir /d kG(R)e
— 1 i 3 1 ik-z
(2m)3 /d kﬁe
To evaluate this integral, first note that
ezkx < < I
JE == [ @k [daeFets
—0o0 —00 0

where 7 = \/ak — 3 fx Since dp' = \/a dk', this gives:

(o] 3 [ee]
- Jon () Joveres
0 —00
_ /d“(x—s/z(\/;)%—ﬁz/w

Letting g = ﬁ, this gives:

0
1= [@p)r%e P (~1p dp)



Finally,

o 1 5 eik~x B 1
G(¥) = (2m)3 /d k R 4R

1.2.3 Example

For a static system of charges, ME1 states that V - E = p. But recall:

Fo-vo_ 124
c ot

— —V® for time-independent fields.

So MET1 reads —V (V®) = p, i.e. V2 = —p.
As we have discovered, this has solution

O(F) = — / G(Z— ¥)p(F) d*x’
— i p(f/) d3xl'

the expected potential function.
For many charges g;, ®(X) is simply a sum over i of X, terms.
1.3 Time dependence in electromagnetic equations

In 4D, Maxwell’s equations read 9, F/" = % JV, or, using the definition of F**¥, d,,0" AV — 9", A} =
1]v. In the Lorenz gauge, 9, A* = 0, so this simplifies to:

_1
oA = 1p,
We seek a 4D Green function D(zf), where z° = x? — x°, such that:
[0.D = 5*(z°). (1.4)

Using Fourier transforms yields:

D(z) = <\/1271>4 [#kDEe -,

denoting zf by z and k by k. Substitute this expression in (1.4):

1 o i o 1 ) -
H___ 4 —ikyz — 4 —ikyz
2, /d kD(k)e i /d ke
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Noting that a%, = d;,, we move the d,,0" inside the integral and multiply by 277, giving:

—ikyz"

— [dk Dk ke (21

For this to be true for all z, the integrands must match:

- 1 1
D) = T An? Kk

So our 4D Green function is:

[ee]

( 2711)2 / 44D (k) e,

D(z) =

Here k - z = koz® — k- Z, the 4D scalar product, so:
1 4 e
D(z) = — / e

(2”)4
zkz/dko _lkoz

where k now refers to |k|.

1.3.1 First integral

The dk integral can be performed using a countour method, treating ko as a complex variable.
To arrange a decreasing exponential, we need z° < 0 if Imky > 0, and vice-versa. We want
t' < t, i.e. cause before effect, and since zy = ¢(t — '), this means zg > 0 = Imk( < 0.

Since the integrand has poles at -k, we will evaluate the integral

—lk[)Z
/dko (ko + k) (ko — k)

using this contour:

Figure 1.1: The contour used to evaluate the integral

The residues are:

efz'koz0 eszo efikoz0 oikzo

— R = _
koo (ko +K)(ko—k) 2k " komok (ko + K) (ko — k) 2k
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Ignoring the semicircle for now, Cauchy’s theorem gives:

2 o—ikoz° e—ikz®  ikzg
dko & = —2mi [ —
/ ‘B m(Zk 2%k

7Tl

k
= —2%9(20) sin(kz°)

(eikzo _ e—ikzo)

where 6 is the Heaviside step function, which distinguishes the retarded and advanced Green
functions.

As for the semicircle, we can write:
ko = Re ¢ = R(cos¢p —ising), dky= —iRe_i¢d4)

So the integral over the semicircle is:

. T 0. .
e—zkoz0 ‘ Re—Rz'sing,in
ﬁ%%_P_z A
0

This tends to 0 as R — oo, since sin¢ > 0 on [0, 7], % — 0, and ¢ is a phase factor of unit
length. So the contribution from the semicircle can indeed be ignored.

1.3.2 Second integral

We now have:

Dret(z) = — (271_[)4 /dskeiﬁ'Z <—2]:[9(zo) sin(kzo)>

We use spherical coordinates, and align the 3™ axis of k along Z, so that k-Z = kzcos, where
g is the angle between k and Z.

Since d°k = k* dk sin 6 d6 d¢,

21

9(20) < ) i ) eikzcos() ) 0
Dyet(2°) = 21’ /k dk/smGdG/dq) v sin(kz").
0 0 0

Letting y = cos 0,



0(z0)

o0 -1
Dret(2f) = 2r) O/kdkl/(—dy)eikzy sin(kz")

9(20) ookdk : kO 1d ikzy
(271)2/ sin(kz )/ ye

-1

_ 0(z") i ek’ — o=k’ \ ikz  —ikz
L e R

[ee]

_ 9(2 ) /dk (eik(zoJrz) + efik(zoJrz) - eik(zofz) _ efik(zofz))
0

o

812z

o0

_ (ZO) ik(z20+z) —ik(z0—z)
T 82z /dk(e —¢ )

—o0

>

- — Z(;jz) (2716(2° + z) — 216 (2° — z)),

by the integral definition of the § function.
Recall that z = |Z] > 0,and z° > 0, s0 6(z° + z) = 0. Therefore:

0(z°)
47z

5(z° — 2)

1.3.3 Covariant form

Note that ¢ (ZO — z) changes from frame to frame, so Dyt does too. Is there a Lorentz scalar

form? We need the fact that: 5a)  o(b)
a

o(ab) = —> + —~

@0) =Ty * Ta

Recalling that z#z, = z3 — 2% = (z9 — z)(z + z), this means that:

5(zh) = 5(zo—2z) | 6(z0+2)
K |z + z| |zo — |

But as above, 6(z° + z) = 0, so:
5(z° — z)
S(zyzt) = 22 )
(zuz") 057

Since 6(z° — z) = 0 except at z = z¥, so this can be written:

5(z° — z)
0(z,z!) = ——=.
( n ) 22
Note that z;,z" is a covariant Lorentz scalar.

So a covariant expression for Dy, is:

Dyet(z°) = 9;3) d(zuz")



1.4 Solving Maxwell’s equations
Recall that we initially defined D so that:
1
Ay(xy) = E /d4x’D(x,4 - x;l)]v(x;,)

and that ], = (cp, ) for a single charge g located at ¥;(t) is:

() = T~ ()

Taking a single charge g and separating A, into time and space integrals,

— — dx]/ —
Ay (x0, %) :/dt’/de’D(xg—x(),x ¥)g (- 5(1))

t

dx
_ ’ = q
—q/dt D(xo — x(, X — )dt’

_ Q(t—t/) / 2 2y
D—mf_—wé(ct—ct — X =%, (H)])

Introduce R(#'), the location of the observation point ¥ relative to X (t):

Here,

ol

(', X7)

0

Figure 1.2: The past light-cone of (¢, X)

The four-potential can now be written:

d v
Ay(xo, %) = /dt t—ct—R(t’))ﬁ
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We want to find 6 (ct’ — ¢t — R(t')), and for this we need:

X — X

() = L g

where x; are the simple zeroes of f(x), i.e. where f(x) = 0and f'(x) # 0.
There is only one root of f(#'), and

af _._o_9R
dt’ dt’
We also have:
RZ=FR*= 2rR _ 4R
dt’ t
®_R iR
dt R dt"’
giving:
df R
@ =c+ E -0,

- dX . .. N R
where 7 = %, the velocity of q. Defining 7 as X, we have:

af

I =c—1f-70.
|1 =1and |7] < ¢, so % > 0. Hence:
af) _ af
ar | dt
So finally,

6(t —to)
S(F(H)) = )
(e = 1),

where t is the location of the root of f. This means that:

ct —cty — R(to) =0
= Cz(t() — t)z = (_»— fq(to))z
Or in other words,
R”Ry =0.

This equation describes events on the light-cone with apex (¢, X) as seen in Fig. 1.2.
So we can now write the four-potential as:

dxff 0(t — ') 6(t' — to)
vip oy 4 14%q 0
AN (EE) = 47t /dt dt/ R(t') c—n-0
_aty 1
47t dt R(ty)(c—1-9)
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Splitting this into components, we obtain:

O e —

B HCR—Z_J)R; to
S, q il
At = ——
( x) 47TCR—5'RtU

These are called the Linard—Wiechert potentials.
In covariant form, where four-velocity V¥ = (¢, 9),

—

Vo (x7 —xg) = Y(VoR® — V - R).

Here R? = x0 — xg = R. We can now write:

_4q v
T 4t VR

fo

47 y(cR—7-R)

Tp
where T, refers to the past light-cone. Note that 7y obeys RFR;, =0, i.e.
(x7 — xg(ro))(xg — X50(10)) = 0.

All this means that the electromagnetic potential A*(x) receives a contribution from one
event only: xg (T0), the spacetime location of the charge g as it passes through the past light-
cone of the event x# = (ct, ¥) where the radiation is observed.

The cause at (ct’, ¥') produces an effect at x* at the limiting speed c.

1.4.1 Static limit

We have:
= — 1
R—-pB-R -
AsT = cB — 0,
q
d - 1
- 47tR’
the expected electrostatic potential.
We also have: -
amA =19
CR - 5 * R TP

As 7 — 0, A — 0. So a charge at rest produces no magnetic field.

12



Chapter 2

Radiated fields

2.1 Introduction

In order to find the radiated fields from a charge g, we need to find 0# A". This invites consid-
eration of x* and x* 4 Ax¥, as in Fig. 2.1.

XM+ AxH

Figure 2.1: Light-cones of x* and x# + Ax*

Using the expression for AY which we calculated, we have:

oo (o)

q RV,
oHVv Vv
= — R,o"VP 4+ VPO R,). 2.1
Ran (RO'VO')Z ( 4 + p) ( )
So we need to determine 0# V", and 0#R".
Recall first that: A -
7T
7AV = ROV and RYR, =0.
Consider RY as a function of x? and T:
R7(xf,7) = x7 — x7(7) (2.2)

Since g’s path intersects the past light-cone of x” once, we can regard the invariant time 7 as
T(xF).

13



From (2.2) we have:

o gr = ORT _ox?  9xj or
T 9xt T 9x* 9T oxt
zéz—V‘Ta,ﬂ'.

(2.3)
We know that R“R, = 0, therefore:

ay (RURU—) = (aMRU)RU + RUaMRU

= 2R;0,R” = 0.
So (2.3) gives:
RU((SZ —V79,1) =0.
Hence,
0T = leil/g.

We can now find o#*V'V:

Y 1% _ 1% 877
dxy JT 9xy

. RH
=V
RV,
RHVY
= RV (2.4)
[
Substituting (2.4) into (2.1) yields:
47 RHVY Vv RHVP RH
AV = R 8y — Voo | VP
74 = e~ v e (5 e V)
R, VY R, VY

AT v, VP
- RMYY — T VA
RV,Z ROV, )P RV T ROV, )P

The third term is symmetric in y <> v and so disappears in the expression for F*'. Also,
V,VP = 2(c® -

P?) = 1222 = 2.
Splitting F*” into components, we have:

arpl — 1

. ) c;RPV,O
RIVY — RVYM) — T2 2P ey _ Ryym
(R‘TVU)z( ) (R"Vg)3( )
2
appt — A€

vel = (RUVU)S (RHVV _ RVVV).

Both terms in Fl. include V*, the four-acceleration.

2.1.1 Comments

e FIY has V* in every term, so if the charge moves at constant velocity, Fll =0. A charge
at constant velocity does not radiate.

14



e By contrast, Ff evl has no terms with V# and so is non-zero in general. For 7 = 0, we see:

po_ogn .= R
E,g= iiR2 e Evel = RS
the expected inverse square electric field. In fact, it is the static field boosted to a constant
velocity 7.

e Recall that R¥ = (R, Rii) where R’ = R due to RyR¥ = 0, and R = Rii. So F has the
form 1 as R — oo (the typical R-dependence of a radiative long-range field.

e By contrast, F"| has R-dependence r%

2.1.2 Orthogonality properties
Consider the dual field F*v = %e?“’P”Fp,, and the contraction ZRHﬁVV = eM"P’R, Fyr. (Note that
every term in F/ has an R¥ four-vector. So 2R, F" = e"P"R,R,|...].)

Since e#'?" = —ef"M but R, R, = R,R,, summing over y and p yields zero. So R, F* = 0
for both ‘acc” and ‘vel” elements.

With R, = (Ro, —Rii), we have:

Ry?w/ = RoﬁOi + R]jf‘ﬁ forv = 1.
So0 = —RF0 4 Rjeikak or:
RB' = "R/ EF
and since R # 0,
Bl = ki EX,

In vector form,

-

B=#xE

(in Heaviside-Lorentz units.) This is true for B,y and Bacc.
Isii L E? Study R, Fraqpv.
Recall:

PiO — Ei, Pl] — _eijkBk
I'fviO — Bi, 1’51] — GijkEk

So:

Ru4m(R7V,)%q 'FY, = (R7V,) (RyRMVY — RyRVV?) — (RPV,) (R RFV" — R, RV V)

— (R°V,)R,R"V¥ 4 (R°V,)R,R"V* =0
w

So Ry F. 4
v=20:

RS =0

_RiE;ad =0

RTllE;ad ==
aniad =0

15



rad — 0.

S
anl]

or

In other words, 71 = % is I Eiag-

V=7 '
RuFf;]d =0
leads to:
Erad = Brad X .
Summary:
- v=0: #-B=0
v=i: B=#XE
v=0: fi-E,q=0
R,FM, =0: Lo
=1 Erad = Brag X 7
2.2 Wave-like solutions
= 0, namely:

LA = % J# has homogeneous solutions where [JA”
v AV, —ikyxt
Apom = Apge .

Substitute:
Al (—iky)(—iky)e " " =0,

where Ajj are four constants.
For (2.5) to obey LAY =

— Agefzthrzkvc

geneous solutions are waves:
Ai/lom
Such A!_ may be added to a non-homogeneous solution of (JA” = 1]v:
AV = ﬁom + A}/\on—hom‘
Does Ay ., obey the Lorenz condition (d, A" = 0)? Recall:
1
A(xy) = - / Drat(xp — x) ¥ () d*’
and note that:
aVDI'Et(x - x/) = _a{/Dret(X - x/)‘
So:
v 1 4./ I\ TV (A
AV = E/d x'9,D(x —x")JV(x")

= —% /d4x’ [0, (x —x)] J¥(x).

16

(2.5)

0, we must have k,k* = 0, or in other words (ko)? = (k)2. Homo-



Using integration by parts:
AV = i/d‘}x’ 9, ]V (x") Dyet (x — x') /d4x 9y [Dretv(x)].
Recall that 9, J(x) = 0:

0,AY =0 — % / Dret(x — x')JV(x') d°%,

where %, is the directed ‘area” element on the boundary dQ) of the region (). For large (),
the boundary integral = 0. So d,A" = 0 for the solution obtained, recalling that 9, F'"" =

becomes:
dy (FAY — 9" AF) = %]V
OAY —0"(9,AF) = 1J¥
OAY = 1JY
if 9, A" = 0.

2.2.1 Static solution
We let ¢ — oco. Recall R, R¥ = 0, therefore R2 R?, = Ry =R.
R* = (R% R) = (R, Rit) = R(1, ).

Recall ,
AY(x) = - [ @ Dra(x = x)'(¥),

0(xo — xp)
47tR

t—+t = %R from 6. Asc — oo, t —t — 0,i.e.t — t. So the solution reverts to ‘action at a

distance’”:
d3 /
/ |x - x’ \

Dret(x — x') = 5(xp — xj, — R)

2.2.2 Velocity field with E and B

rel (ROVO)?)

Recall R” = R(1, 7).

We need:

RV, = ROV — R'V!
=cyR — c'ani,Bi
= cyR(1—7i-B).

17



For the electric velocity field, we need p = i and v = 0.

47TPi0 _ RWVY-RW!
ge2 v T B33R3(1—7i - B)3
_ R’ - B)
33R3(1—7i - B)3
o4 mep g 4lip)
vel 47TR2H2 (1—7i- 5)3’ ve 47TR292(1 —7i - B)3
At rest, when B = 0, this reverts to:
- qi
vel 47TR2/

the expected inverse square law.
We know that B = 7 x E for both “vel’ and ‘rad’, so:

For B = 0, By = 0 as expected.
Now, )
47 RFVV — RVVHF  RPV,(RFVY — RVVH)
q rad — (RUVU)Z (RUV0)3

We need the acceleration terms V# = d;; =Cq: 4 (-y,vB), oberving that § and y depend on T.

. dy
V0 =c—T =cy.
c It =cy
AV d, .
i _ - i
d i
ﬁ +cy—— i
i
=B + c'yz ’B
In a local frame, 4 77 'ydi We introduce & = ';ll—é, so that c& is acceleration of g (analagous to

how c[% is its velocity).
Weuse y =iand v = 0:

A7 RV, BER = ROV, (RFVY — RYVH) — ROV, (RMVY — RVVH)

rad

RUVU 3pi0 = cyR(1 B)(R'VY — ROV — (ROV? — RIVI)(R'VO — ROV?
q rad
=cyR(1—7i- B)cR(nW - ’Yﬁi - 'Yz"‘ ) — cR(7 — ”]’)’ﬁ] ”]’Y “])C’YR(” B )

18



All  terms cancel, leaving:

4 s - . o . .
;T(C“YR)g(l — 7+ B)°Eraq = —yR} (1 — i - B)7*a’ + YRl (n' — )

47tcR

p (1—7i-B)Eraa =7 -Q(ii — p) — (1—7i- B)d
So: . .
E o q #n-a(mM—p)—(1—i-pa
47tcR (1—7-B)° b\
and

Using vector relations allows 7 x [(7i — B) x «] to be rewritten as 7i - &(7 — ) — (1 — B - i).
Hence,

It follows directly that 7 - E..q (because of “fix” in the numerator). As R — oo, E,q and
Brag — %

2.3 Larmor’s power formula

It is possible to arrange B = 0 at a particular instant using a Lorentz transformation, to obtain
non-relativistic expressions.
Forf=0,1-f-ii=1

X (i xa)
ENR —
rad q A7TcR
Sinceni x & L #,
|7i x (71 x &)| = || sin6.

Power is given by Poynting’s formula (in HL units):
S = CErad X Erad

Recall that c@© = S’ where @ has dimension energy density.
Energy radiated per second into solid angle dQ) = sin 6 df d¢ is the element of power:

dP = |S|R?dQ
dp "
— =R*S
o) 5]
For low velocities of g, |[EXY | = |ga sin 6] where a = |&|. Note that since BYY, = 7i x ENR,
’Erad X Erad| = ‘Erad|‘§rad‘ - |Erad’2-

S0 || = ¢|E aq|?. In fact,
§I C‘Eradpﬁ-

19



So,
dPNR

Q)

7*a? sin® 0
16m2c '

Rz ‘ Erad |2

Larmor’s power formula.
Note that along the direction 7 = cd, no radiation is emitted, forwards or backwards. There
is also no azimuthal dependence.

2.4 Total power emitted

Integrating over all angles,

So,

Pyg = L v 1
6rtc 67cd
where 7 is the acceleration of the charge g at low velocity.

2.5 Relativistic radiation formula

Power is a Lorentz scalar. The generalisation of 7 is dL}/ and |7|> = ‘ZQ "ZQ generalises to:

S (dvo> + <dvi)2 (2.6)

dt dt at at
Recall V# has components (1, 8) and that 2 = 1 — B2, where = |B|. Use -L:

_gdy = d
2= _5(15

dr _po_ 398
:>ch—V =y B

ddV

Also we nee in terms of & and ﬁ in (2.6):

avi_d(eyp) _ dy . _dp
dt dt dt
A
dt

— VO‘Bi +C’)’2(Xi



So,

wdv, - o )
VHY, . o o
C274H — _,},4<52 . /3)2 +,Y4(52 . ﬁ)zﬁlﬁl —|—2’721_32 . 5[31“1 —I—Dcllxl

= @ B)A(F* —1) + 27 @ B)* + o,

Using, 7*2 =1- ﬁz,

2.4
_ 9 2 (%, A2
P_67r2c [“ + (@ 'B)’Y}’

Liénard’s formula. Observe that when & L 3, as in circular motion,

2.4
P@_ q’)/lxz.

67tC

Also note that for B ~0,v~1land P =~ Px.
Another form for P, useful for linear acceleration (i.e. & || E) uses:

So,
2.6
_TY (2 =L R\2
P_67TC [zx (“Xﬁ)}
When & || B,EZXEZO,SO
_ P
67c3

As |3| increases, v = (1 — p%)~1/2 becomes large, and the radiation becomes substantial.
For accelerators, radiation loss needs to be minimised. For synchrotrons, radiation is enhanced
to arrange useful determination of chemical structures.

2.6 Angular distribution

Energy flux for the radiative part is given by:

So

This component of energy flux in the direction R = Rii is the energy per area per second
observed at time t. The radiation was emitted by a charge g at the retarded time t' = t — 1R(#').
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space
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Figure 2.2: The total energy radiated

The energy radiated from time t; to time t; as g accelerates is:

the energy/area at position ¥ between times t; and t,, where t; = t/ + 1R(#}). (see Fig. ref-
tig:rad)
In terms of the charge’s coordinates,

where S - 7 is evaluated at t'.
We need 4. Recall that t = ' + 1R(¥):

dt _ 1dR

- iy 2.7
ar T car @7)
so we need %. ButR? = R? = 2R% =2R- g—g. So % = —17i -7, where v = —%. (2.7) becomes:
dt 1, , -
@ — 1 - En . (C‘B)
=1-i-B

So,

Lo (At @ |ix[E-B) <&
S.-# <dt’) = 1n1cR2 3)6 (1—11-[3)



The power radiated by ¢ in its coordinates at ¢’ is:

When @ = cf || @ = c&,

So,
167t2c dP’ a?sin? 0

7 dQ  (1—PBcos)’

as1—7i-B=1—|ii||B| cos8, and f makes angle 6 with 7.

2.6.1 Angle for maximum radiation

Setx =1— fcos0,ie.
1—
ad 2.8)

giving sin” 0 = 1 — B72(1 — x2). Write:

4rtc dP' ) = 1-B72(1—x)?
g2a2 dQ) N x5
We wish to find the maximum:
2 2
2 _pF—1+2x—x
Ff) = B
CB-1 2 1
T8 T8
df 51-p) 8 3
24f _ _
Fix= w ota=?

3x* —8x +5(1— %) =0

4—\/T+15B2
e

= Xmax =
From (2.8),
1+1582 -1
o= VT
P() _ o when 8 — 0, and increases to a maximum at

soas ff — 0, cos max — 0. (see Fig. 2.3) =
Omax- Power is « q2 and o« a2.
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p=0

Figure 2.3: The dependence of 0 on B.

For B — 1, v — oo. We relate Omax to v when 7 is large. Write cos Omax in terms of v, a
useful relation. With y=2 =1 — ﬁZ, and [32 =1-—972

o _ V15—15y2+1—1
COS Omax = 31— 2172

1 15
= | J16(1— —=) 1| (1—+?)"12

1 15 1
=3 ———4+...]—1 1+ —
s(mmg) 1 (e 5)
When /s are expanded in series, it is sufficient to keep only the 1/ 7* term. So,
1 15 1
Cosemax%3|:3—8ryz+...:| <]—{—272>
5 4
~1—— 14+ —

(1-5) (0% 5)

1 1
~l——+0(—=
872+ (74>
1g2

But cos Omax ~ 1 — 505, So for large 7y, small Omax,

So for large v,

2.7 Computation

The cone of maximum radiation has an apical angle of about 1/. An approximate formula
for the radiation induced by a high-energy charge g at time ' is:

dP(t')  q*a* sin” 0
dQ)  1672c (1 — Bcosh)>

lom?cdP’ (60— g6 +...)°
a2 dQ o pa-L1e2) 4.

(2.9)
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expanding sin and cos to O(6?).

So (2.9) becomes:

167{ch? B 62
g2a2 dQ [

1—1+217+%02+...}5
326?
T (r2eep
32’)’1062
(1+9%62)5
_ 3295(v0)?
(i+7%7
AP _ 2% (40)?
A0~ m2c(1+ 12025

In HL units, the maximum is:
1
dPr/nax _ §q2“278

0 e ()

The power generated is « %a>

synchrotron radiation.

. So high < and high acceleration provide considerable

2.8 Total power

27r7rdpl
00

This should match Liénard’s formula:

Y (2 = 3)2
P_67TC[“ (“X’B)]’
which for @ || § gives:
p_ T
671C

Note: In astrophysics, v ~ 10%, and in LHC, y ~ 4 x 10°.
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