next up previous contents
Next: About this document ... Up: Transfer_Book Previous: List of Publications and   Contents

Bibliography

1
R. N. Mantegna and H. E. Stanley, An Introduction to Econophysics: Correlations and Complexity in Finance. Cambridge University Press, Cambridge (2001)

2
J.-P. Bouchaud and M. Potters, Theory of Financial Risk and Derivative Pricing. Cambridge University Press, Cambridge (2003)

3
A. Chatterjee, S. Yarlagadda and B. K. Chakrabarti, Econophysics of Wealth Distributions. Springer-Verlag, Milan (2005)

4
A. Chatterjee, S. Yarlagadda and B. K. Chakrabarti, Econophysics and Sociophysics of Wealth Distributions. Wiley-VCH, Berlin (2006)

5
L. Bachelier, Théorie de la spéculation, Annales scientifiques de l'É.N.S. 3e série, 17, 21-86 (1900)

6
P. Gopikrishnan, M. Meyer, L. A. N. Amaral and H. E. Stanley, Inverse cubic law for the distribution of stock price variations, Eur. Phys. J. B 3, 139 (1998)

7
P. Gopikrishnan, V. Plerou, L. A. N. Amaral, M. Meyer and H. E. Stanley, Scaling of the distribution of flutuations of financial market indices, Phys. Rev. E 60, 5305 (1999)

8
V. Plerou, P. Gopikrishnan, L. A. N. Amaral, M. Meyer and H. E. Stanley, Scaling of the distribution of price flutuations of individual companies, Phys. Rev. E 60, 6519 (1999)

9
M. L. Mehta, Random Matrices, Elsevier-Academic Press, Netherlands (2004)

10
L. Laloux, P. Cizeau, J.-P. Bouchaud and M. Potters, Noise Dressing of Financial Correlation Matrices, Phys. Rev. Lett. 83, 1467 (1999)

11
V. Plerou, P. Gopikrishnan, B. Rosenow, L. A. N. Amaral and H. E. Stanley, Universal and Nonuniversal Properties of Cross Correlations in Financial Time Series, Phys. Rev. Lett. 83, 1471 (1999)

12
Z. Burda, J. Jurkiewicz and M. A. Nowak, Applications of Random Matrices to Economy and other Complex Systems, Acta Physica Polonica B 36, 2603-2838 (2005)

13
P. Gopikrishnan, B. Rosenow, V. Plerou and H. E. Stanley, Quantifying and interpreting collective behavior in financial markets, Phys. Rev. E 64, 035106 (2001)

14
V. Plerou, P. Gopikrishnan, B. Rosenow, L. A. N. Amaral, T. Guhr and H. E. Stanley, Random matrix approach to cross correlations in financial data, Phys. Rev. E 65, 066126 (2002)

15
R. N. Mantegna, Hierarchical structure in financial markets, Eur. Phys. J. B 11, 193 (1999)

16
G. Bonanno, F. Lillo and R. N. Mantegna, High frequency cross-correlation in a set of stocks, Quantitative Finance 1, 96 (2001)

17
G. Bonanno, G. Caldarelli, F. Lillo, S. Miccichè, N. Vandewalle and R. N. Mantegna, Network of equities in financial markets, Eur. Phys. J. B 38, 363 (2004)

18
N. Vandewalle, F. Brisbois and X. Tordois, Non-random topology of stock markets, Quantitative Finance 1, 372 (2001)

19
G. Bonanno, G. Caldarelli, F. Lillo and R. N. Mantegna, Topology of correlation-based minimal spanning trees in real and model markets, Phys. Rev. E 68, 046130 (2003)

20
J.-P. Onnela, A. Chakraborti, K. Kaski, J. Kertész and A. Kanto, Dynamics of market correlations: Taxonomy and portfolio analysis, Phys. Rev. E 68, 056110 (2003)

21
J.-P. Onnela, A. Chakraborti, K. Kaski, J. Kertész and A. Kanto, Asset trees and asset graphs in financial markets, Physica Scripta T106, 48 (2003)

22
M. McDonald, O. Suleman, S. Williams, S. Howison and N. F. Johnson, Detecting a currency's dominance or dependence using foreign exchange network trees, Phys. Rev. E 72, 046106 (2005)

23
R. Coelho, S. Hutzler, P. Repetowicz and P. Richmond, Sector analysis for a FTSE portfolio of stocks, Physica A 373, 615 (2007)

24
R. Coelho, C. G. Gilmore, B. Lucey, P. Richmond and S. Hutzler, The evolution of interdependence in world equity markets-Evidence from minimum spanning trees, Physica A 376, 455 (2007)

25
J.-P. Onnela, A. Chakraborti, K. Kaski and J. Kertész, Dynamic asset trees and portfolio analysis, Eur. Phys. J. B 30, 285 (2002)

26
J.-P. Onnela, A. Chakraborti, K. Kaski and J. Kertész, Dynamic asset trees and Black Monday, Physica A 324, 247 (2003)

27
H. Situngkir and Y. Surya, On Stock Market Dynamics through Ultrametricity of Minimum Spanning Tree, Technical Report WPH2005 Bandung Fe Institute, Dept. Computational Sociology, Bandung Fe Institute (2005)

28
H. Situngkir and Y. Surya, Tree of Several Asian Currencies, BFI Working Paper No. WPI 2005 (2005)

29
S. Miccichè, G. Bonanno, F. Lillo and R. N. Mantegna, Degree stability of a minimum spanning tree of price return and volatility, Physica A 324, 66 (2003)

30
J.-P. Onnela, K. Kaski and J. Kertész, Clustering and information in correlation based financial networks, Eur. Phys. J. B 38, 353 (2004)

31
R.L. Axtell, Zipf Distribution of U.S. Firm Sizes, Sience 293, 1818 (2001)

32
C. Di Guilmi, E. Gaffeo and M. Gallegati, Power Law Scaling in the World Income Distribution, Economics Bulletin 15, 1 (2003)

33
V. Pareto, Cours d'Économie Politique, Libraire Droz (Genève), (1964), new edition of the original from (1897)

34
P. Richmond, P. Repetowicz, S. Hutzler and R. Coelho Comments on recent studies of the dynamics and distribution of money, Physica A 370, 43 (2006)

35
P. Richmond, S. Hutzler, R. Coelho and P. Repetowicz, A review of empirical studies and models of income distributions in society, in Econophysics and Sociophysics of Wealth Distributions. (eds. A. Chatterjee, S. Yarlagadda and B. K. Chakrabart), Wiley-VCH, Berlin (2006)

36
O. Malcai, O. Biham, P. Richmond, and S. Solomon, Theoretical analysis and simulations of the generalized Lotka-Volterra model, Phys Rev E 66, 031102 (2002)

37
A. Chatterjee, B. K. Chakrabarti and S. S. Manna, Pareto law in a kinetic model of market with random saving propensity, Physica A 335, 155 (2004)

38
P. Repetowicz, S. Hutzler and P. Richmond, Dynamics of money and income distributions, Physica A 356, 641 (2005)

39
R. Coelho, Z. Néda, J. J. Ramasco and M. A. Santos, A family-network model for wealth distribution in societies, Physica A 353, 515 (2005)

40
http://www.forbes.com

41
A. Y. Abul-Magd, Wealth distribution in an ancient Egyptian society, Phys. Rev. E 66, 057104 (2002)

42
H. Aoyama, W. Souma, Y. Nagahara, M. P. Okazaki, H. Takayasu and M. Takayasu, Pareto's law for income of individuals and debt of bankrupt companies, Fractals 8, 293 (2000)

43
Y. Fujiwara, W. Souma, H. Aoyama, T. Kaizoji and M. Aoki, Growth and fluctuations of personal income, Physica A 321, 598 (2003)

44
W. Souma, Universal structure of the personal income distribution, Fractals 9, 463 (2001)

45
A. Chatterjee, B. K. Chakrabarti and S. S. Manna, Money in Gas-Like Markets: Gibbs and Pareto Laws, Physica Scripta T106, 36 (2003)

46
A. Dragulescu and V. M. Yakovenko, Evidence for the exponential distribution of income in the USA, Eur. Phys. J. B 20, 585 (2001)

47
A. Dragulescu and V. M. Yakovenko, Exponential and power-law probability distributions of wealth and income in the United Kingdom and the United States, Physica A 299, 213 (2001)

48
A. Dragulescu and V. M. Yakovenko, Statistical Mechanics of Money, Income, and Wealth: A Short Survey, AIP Conference Proceedings 661, 180 (2003)

49
F. Clementi and M. Gallegati, Power law tails in the Italian personal income distribution, Physica A 350, 427 (2005)

50
T. Di Matteo, T. Aste and S. T. Hyde, Exchanges in complex networks: income and wealth distributions, in The Physics of Complex Systems (New Advances and Perspectives), (eds. F. Mallamace and H. E. Stanley), IOS Press, Amsterdam (2004)

51
W. J. Reed, The Pareto law of incomes - an explanation and an extension, Physica A 319, 469 (2003)

52
N. Scafetta, S. Picozzi and B. J. West, An out-of-equilibrium model of the distributions of wealth, Quantitative Finance 4, 353 (2004)

53
G. Willis and J. Mimkes, Evidence for the Independence of Waged and Unwaged Income, Evidence for Boltzmann Distributions in Waged Income, and the Outlines of a Coherent Theory, Microeconomics 0408001, EconWPA (2004)

54
S. Sinha, Evidence for power-law tail of the wealth distribution in India, Physica A 359, 555 (2006)

55
M. Levy and S. Solomon, New evidence for the power-law distribution of wealth, Physica A 242, 90 (1997)

56
S. Levy, Wealthy People and Fat Tails: An Explanation for the Lévy Distribution of Stock Returns, Finance, 30 (1998)

57
M. Levy, Are rich people smarter?, J. Econ. Theory 110, 42 (2003)

58
R. Coelho, Modelos de Distribuição de Riqueza, MSc Thesis - Universidade do Porto, Porto (2004)

59
http://finance.yahoo.com/

60
http://www.mysql.com/

61
H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics and Financial Markets. World Scientific Publishing, Singapore (2004)

62
C. Tsallis, C. Anteneodo, L. Borland and R. Osorio, Nonextensive statistical mechanics and economics, Physica A 324, 89 (2003)

63
A. M. Sengupta and P. P. Mitra, Distributions of singular values for some random matrices, Phys. Rev. E 60, 3389 (1999)

64
W. F. Sharpe, Capital Asset Prices: A Theory of Market Equilibrium under Conditions of Risk, The Journal of Finance 19, 425 (1964)

65
F. Lillo and R. N. Mantegna, Spectral density of the correlation matrix of factor models: A random matrix theory approach, Phys. Rev. E 72, 016219 (2005)

66
D.-H. Kim and H. Jeong, Systematic analysis of group identification in stock markets, Phys. Rev. E 72, 046133 (2005)

67
R. C. Prim, Shortest connection networks and some generalisations, Bell System Tech. J. 36, 1389 (1957)

68
V. Batagelj and A. Mrvar, Pajek - Program for Large Network Analysis, http://vlado.fmf.uni-lj.si/pub/networks/pajek/

69
T. Kamada and S. Kawai, An algorithm for drawing general undirected graphs, Information Processing Letters 31, 7 (1989)

70
http://www.icbenchmark.com/



Ricardo Coelho 2007-05-08